
SPECIAL SECTION ON INTERNET-OF-THINGS ATTACKS AND DEFENSES:
RECENT ADVANCES AND CHALLENGES

Received July 16, 2020, accepted August 1, 2020, date of publication August 7, 2020, date of current version August 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014891

V-Sandbox for Dynamic Analysis IoT Botnet
HAI-VIET LE 1,2 AND QUOC-DUNG NGO 3
1Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
2Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
3Department of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi 10000, Vietnam

Corresponding author: Quoc-Dung Ngo (dungnq@ptit.edu.vn)

ABSTRACT With the increasing use of resource-constrained IoT devices, the number of IoT Botnets has
exploded with many variations and ways of penetration. Nowadays, studies based on machine learning and
deep learning have focused on dealing with IoT Botnet with many successes, and these studies have required
relevant data during malware execution. For this, the sandbox environment and behavior collection tools play
an essential role. However, the existing sandboxes do not provide adequate behavior data of IoT botnet such
as the C&C server communication, shared libraries requirements. Moreover, these sandboxes do not support
a wide range of CPU architectures, data is not exhaustively collected during executable file runtime. In this
paper, we present a new practical sandbox, named V-Sandbox, for dynamic analysis of the IoT Botnet. This
sandbox is an ideal environment for IoTBotnet samples that exhibit all of their malicious behavior. It supports
the C&C servers connection, shared libraries for dynamic files, and a wide range of CPU architectures.
Experimental results on the 6141 IoTBotnet samples in our dataset have demonstrated the effectiveness of the
proposed sandbox, compared to existing ones. The contribution of this paper is specific to the development
of a usable, efficient sandbox for dynamic analysis of resource-constrained IoT devices.

INDEX TERMS Sandbox, dynamic analysis, IoT botnet, machine learning.

I. INTRODUCTION
In recent years, the security of IoT devices has been of
great interest to many researchers since a large number of
IoT devices have been attacked and exploited vulnerabilities
[1]–[6]. With the rapid growth in number [7] and less atten-
tion to information security [8]–[10], IoT devices gradually
become an attractive target for attackers.

There are many criteria for classifying IoT devices,
such as device connectivity, device manufacturers, etc.
In this paper, based on Bencheton’s classification approach
[11], IoT devices are divided into resource-constrained and
high-capacity ones. Furthermore, we propose a sandbox to
deal with resource-constrained IoT devices for the following
reasons:

• Due to resource-constrained (such as CPU, RAM,
Flash memory, etc.), it is not trivial to integrate
threat detection/protection solution in these devices.
Resource-constrained devices have become an attractive
target for hackers with many new variants of Botnets.
Therefore, this field is a big challenge for researchers to
deal with IoT Botnet detection for these devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunhua Su .

• Using machine learning/deep learning in dynamic anal-
ysis of IoT botnet, researchers need to collect malicious
behavior. However, existing sandboxes do not provide
fully behavior data of this malware, especially the C&C
servers connection, shared libraries for dynamic files,
and a wide range of CPU architectures.

Malware on IoT devices not only spreads on individual
personal devices but also targets businesses, organizations,
and governments with increasing severity [12]. Kaspersky’s
statistics show that there were more than 100 million attacks
on IoT devices in the first half of 2019, a 7-fold increase
compared to the same period in 2018 [13]. Addressing the
risks above, malicious researchers have developed newmeth-
ods and frameworks to effectively analyze and detect mal-
ware samples on IoT devices [14]–[25]. These studies can
be divided into two main groups, which are static analysis
[14]–[19] and dynamic analysis [20]–[25].

As in [19], [25], authors have presented the static analysis
method, which allows full control of the control flow (CFG)
and data flow (DFG) to detect malicious code by specific
analytical techniques such as byte code, system calls API or
Printable Strings Information (PSI) [19], [26]. This method
allows a detailed analysis of files and gives the activa-
tion capabilities of malicious code [27]. However, the static

145768 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2623-2462
https://orcid.org/0000-0002-4133-3499
https://orcid.org/0000-0002-6461-9684


H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

analysis method is challenging to apply to malicious code
using complicated techniques (obfuscation) or difficult to
collect samples because malicious code is only stored on the
device’s Random Access Memory (RAM) [7]. According to
Andreas Moser [28], the static analysis method should be
used as a complement to the dynamic analysis method.

Dynamic analysis is a method of monitoring, collecting,
and analyzing system behaviors to detect malicious code [29].
One of the most popular approaches nowadays is to use
machine learning/deep learning. These approaches are neces-
sary to collect relevant data duringmalware execution. In gen-
eral, this step requires an adequate sandbox to monitor the
behaviors of executable files. Collected data plays an essen-
tial role in the accuracy of detecting malicious behaviors.

There are many studies on building sandboxes for IoT
devices, but most focus on IoT devices running Android oper-
ating systems (smartphones, smart TVs, etc.) [26]–[30]. The
reason is that Android devices have powerful and sufficient
resources (CPU, RAM, Disk, GPU) to easily create sim-
ulation environments for dynamic analysis (Android SDK,
Virtual Box, VMware, KVM, etc.). The problem of building
a sandbox for resource-constrained IoT devices has not been
given much attention.

There are several researched and developed sandboxes for
IoT devices that can be mentioned, such as [35]–[41]. The
survey of these IoT sandboxes is presented in section II-C.
However, these sandboxes have some limitations, such as
they do not support a wide range of CPU architectures, and
data is not fully exhaustive collected during executable file
runtime; the emulation environment does not provide cru-
cial components such as C&C server simulator and shared
libraries dynamically. In this paper, we focus on developing
sandbox for resource-constrained IoT devices targeting IoT
Botnet detection.

To overcome the above limitations, the proposed IoT Sand-
box meets the following criteria:

• Support for a wide range of CPU architectures;
• Autoconfiguration of emulation environment to run exe-
cutable files;

• No effect on the external environment;
• Provision libraries (shared objects) that the executable
file requires;

• Provision a fully simulated network environment for
IoT malware such as connecting to the C&C server,
transmitting and receiving commands from the C&C
server;

• Behavior monitoring of IoT malware affecting the sand-
box environment (system calls, files, folders, network
traffic, hardware performance, etc.).

Our main contributions are:

• Summarize a set of dynamic features needed to detect
IoT Botnet based on surveying research results by using
machine learning to detect IoT botnet dynamically. After
that, assess the existing IoT Sandboxes based on the
proposed set of dynamic features, thereby proposing

a sandbox architecture to overcome the existing
shortcomings.

• Develop an adequate IoT sandbox for IoT Botnet
detection.

• Evaluate and prove the effectiveness of the sandbox on
the data set of 9069 samples obtainedwith 6141malware
and 2928 benign samples.

The structure of this paper is as follows: section II consists
of the background and survey of related works, section III
describes the proposed architecture, section IV experiments
and evaluates the results, section V discusses the results, and
section VI concludes the paper.

II. RELATED WORK AND BACKGROUND
In this section, we will discuss the characteristics of IoT
Botnet as well as the researches related to applying machine
learning to the dynamic analysis of IoT Botnet and sandboxes
for existing IoT devices.

A. OVERVIEW OF IoT BOTNET
According to Cisco forecasts, by 2020, there will be about
50 billion devices connected to the Internet, and this number
will increase to even more [7]. As its number is increasing,
IoT devices gradually become an attractive and accessible
environment for hackers to attack. In the world, many studies
have shown the danger from malicious code on IoT devices
(IoT Botnet) such as Bashlite, Mirai, Tsunami, Psyb0t [8].
In particular, with more than 1 million infected devices,
including IP cameras, DVRs, and routers, Bashlite malicious
code can launch DDoS attacks up to 400Gbps through simple
techniques like UDP or TCP Flood [8]. Bashlite malicious
code is considered the precursor to Mirai, and the mali-
cious code affects a wide variety of IoT devices. The Mirai
Botnet network used in the DDoS attacks reached a record
of 1.1 Tbps, with more than 100,000 IoT devices for home
use [10].

By focusing on analyzing 16 families of IoT Botnet, dis-
covered from 2008 to 2018, Vignau et al. [42] identified
IoT Botnet as a significant threat to the IoT ecosystem, and
malicious behaviors focused on launching a DDoS attack,
characterized by Botnet. Nguyen et al. [19], Angrishi [8], and
Kolias et al. [1] also presented behavioral features of the IoT
Botnet, including:

• Scan for appropriate targets: Malware performs a ran-
dom scan of IP addresses with commonly targeted ser-
vice ports, such as Telnet or SSH.

• Gain access to other vulnerable devices: Bots engage in
brute force attacks to discover the default login creden-
tials of weakly configured IoT devices.

• Infect IoT devices: After logging into the device, the bot
infects the loader used to download and execute the
corresponding binary version of the botnet, usually via
FTP, HTTP, etc.

• Communicate with the C&C server via IP address or
URL: IoTBotnets try to connect and relay various device

VOLUME 8, 2020 145769



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

features, such as IP address and hardware architecture,
to the reporting server via another port.

• Wait and execute commands: The bot goes into the main
execution loop first, which establishes a connection with
the C&C server and keeps it alive, waiting for the next
commands. If an attack command is received, the corre-
sponding routine is called, and the attack is executed.

With these characteristics, many researchers have come up
with methods to analyze and detect IoT Botnet. Section II-B
focuses on analyzing research findings using dynamic analy-
sis of the IoT botnet.

B. RELEVANT FEATURES FOR IoT BOTNET DETECTION
In this section, we present a survey on IoT Botnet for
both resource-constrained as well as high-performance IoT
devices. The dynamic analysis could be classified into
two main family methods: network-based intrusion detec-
tion system (NIDS) and host-based intrusion detection sys-
tem (HIDS) method.

Dynamic analysis studies to detect IoT Botnet mainly
focus on network traffic analysis to find out the characteristics
for building NIDS [43]–[48], similar to traditional malware
analysis running on i386. The drawback of these studies
is that malware is only detected when the device has been
successfully infected and becomes part of the IoT Botnet net-
work. To overcome the above disadvantages and to detect the
possibility of an early attack, it is recommended to monitor
the behavior of malicious code from the beginning of affect-
ing the target device to infection using HIDS. Traditional
HIDS can monitor software activities on computers to detect
whether or not it is malicious. However, traditional HIDS
is ineffective with resource-limited IoT devices (such as IP
cameras, smartwatches, smart lamps). There are not many
studies analyzing IoT Botnet behaviors on IoT hosts to build
IoT HIDS [25], [49], [50]. Building an environment for IoT
behavioral analysis Botnet’s impact on IoT devices restricts
resources with difficulties such as diverse and inconsistent
IoT hardware platforms, the firmware of the closed device
comes with the device or is available via the manufacturer’s
website.

The sandbox for these IoT devices is in the research and
development stage (presented in section II-C). In this section,
we will discuss the most relevant researches related to the
use of machine learning in dynamic analysis of IoT Botnet.
We also study behavioral analysis studies affecting a host
of IoT malware to be applied to research problems. From
there, we are orienting the requirements to be able to build
the sandbox for analyzing IoT Botnet dynamically.

Doshi et al. [51] proposes a NIDS model for DDoS detec-
tion in network data streams connecting IoT devices by
low-costmachine learning algorithms (includingKN, LSVM,
DT, RF, NN) with more than 98% accuracy. Doshi recom-
mends using network stream characteristics such as Packet
size, Inter-packet Interval, Protocol, Bandwidth, IP destina-
tion address cardinality, and novelty.

Indre and Lemnaru [52] proposes a solution that com-
bines features extracted from network packets, focuses on
analyzing data from the URI and RESTful methods, and
proposes features based on the characteristic set of the
KDD99 dataset.1 Experimental results show that the typ-
ical set of Indre proposes to use with Passive Aggres-
sive Classifier [53] achieves 98.4% accuracy. However,
the KDD99 dataset has mainly collected data on computer
network attacks since 1999. At this time, IoT Botnet has not
appeared yet. Therefore, identifying the IoT Botnet based on
the KDD99 dataset is not adequate.

Alrashdi et al. [54] proposes the use of the UNSW-
NB15 dataset [55] for building NIDS to detect IoT Bot-
net in Smart City more effectively, replacing the outdated
KDD99 dataset. Alrashdi uses Random Forest with 12 fea-
tures selected from the UNSW-NB15 dataset to achieve an
accuracy of 99.34%. These selected features include: srcip,
dstip, dur, dsport, ct-dst-src-ltm, ct-rsv-dst, ct-dst-ltm, ct-src-
ltm, ct-src-dport-ltm, dbytes, proto, is-ftp-login.

Prokofiev et al. [43] presents the NIDS model using logis-
tic regression for IoT devices with an accuracy of 97.3%.
To create the logistic regression model the following net-
work traffic features were selected: destination port, source
ports, number of requests, even number of requests, mean
interval between requests, requests on other ports, mean size
of packets, delta for packet size, mean entropy of packets,
alphanumeric.

Wu et al. [48] uses the IoTBOX sandbox [36] to execute
IoT Botnet samples in the dataset, and proposes the model of
learning sequential sequences of Shell commands to detect
IoT Botnet with approximately 90% accuracy. The limitation
of Wu’s proposed model is that the use of a large deviation
training data set (300 Gayfgt logs, 51 log nttpd, 2430 log
Zorro) results in inaccurate prediction models. The IoTBOX
sandbox, with the weakness shown in the section below,
is presented as the second limitation of this study.

In addition to the above NIDS, studies using HIDS for
detection of IoT botnets will be discussed below.

Breitenbacher et al. [56] presents a practical HIDS that
requires low power for IoT devices to detect malicious code.
Hades-IoT IDS uses data about system calls to detect mali-
cious behavior with 100% accuracy. But, this experimental
result is only applied on limited data sets (2 types of IoT
devices with 7 device models and two malicious samples are
too few to prove). Features used in Hades-IoT IDS include
names, addresses, and parameters of system calls.

Ham et al. [21] applies the SVM classification algorithm
to detect malware on Android devices with 99.7% accuracy.
In this paper, Ham selects 32 features from the 88 features
that Shabtai presents [32]. However, collected data agents
are installed directly onto real devices to collect data, result-
ing in restrictions on expansion for many different hard-
ware devices and operating system versions. In addition,

1‘‘KDD Cup 1999 Data.’’ [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html, Accessed on: Apr. 23, 2018.

145770 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

32 selected features are only suitable for 14 families of
malware in the Dataset, which reduces detection with newly
emerging malware samples.

Shabtai et al. [32] introduces a malware detection frame-
work, named Andromaly, on Android mobile devices with
98.18% accuracy. The advantage of this framework is that
it is lightweight, can run on real devices, consume fewer
resources, and is almost transparent to the system. The author
has selected useful features for malware detection through
the results of testing the samples included in the data set.
However, the small number of samples in the dataset (4 mal-
ware and 40 benign) leads to the selection of non-optimal
features (88 features selected for detection). Besides, many
features are only allowed to collect for real devices such as
Keyboard_Backlight, LCD_Backlight, Blue_Led, Green_Led,
Red_Led, Camera, USB_State, Standard Print_Calls, Out
Send_Calls, Missed_Calls, Out send_Non_CL_Calls.

Azmoodeh et al. [57] proposes a machine learning model
to detect ransomware attacks by monitoring the power con-
sumption of IoT nodes. The machine learning algorithm used
is KNN in combination with DTW for accuracy of 95.65%.
The proposed Azmooded method allows ransomware to be
detected on real ARM devices (Samsung Galaxy SIII, Sam-
sung Galaxy S Duos, Asus Padfone Infinity). However, this
study has two limitations: the dataset used has too few
samples (6 ransomware and 12 benign), and the collection
characteristics are required to be extracted from real devices,
challenging to implement in replication in reality.

Ficco et al. [58] proposes machine learningmodels that use
API call sequences for the classification of the IoT Botnet.
This model with an F-measure is 89% (Naive Bayes algo-
rithm) on a dataset. In this model, Ficco collects API calls
from executed applications to build Call Dependency Graph
and Calls tree. From there, Ficco extracts the appropriate
feature into the Markov Chain behavioral model to classify
the IoT Botnet. However, using the mobSF tool [59] to extract
features that lead to a limitation of this study is only suitable
for devices running Android, challenging to extend to other
embedded operating systems of IoT devices.

From the above studies, an adequate sandbox must pro-
vide at least the following main feature types: system calls,
extended information of system calls (EXINFO), network
traffic, host performance. Based on the accuracy of machine
learning algorithms applied by the authors on these fea-
tures, we summarize a set of practical dynamic features for
analyzing and detecting IoT Botnets described in Table 2.
Particularly for network traffic features, the author chooses
the features of the UNSW-NB15 data set [55] based on
Janarthanan’s results [60].

C. OVERVIEW OF IoT SANDBOX
A survey of the characteristics, advantages, and disadvan-
tages of IoT sandboxes is presented in the following content:

Yan and Yin [30] presents DroidScope, an Android mali-
cious code analysis platform. The architecture of the Droid-
Scope is shown in Fig. 1. The entire Android software system

TABLE 1. Information collected from dynamic analysis of IoT botnet.

runs on theQEMUemulator, and the analysis is done from the
outside. DroidScope extracts OS-level semantic knowledge:
system calls and running processes, including threads and
memory maps, with Java level getting the current Dalvik
virtual machine program counter and frame pointer, all virtual
registers. (its operands and their values). To analyze Android
malware, it has implemented four analysis plugins such as
API tracer, Native instruction tracer, Dalvik instruction tracer,
and Taint tracker.

Bläsing et al. [31] proposes an Android Application Sand-
box (AASandbox), monitors the name of system calls, and
library calls on ARM architecture, including their arguments
and return value. However, the effectiveness of AASandbox
has not been clearly demonstrated with only 150 test sam-
ples. Also, using the Android SDK to build the simulation
environment and Android Monkey to allow interaction with
the template results in the ability to customize the running
environment and collect the full range of malicious behavior.
In Fig. 2, the system monitoring results of AASandbox are
described. Each line has five values, including timestamp,
used system call, return value, an ID of the process, and ID its
parent. The author describes the architecture of AASandbox
in Fig. 3.

VOLUME 8, 2020 145771



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 2. Summarized dynamically features for detection of IoT Botnet.

Oktavianto and Muhardianto [35] develops Cuckoo Sand-
box, which is a dynamic analysis system consisting of two
main components: Cuckoo Server, and Cuckoo Host. The
architecture of Cuckoo Sandbox is described in Fig. 4. The
analysis is performed using the automated scripts available
that Cuckoo Host required to perform during the analysis
of the target application. Cuckoo is heavily dependent on
Python, and there are some Python applications needed to run
Cuckoo properly (Magic, Pydeep, Yara, Pefile). Therefore,
using Cuckoo with environments that do not fully support
Python will face a few difficulties. Cuckoo Sandbox gives
good results analysis for the X86 architecture. For analyzing
Linux malware, Cuckoo Sandbox shows a lack of features.

Liu et al. [61] uses Cuckoo Sandbox to perform dynamic
analysis to extract host behaviors and network behaviors
of IoT botnet samples (Mirai, Satori, OMG, and Wicked).
However, the results extracted from Cuckoo Sandbox mainly
obtained network behaviors.

Pa et al. [36] proposes an IoT honeypot (IoTPOT) and
sandbox (IoTBOX), which attracts and analyzes Telnet-based
attacks against various IoT devices running on eight different
CPU architectures such as MIPS, MIPSEL, PPC, SPARC,
ARM, MIPS64, sh4, and X86. The architecture of the IoT-
BOX Sandbox shown in Fig. 5. Yin uses QEMU [62] to build
cross-compilation environments for different CPU architec-
tures and the respective OpenWrt platform to run on the

145772 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

FIGURE 1. DroidScope’s architecture [30].

FIGURE 2. The output of AASandbox [31].

FIGURE 3. Design of the AASandbox [31].

emulated CPU environment. Then, the virtual bridge and
the access controller are used to create a virtual networking
environment. Through this virtual networking environment,
IoTBOX can collect network traffic generated by the samples.
In practice, the author only ran 52 samples on 3 CPU plat-
forms, of which five samples failed to run. IoTBOX has only
focused on monitoring network behavior, and the remaining
behaviors are not mentioned.

Uhricek [43] raises the limitations of Sandbox such as
Limon [38], REMnux [39], Detux, Padawan [40] including

FIGURE 4. Cuckoo’s main architecture [35].

FIGURE 5. Overview of IoTBOX [36].

support for less CPU architecture, incomplete information
gathering, etc. That is the motivation for Daniel Uhricek
to introduce Linux Sandbox LiSa [41], which helps ana-
lyze Linux malware on MIPS, ARM, Intel 80386, x86-64,
Aarch64 architectures. By tracking behaviors such as system
calls, opening or deleting files, creating processes, network
traffic of 150 IoT botnet samples (mostly for ARM and
MIPS architectures), Uhricek demonstrates the efficiency of
LiSa. LiSa uses SystemTap to collect system information
to create process trees, trace syscalls, and mark open or
deleted files. To collect network data, Uhricek uses Scapy
and dpkt libraries. However, the role of a C&C server that
is very important to demonstrate the behavior of IoT Botnet
fully is not developed by Uhricek. Therefore, the behaviors
of IoT botnet samples collected from LiSa are incomplete.
Additionally, dynamically linked templates running on LiSa
often fail due to the lack of proper libraries.

In Table 3, we summarize the descriptions and supported
features (described in Table 2) of these IoT sandboxes. The
main drawbacks of above sandboxes are:

VOLUME 8, 2020 145773



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 3. Describe the IoT Sandboxes.

1) Features (shown in Table 2) are not fully exhaustive
collected during executable file runtime;

2) Do not support communication with the C&C server;
3) Do not provide shared libraries.

Therefore, we will build an adequate sandbox that addresses
these drawbacks. The proposed approach is presented in the
next section.

III. THE PROPOSED V-SANDBOX
To give a better understanding of our proposed sandbox,
we use a sample of IoT Botnet Mirai through each step of
the data collection process. Mirai is one of the most popular
IoT Botnet families, causing DDoS attacks with ground up to
1.1 Tbps of traffic in September 2016 [1]. Mirai easily infects
IoT devices such as webcams, DVRs, routers, and IP cameras.
There are times when the number of simultaneously infected
devices ground to 400000.

A. OVERVIEW
Resource-constrained IoT devices play an important role in
trend Internet of Things and are vulnerable to attacks. When
analyzing and defending against these attacks, C&C servers
connection, shared libraries for dynamic files and a wide

FIGURE 6. The architecture of V-Sandbox.

range of CPU architecture and other capabilities and indica-
tors are very necessary. However, the existing sandbox cannot
satisfy them. Therefore, V-sandbox is proposed to solve this
problem. The proposed approach described in Fig. 6, consists
of 8 main components:

• ELF Metadata Extraction component (EME): automati-
cally extracts the metadata from the input file.

• Sandbox Configuration Generation component (SCG):
Create the appropriate configuration parameters of the
‘‘Sandbox Engine component’’ to execute the ELF file.

• Sandbox Engine component (SE): The appropriate sand-
box environment allows behavior monitoring and facil-
itates the ELF executable file to exhibit the behavior
fully.

• Raw Data Preprocessing component (RDP): analyzes
the typical behaviors of the ELF executable file, pro-
vides data supporting the ‘‘Sandbox Recomputation
component’’ making choices.

• Sandbox Recomputation component (SR): decide
whether to export a report about ELF file behaviors

145774 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

or need to rerun the ‘‘Sandbox Engine component’’ to
collect more behavioral data.

• C&C simulator: C&C server emulator provides the abil-
ity to make connections, transmit and receive C&C
commands.

• Share Object DB: a database of dynamic link libraries
that the ELF executable file requires.

• Report: Generates a summary of the behavior that the
ELF executable file exhibits in the ‘‘Sandbox Engine
component.’’

First, the ‘‘ELFMetadata Extraction component’’ reads the
ELF file header to extract information about the CPU and
OS architecture needed to run. Then, the ‘‘Sandbox Config-
uration Generation component’’ relies on output information
of the EMF block to create one of the basic configurations
for V-Sandbox (output data is ‘‘Configuration file’’). This
‘‘Sandbox Engine component’’ will execute and collect the
raw behavior data of the ELF file using agents with the
configuration in the ‘‘Configuration file.’’ Collected raw data
from these agents will be transferred to ‘‘Raw Data Pre-
processing component’’. Here, the behavior data of the ELF
file is read and analyzed to update the ‘‘Configuration file’’,
including the IP address of the C&C server and the miss-
ing libraries. In addition, these behavioral data support the
‘‘Sandbox Recomputation component’’, deciding to rerun the
‘‘Sandbox Engine component’’ or stop through the analyzer
and generate the analysis report. In this case the ‘‘Sandbox
Recomputation component,’’ decides to rerun the ‘‘Sandbox
Engine component,’’ with support from the ‘‘Configuration
file,’’ ‘‘C&C simulator’’ and ‘‘Shared Object DB’’, we can
gather more data about the behavior of the ELF file. Finally,
when the ‘‘Sandbox Recomputation component’’ determines
it is not able to gather more behavioral information of the ELF
file, it will generate a report about the behavioral data of the
ELF file.

B. ELF METADATA EXTRACTION COMPONENT
For the SE component to launch the input file, the EME
component needs to provide the following information:

• Format of file: Is the input file in ELF format or not? If
it’s ELF format then is it the 32-bit or 64-bit format?

• Type of file: Can the input file be executable?
• CPU architecture requirement: Determine what the CPU
architecture needs to be run.

• Linux kernel requirement: Determine the required Linux
kernel version.

• Statically or Dynamically linked: Determine the list of
library files needed.

This information can be extracted from the metadata of
the input file. The environment in which our V-Sandbox
focuses on Unix includes GNU/Linux and BSD. The format
of executable files in this environment is ELF, the Executable
and Linkable Format. The basic architecture of the ELF file
is shown in Fig. 7. ELF files are divided into three types [63]:

FIGURE 7. Basic architecture of ELF file format [64].

• Executable files: containing code and data suitable for
execution. This specifies the memory layout of the pro-
cess image of the program.

• Relocatable (object) file: containing code and data suit-
able for linking with other object files to create an exe-
cutable or a shared object file.

• Shared object files (shared library): containing code and
data suitable for the link editor (ld) at the link-time and
the dynamic linker (ld.so) at runtime.

In particular, metadata of ELF is recorded mainly in the
header. The ELF header is 32 bytes long and identifies the
format of the file. It starts with a sequence of four unique
bytes that are 0 × 7F followed by 0 × 45, 0 × 4c, and
0 × 46 which translates into the three letters E, L, and F.
Among other values, the header also indicates whether it is an
ELF file for 32-bit or 64-bit format, executable or not, uses
little or big endianness, shows the ELF version as well as for
which operating system the file was compiled for in order to
interoperate with the right application binary interface (ABI)
and cpu instruction set. An illustrative example of the ELF
header values described in Table 4.

To read the values in the ELF header, Linux provides many
powerful tools such as ‘‘Readelf’’, ‘‘File utility’’, ‘‘Elfdump’’,
‘‘Elfutils’’, ‘‘Objdump’’, ‘‘Scanelf’’, ‘‘Elfkickers’’, etc.

Debian GNU/Linux offers the ‘‘Readelf’’ command that is
provided in the GNU ‘‘binutils’’ package.2 Oo et al. [64] uses
‘‘Readelf’’ with option -h (short version for ‘‘–file-header’’),
and it nicely displays the header of an ELF file. Fig. 11 shows
this for our sample.
Elfdump is a command-line utility that provides detailed

information about ELF binaries.3 It works with executables,
shared libraries and even relocatable object files. Wieder-
seiner [65] uses ‘‘elfdump’’ to generates the symbol table
of the code-base and source code line data of the ELF file.
Wong et al. [66] uses ‘‘elfdump’’, ‘‘objdump’’ and ‘‘readelf’’

2‘‘Readelf - Linux manual page.’’ [Online]. Available: http://man7.org/
linux/man-pages/man1/readelf.1.html. Accessed on: Apr. 12, 2020.

3‘‘Elfdump - Sunos man page.’’ [Online]. Available: http://man7.
org/linux/man-page/sunos/1/elfdump/. Accessed on: Apr. 12, 2020.

VOLUME 8, 2020 145775



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 4. Fields of ELF header.

to extract ELF file format constraints. The ELFDump version
has not had a new release or update since 2003.
Objdump is similar to readelf, but focuses on object files.4

It provides a similar range of information about ELF files and
other object formats. However, it is inefficient to support CPU
architectures like MIPS, ARM, and PPC. In Fig. 8, this tool
does not detect the CPU architecture of our sample.
Elfutils is a collection of utilities, including eu-ld (a linker),

eu-nm (for listing symbols from object files), eu-size (for
listing the section sizes of an object or archive file), eu-strip
(for discarding symbols), eu-readelf (to see the raw ELF file
structures), and eu-elflint (for checking for well-formed ELF
files).5 It provides alternative tools to GNU Binutils, and also
allows validating ELF files. Note that all the names of the
utilities provided in the package start with eu for ‘‘elf utils’’.
Pax-utils is a set of utilities that provide some tools that

help to validate ELF files.6 Scanelf is one of this set utilities.
In Fig. 9 showed how scanelf work with an option ‘‘-a’’.

There is also a software package called ‘‘Elfkickers’’which
contains tools to read the contents of an ELF file as well as
manipulate it.7 Unfortunately, the number of releases is rather
low, and that is why we mention it and do not show further
examples.
‘‘File’’ utility displays information about ELF files, includ-

ing the instruction set architecture for which the code in a

4‘‘Objdump - Linux manual page.’’ [Online]. Available: http://man7.org/
linux/man-pages/man1/objdump.1.html. Accessed on: Apr. 12, 2020.

5‘‘Debian – Details of package elfutils in sid.’’ [Online]. Available:
https://packages.debian.org/sid/elfutils. Accessed on: Apr. 12, 2020.

6‘‘Debian – Details of package pax-utils in sid.’’ [Online]. Available:
https://packages.debian.org/sid/misc/pax-utils. Accessed on: Apr. 12, 2020.

7‘‘ELF Kickers software’’ [Online]. Available: https://www.muppetlabs.
com/∼breadbox/software/elfkickers.html. Accessed on: Apr. 12, 2020.

FIGURE 8. Use Objdump utility to display the contents of the overall file
header.

FIGURE 9. Use scanelf to scan ELF binaries.

FIGURE 10. Use File utility to read the file header.

relocatable, executable, or shared object file is intended.8 In
Fig. 10 shows that our sample is a 32-bit executable file fol-
lowing the Linux Standard Base (LSB), dynamically linked,
and built for the MIPS architecture.

With the required information from SE, the author chooses
to use the ‘‘readelf’’ utility for two reasons. First, the ‘‘read-
elf’’ utility provides complete information required by the
EMF. Second, the ‘‘readelf’’ utility is built into the easy-to-
use versions of Linux, without having to install additional
external packages.

Use the ‘‘Readefl’’ utility to determine the file attributes
shown in Figs. 11 and 12. Fig. 11 shows that the malware
sample is a 32-bit executable ELF file following the Little
Endian, and built for the Unix – SystemV,MIPS architecture.
Fig. 12 shows a list of shared object requirements. Note
that this is a list of shared objects that ELF requires when
reading the file header, so it is incomplete. This issue will be
discussed further in section III-D. This information is sent
to the ‘‘Sandbox Configuration Generation component’’ to
select the appropriate virtual machine to execute the ELF

8‘‘File - Linux manual page.’’ [Online]. Available:
http://man7.org/linux/man-pages/man1/file.1.html. Accessed on: Apr. 12,
2020.

FIGURE 11. Use Readelf to read the ELF header file.

145776 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 5. Default configuration parameter for the sandbox engine.

FIGURE 12. Use Readelf to read the list of shared library requirements.

FIGURE 13. Output file from EME component.

file. The output of the EME component is a file ending in
‘‘argconfig’’ as illustrated in Fig. 13.

C. SANDBOX CONFIGURATION GENERATION
COMPONENT
With the EME component output (‘‘.argconfig’’ file),
the ‘‘Sandbox Configuration Generation component’’ (SCG)
proceeds to generate the initial configuration (‘‘.config’’ file)
to launch the ‘‘Sandbox Engine component’’ for the first time.
These configuration parameters will be passed to QEMU to
initialize the sandbox engine along with some other default
environment parameters. Default configuration parameters

of the sandbox engine shown in Table 5. Also, the list of
shared libraries in the ‘‘.argconfig’’ file was also added to the
‘‘.config’’ file with the default path of ‘‘/lib/. . . ’’ to be able to
automatically add the Shared object from the database to the
Image virtual disk after starting QEMU. The architecture of
the ‘‘.config’’ file is illustrated in Fig. 14.

FIGURE 14. Output file from SCG block.

D. SANDBOX ENGINE COMPONENT
The IoT Botnet is built to run on many different CPU archi-
tectures to suit the variety of IoT devices. To be able to run
and analyze IoT Botnet models on different CPU architec-
tures in a simulation environment, we choose to use QEMU
[62]. The open-source project QEMU supports many CPU
architectures such as ARM, MIPS, PowerPC, SPARC, etc.
Inside each of the Sandbox Environment, there is a built-in
Debian image of Aurel [67] with QEMU host, the agents
that manage, monitor, and collect ELF files are executed
(illustrated in Fig. 16).

The configuration parameters to launch the QEMU host,
are read from the ‘‘.config’’ file, including command, emu-
lated machine type, Kernel, virtual disk image, RAM, file
name, and path of the shared library, IP address of the C&C
server. The C&C simulator uses these IP addresses to create
a connection between the QEMU host and the C&C server
simulation. The file name and path of the shared library are
used to add the missing shared libraries from the shared
object database to the virtual disk image. The QEMU host

VOLUME 8, 2020 145777



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

FIGURE 15. QEMU host boot command for 32-bit MIPS architecture Little
Debian.

FIGURE 16. Architecture inside virtual host.

starts running with the configuration parameters, as shown
in Fig. 15.

The agents are programmed based on the C language and
cross-compiled by Toolchains9 to the corresponding CPU
architectures. A Toolchain is a set of distinct software devel-
opment tools that are linked (or chained) together by specific
stages such asGCC, Binutils andGlibc (a portion of the GNU
Toolchain). Optionally, a toolchain may contain other tools
such as a debugger or a compiler for a specific programming
language, such as C language. Quite often, the toolchain
used for embedded development is a cross toolchain, or more
commonly known as a cross compiler. All the programs
(like GCC) run on a host system of a specific architecture
(such as x86), but they produce binary code (executables) to
run on a different architecture (for example, ARM). This is
called cross compilation and is the typical way of building
embedded software. Verma et al. [68] demonstrates how to
use Toolchains to create applications that run on IoT devices
with different CPU architectures.

With the features of the IoT botnet presented in the sub-
section II-A, the sandbox environment will be integrated with
tools to monitor malware behaviors, including system-calls,
file and directory activity, host performance requirements,
shared library, and network behaviors. For this, we have
agents in each Sandbox Engine, including:

• The controller agent: managing common tasks of
information gathering agents, activating ELF file execu-
tion, receiving and transmitting collected information to
the ‘‘Analysis behavior’’ block.

• File agent: collecting behaviors related to files and
directories (base on ‘‘lsof’’ utility). Everything on disk is
a file. Normal files, devices and even directories are all

9‘‘Toolchains - eLinux.org.’’ [Online]. Available: https://elinux.org/
Toolchains. Accessed on: Mar. 12, 2020.

FIGURE 17. Results of running lsof with a process with PID 6350.

presented as a file. The file system marks each of these
entries in a file table, with the related type. To see open
files, we can use the ‘‘lsof’’ utility, ‘‘inotify’’, ‘‘fswatch’’,
etc. The ‘‘lsof’’ utility stands for ‘‘list open files’’ and
definitely reveals its purpose.10 It can show any open
files, from the earlier mentioned special files (block and
character devices), to tracking open network connec-
tions. ‘‘Inotify’’ in ‘‘inotify-tools’’’ is part of the Linux
kernel that triggers events on watched files, directories,
or even the contents of entire directories.11 These tools
are command-line utilities that tap into the capabilities
of inotify and allow you to use them, for example,
in your shell scripts. ‘‘Fswatch’’ is a free, open-source
multi-platform file change monitor utility that notifies
us when the contents of the specified files or directories
are modified or changed.12 Using ‘‘fswatch’’ can easily
monitor the changes being made in files and/or directo-
ries. We choose to use the ‘‘lsof’’ utility to monitor the
interaction with files and directories of ELF files for two
reasons. It is also quite useful to figure out what files are
being accessed by what processes. Also, ‘‘lsof’’ is easy
to use on different CPU architecture platforms because
it is built into the Linux kernel. The monitoring results
of the ‘‘file agent’’ are illustrated in Fig. 17.

• Host performance agent: collects behaviors related
to using system resources such as CPU, RAM (base
on ‘‘top’’ utility). To monitor host performance, there
are various tools such as ‘‘top’’,13 ‘‘iostat’’14 and
‘‘mpstat’’,15 etc. However, ‘‘top’’ utility is more suitable
for this problem. ‘‘Top’’ utility displays Linux processes.
It provides a dynamic real-time view of the running
system, id est actual process activity. By default, it dis-

10‘‘Lsof - Linux manual page.’’ [Online]. Available: http://man7.
org/linux/man-pages/man8/lsof.8.html. Accessed on: Apr. 13, 2020.

11‘‘Inotify - Linux manual page.’’ [Online]. Available: http://man7.org/
linux/man-pages/man7/inotify.7.html. Accessed on: Apr. 13, 2020.

12E. M. Crisostomo, ‘‘emcrisostomo/fswatch,’’ [Online]. Available:
https://github.com/emcrisostomo/fswatch. Accessed on: Apr. 13, 2020.

13‘‘Top - Linux manual page.’’ [Online]. Available: http://man7.
org/linux/man-pages/man1/top.1.html. Accessed on: Apr. 13, 2020.

14‘‘Iostat(1) - Linux manual page.’’ [Online]. Available: http://man7.
org/linux/man-pages/man1/iostat.1.html. Accessed on: Apr. 13, 2020.

15‘‘mpstat - Linux manual page.’’ [Online]. Available: http://man7.org/
linux/man-pages/man1/mpstat.1.html. Accessed on: Apr. 13, 2020.

145778 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

FIGURE 18. Monitor host perfomance by top command.

plays themost CPU-intensive tasks running on the server
and updates the list every five seconds (result monitor
by ‘‘top’’ command showed in Fig. 18). ‘‘Iostat’’ util-
ity report Central Processing Unit (CPU) statistics and
input/output statistics for devices, partitions, and net-
work filesystems (NFS). ‘‘Mpstat’’ command displays
activities for each available processor, processor 0 being
the first one. Command ‘‘mpstat -P ALL’’ is used to
display average CPU utilization per processor. With the
ability to provide all the necessary information and ease
of use with many different CPU architectures, the host
performance agent is built on top of the ‘‘top’’ utility.

• SystemCall agent: collects system-call of ELF file
(based on ‘‘strace’’ utility16). To better understand the
behavior of the ELF file when executed, the most useful
information is its own system-calls. In Linux, there are
many tools that support collecting system-call of an exe-
cutable file (such as ftrace,17 ptrace,18 etc.) but basically
function like ‘‘strace’’ utility. ‘‘Strace’’monitors the sys-
tem calls and signals of a specific program. It is helpful
when you do not have the source code and would like
to debug the execution of a program. This tool provides
the execution sequence of a binary from start to end. The
result of collecting the system calls of the ‘‘ls’’ program
by Strace is illustrated in Fig. 19. In the Limon sandbox,
Monnappa uses ‘‘Strace’’ for tracing system calls.

• Shared library requirement agent: In particular, when
building lists of shared libraries in addition to ‘‘readelf’’
we also use the ‘‘ldd’’ utility [66]. Command ‘‘ldd’’
prints the shared objects (shared libraries) required by
each program or shared object specified on the com-
mand line. Unlike the ‘‘readelf’’ utility in the EMF
block (section III-B) that only analyzes static ELF file
content to identify shared libraries, ‘‘ldd’’ executes the
ELF file right in the sandbox environment to identify

16‘‘Strace - Linux manual page.’’ [Online]. Available: http://man7.
org/linux/man-pages/man1/strace.1.html. Accessed on: Apr. 13, 2020.

17‘‘Ftrace - eLinux.org.’’ [Online]. Available: https://elinux.org/Ftrace.
Accessed on: Apr. 13, 2020.

18‘‘Ptrace - Linux manual page.’’ [Online]. Available: http://man7.
org/linux/man-pages/man2/ptrace.2.html. Accessed on: Apr. 13, 2020.

FIGURE 19. System calls of the ‘‘ls’’ program by Strace.

the shared libraries required by ELF. This has resulted
in higher efficiency for identifying shared libraries and
has been demonstrated experimentally on Dataset when
compared to other sandbox capabilities (such as LiSa
[41]). The results of the list of shared libraries by ‘‘ldd’’
and ‘‘readelf’’ are illustrated as shown in Fig. 20 and
Fig. 21 (note that ldd identifies twomore shared libraries
required is libc.so.6 and ld-uClibc.so.0 and the full direc-
tory path rather than using readelf ).

FIGURE 20. The list of shared libraries required is determined by the ldd
utility.

FIGURE 21. The list of shared libraries required is determined by the
readelf utility.

• Network agent: collects network behavior of the ELF
file (based on program ‘‘TCPdump’’19). One of the crit-
ical behaviors of IoT Botnet malware is connecting to a
bot network and receiving commands from Bot master
(C&C server) - these are typical network behaviors of
IoT Botnet. So the ‘‘Network agent’’ is built to collect
the network behavior of the input ELF file using the
‘‘TCPdump’’ utility, which is a simple tool that dumps

19T. T. Group, ‘‘Tcpdump/Libpcap public repository.’’ [Online]. Avail-
able: https://www.tcpdump.org. Accessed on: Mar. 25, 2020.

VOLUME 8, 2020 145779



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

FIGURE 22. The network traffic dump by the TCPdump utility.

and reads traffic on a network. This tool has been used
in many network intrusion detection systems (NIDS)
[69]–[72]. The result of the network traffic dump using
this tool is shown in Fig. 22.

E. RAW DATA PREPORCESSING COMPONENT
In this paper, the type of IoT malware we focus on analyzing
is the IoT Botnet. As stated in section II-A, Angrishi [8] and
Nguyen et al. [19] also present the features of IoT Botnet
including scanning for suitable targets, accessing other vul-
nerable devices, infecting IoT devices, communicating with
C&C servers via the IP address of the URL, waiting and exe-
cuting commands from the C&C server. Therefore, to under-
stand the behavior of IoT Botnet, the sandbox must analyze
the collected raw data from the sandbox, including network
behavior (send requests and connect to the C&C server, scan
other IoT devices via telnet, ssh port), system calls (download
the binary file from a server, execute downloaded binary
file, brute force account other vulnerable devices, call loop
pending connection to the C&C server, etc.), changes to files
and directories, requires the use of shared libraries, takes up
system resources.

For this reason, the RDP component analyzes collected raw
data from the ‘‘Sandbox Engine component’’ to serve as input
for the rerun decision sandbox algorithm, including:

• Network traffic: Extract necessary information such as
destination IP address, connection protocol, connection
port, string data (if not encrypted).

• System calls: With information from system calls, pin-
point the behavior of parent and child processes gener-
ated by the ELF file. This agent supplements the ELF
file behavior data that is trying to be performed as
executed file (with system call execve(), etc.), create
subprocess (with system call fork(), vfork(), clone(),
etc.), connect to C&C server (by a system call connect(),
etc.), call shared library (system call access(), open(),
read(), etc.), wait for commands from the C&C server
when the connection is successful (system call wait(),
sleep(), etc.), override or create an infected file version
(system call write()), disable other processes (by calling
exit(), _exit()), etc. The information extracted includes
the name of the system call, the parameters passed, and
the order of this call.

• File activity: For information from the activity file,
the ‘‘Analysis behavior’’ focuses on identifying the files
and folders that ELF files interact (open, write, rewrite,
delete, rename, create, changer permission) including
both shared library files (if applicable). The extracted
information includes the name of the file, the directory
path containing the file, and the action.

• Host performance: Extract CPU and RAM information
such as total resource utilization rate, resource utiliza-
tion rate of each process related to the ELF file over
time.

The analysis results for this com have been updated to
‘‘.config’’ file, as shown in Fig. 23.

FIGURE 23. Output ‘‘.config’’ file after update.

F. SANDBOX RECOMPUTATION COMPONENT
The ‘‘Sandbox Recomputation component’’ uses data from
the output of the RDP component including total system
calls (ts), total network traffic packets (tntp), total file name
request (tfr), the average percentage of CPU used (avgCPU ),
the average percentage of RAM used (avgRAM ). Every time
we run the ‘‘Sandbox Engine component’’, these values are
extracted from behavioral data. If the total of these values
does not increase, wewill decide to stop running the SE again.
The result of this function is whether or not it is necessary
to rerun the ‘‘Sandbox Engine component’’ again or not to
serve the purpose of collecting more information about ELF
file behavior. The algorithm of the ‘‘Sandbox Recomputation
component’’ is described in Algorithm 1.

G. THE C&C SIMULATOR
The command and control (C&C) server is an essential com-
ponent in a botnet in general and IoT botnet in particular.
The C&C server provides the botmaster with a centralized
management way to monitor botnet status and order new
DDoS attacks to be carried out. The protocol used to connect
between the C&C server and the bot is usually IRC, HTTP,
P2P, etc. The illustration of the connections of components in
the IoT botnet is illustrated by Angrishi as shown in Fig. 24.
In order for the IoT bot to display its entire behavior, it is
necessary to create a connection between the bot and the

145780 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

Algorithm 1 Algorithm for Sandbox Recomputation Com-
ponent
Input: Extract from Behavior data(

Total system calls: ts,
Total network traffic packets: tntp,
Total file name request: tfr ,
The average percentage of CPU used: avgCPU ,
The average percentage of RAM used: avgRAM )

Output: Decision of rerun the sandbox: d
d = true, t = 0, i = 0, n = 100

1: vt ← (ts+ tntp+ tfr + avgCPU + avgRAM )
2: while d do
3: t ← t + 1
4: Run sandbox
5: Extract from Behavior data

(ts, tntp, tfr, avgCPU , avgRAM )
6: vt ← (ts+ tntp+ tfr + avgCPU + avgRAM )
7: if vt ≤ vt−1 or t = n then
8: d ← false
9: end if
10: end while
11: return d

FIGURE 24. Generic structure of an IoT Botnet [8].

C&C server. The C&C server must then transmit the appro-
priate commands for the IoT bot to execute. These actions
are the main contribution of the C&C simulator. The C&C
simulator proceeds to generate C&C servers based on the set
of IP addresses in the ‘‘.config’’ file (showed in Fig. 23).
A database of C&C commands is gathered from various
sources, such as source code for IoT Botnet [73], [74], and
studies [36], [42], [48]. If the listed C&C server’s IP address
is not empty, the automatic script creates C&C servers with
these IP addresses. When a bot is connected to this C&C
server, C&C commands which form our database will be sent
to bot. We are not sure what C&C commands are useful for
this bot. We are sending all commands and hope to activate
some of the botnets next behavior. Experiment results show
this way to be effective.

H. THE SHARED OBJECT DATABASE
The Share Object Database proceeds to add the ‘‘so’’ library
files from the database to the Sandbox environment based
on the set of ‘‘Shared library’’ in the ‘‘.config’’ file. The
database of shared objects is collected from shared sources
on the Internet and images of IoT device firmware (Router,
IP camera, Smart TV, etc.) that manufacturers publish on the
network. The C500-Reverse tool [49], published by our team,
is used to extract library files from the firmware. Usually,
the ‘‘so’’ files will be in the ‘‘lib’’ directory packaged in the
firmware. For devices that do not find the firmware image
online, it will be extracted directly from the device with the
help of the C500-Extractor [49]. C500-Extractor hardware
equipment shown in Fig. 25.

FIGURE 25. C500-Extractor device.

I. REPORT GENERATION
Finally, when the ‘‘Sanbox Recomputation component’’
returns ‘‘false’’ value, the system will automatically generate
a summary report of ELF file behavior from ‘‘Behavior data.’’
Illustrations of the content of the report can be found in
Section IV-C.

IV. EVALUATION
A. DATASET
In order to experiment and evaluate V-Sandbox’s analysis
results, 9069 samples (6141 IoT botnet and 2928 IoT benign
samples) are chosen to analyze. Dataset is collected from IoT-
Pot [36], VirusShare,20 and the Internet.21 The architecture of
samples in the dataset is shown in Table 6.

B. IMPLEMENT
The experiment is conducted on server with an Intel Xeon
E5-2689 processor running at 2.6GHz, 32GB memory.

20‘‘VirusShare.com.’’ [Online]. Available: https://virusshare.com/.
Accessed on: Jun. 05, 2019.

21Azmoodeh, ‘‘azmoodeh/IoTMalwareDetection,’’ [Online]. Available:
https://github.com/azmoodeh/IoTMalwareDetection. Accessed on: Mar. 12,
2020.

VOLUME 8, 2020 145781



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 6. Distribution of dataset.

FIGURE 26. V-Sandbox deployment architecture.

V-Sandbox supports many different CPU architectures, basi-
cally including ARM, MIPS, MIPSEL, i386, x86-64, Pow-
erPC (can be extendedwithmany other architectures). A view
of this implementation is shown in Fig. 26. All of these
QEMU virtual machines are connected to a virtual switch for
management, providing a simulated network environment as
well as the ability to connect to the C&C server, monitor net-
work traffic, and add missing libraries. The Main Controller
is responsible for managing tasks including receiving and
transferring ELF files to virtual hosts, determining the CPU
architecture of the ELF to run the corresponding virtual host,
activating the ELF file and monitor agents, providing Share
Object (‘‘so’’ file) when ELF request, make a connection
with dummy C&C server as needed and synthesize analysis
report from agent monitor. The C&C simulator provides the
ability to communicate between ELF and the C&C server
by navigating the connection of the virtual switch combined
with a set of command lists gathered from the Internet, paper
[36], [42], [48], etc. The Shared Object database is used to
provide ‘‘.so’’ files when required by the ELF. This Shared
Object database collected from sources including the Inter-
net, extracted from IoT device firmware (Router, IP camera,
TV-box, etc.) provided by the manufacturer on the internet,
OpenWrt images, etc.

C. EXPERIMENTAL RESULTS
The results of running Dataset on V-Sandbox are shown
in Table 7. Experimental results show that with Dataset

TABLE 7. The results were successfully executed by V-Sandbox.

FIGURE 27. Log system-calls.

FIGURE 28. Log network traffic.

TABLE 8. The results were executed by LiSa Sandbox with our dataset.

containing 9069 samples, V-Sandbox ran and successfully
analyzed 4779 samples with different CPU architectures.
Notably, the proportion of static samples reached more than
60%, and dynamic samples were more than 30%. This result
is an advantage when combining the C&C server and Share
Object repositor in V-Sandbox. The results of comparison
with other IoT Sandboxes (focusing on LiSa [41] and Cuckoo

145782 VOLUME 8, 2020



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 9. Compare the functions of IoT Sandboxes.

FIGURE 29. List of shared libraries required.

FIGURE 30. Fully reported by V-Sandbox.

[35] sandbox) are presented in Section V. The analysis results
collected from the V-Sandbox for samples in the Dataset
illustrated in Figs. 27 to 30.

V. DISCUSSION
A comparison of the results of an analysis of samples in
our Dataset with LiSa Sandbox [41] is shown in Table 8.
The results were executed by Lisa Sandbox with our dataset
showing that this sandbox does not support PowerPC archi-
tecture. Also, the number of successfully executed statically
and dynamically linked files in Lisa Sandbox is mostly less
than our results.

TABLE 10. Selected samples to compare the effectiveness of sandboxes.

Because IoTBOX [36] is not open source, it is not easy to
install and test the effectiveness of this sandbox on our data
set. Functionally, IoTBOX only focuses on network behavior.
Therefore, this sandbox does not provide other behaviors
like system calls and host performance. Also, the Cuckoo
Sandbox [35] has been tested and installed by us, but it only
provides support for X86 architectures and the installation of
other CPU architectures is complicated. Therefore, to com-
pare, we selected a few random samples to evaluate the effec-
tiveness of the Cuckoo Sandbox in Table 10, 11. An overview
of the functions of the IoT sandbox with V-Sandbox shown
in Table 9. Functionally, most of the compared sandboxes
do not support the C&C server simulation. This is why the
IoT Botnet has not yet revealed adequate behavior. Only
Lisa and our sandbox support dynamically libraries. For that
reason, it increases our successful execution rate of input
files. Our sandbox supports multi-architecture CPU (ARM,
MIPS, PowerPC, etc.) like Lisa, Cuckoo, Padawan, and
IoTBOX.

In Table 10, we describe 12 randomly selected sam-
ples to compare the effectiveness of the proposed sandbox
with the two currently highly rated sandboxes, Cuckoo and
LiSa sandbox. With the results of running selected sam-
ples in Table 11, our sandbox collected more information
about system calls and network traffic than Lisa and Cuckoo
sandbox.

VOLUME 8, 2020 145783



H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

TABLE 11. Results of running selected samples.

VI. CONCLUSION
This paper presents a V-Sandbox for dynamic analysis of IoT
Botnet. This sandbox is capable of supporting multiple CPU
architectures, the C&C servers connection, shared libraries
so that the IoT Botnet exhibits more behavior than existing
IoT sandboxes. The set of agents collects different behav-
iors (such as system calls and network traffic) of analytical
samples that automatically integrated into virtual machines
with the corresponding CPU architecture. TheV-Sandbox has
been tested through our dataset. Experimental results have
shown that the proposed sandbox allows collecting behav-
ioral data better than existing sandboxes. The source code
for the V-Sandbox is shared on Github [76]. In the future,
we will expand the capabilities of supporting more CPU
architectures, adding data about C&C commands, and shared
object libraries to the database for a more efficient sandbox.

REFERENCES
[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, ‘‘Synthetic structure of

industrial plastics, DDoS in the IoT: Mirai and Other Botnets,’’ Computer,
vol. 50, no. 7, pp. 80–84, Jul. 2017, doi: 10.1109/MC.2017.201.

[2] A. Spognardi, M. D. Donno, N. Dragoni, and A. Giaretta, ‘‘Analysis of
DDoS-capable IoT malwares,’’ in Proc. Federated Conf. Comput. Sci. Inf.
Syst., Sep. 2017, pp. 807–816.

[3] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, ‘‘Internet of Things:
Security vulnerabilities and challenges,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2015, pp. 180–187.

[4] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[5] K. Moskvitch, ‘‘Securing IoT: Your smart home and your connected enter-
prise,’’ Eng. Technol., vol. 12, no. 3, pp. 40–42, Apr. 2017.

[6] A. Sivanathan, D. Sherratt, H. H. Gharakheili, V. Sivaraman, and A. Vish-
wanath, ‘‘Low-cost flow-based security solutions for smart-home IoT
devices,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS),
Nov. 2016, pp. 1–6.

[7] D. Evans, ‘‘The Internet of Things: How the next evolution of the Internet
is changing everything,’’ CISCO, San Jose, CA, USA, White Paper 2011,
vol. 1, 2011, pp. 1–11.

[8] K. Angrishi, ‘‘Turning Internet of Things(IoT) into Internet of vulnerabil-
ities (IoV) : IoT botnets,’’ 2017, arXiv:1702.03681. [Online]. Available:
http://arxiv.org/abs/1702.03681

[9] Kaspersky Lab Report. (2017). Honeypots and the Internet of Things.
Securelist-Kaspersky Lab’s Cyberthreat Research and Reports. Accessed:
May 11, 2018. [Online]. Available: https://securelist.com/honeypots-and-
the-internet-of-things/78751/

[10] E. Bertino and N. Islam, ‘‘Botnets and Internet of Things security,’’ Com-
puter, vol. 50, no. 2, pp. 76–79, Feb. 2017, doi: 10.1109/MC.2017.62.

[11] C. Lévy-Bencheton, E. Darra, G. Tétu, G. Dufay, andM. Alattar, ‘‘Security
and resilience of smart home environments good practices and recommen-
dations,’’ in Proc. Eur. Union Agency Netw. Inf. Secur. (ENISA), Heraklion,
Greece, Dec. 2015, pp. 1–77.

[12] G. Kambourakis, C. Kolias, and A. Stavrou, ‘‘The mirai botnet and the
IoT zombie armies,’’ in Proc. IEEE Mil. Commun. Conf. (MILCOM),
Oct. 2017, pp. 267–272.

[13] Kaspersky Lab Report. IoT: AMalware Story. Securelist - Kaspersky Lab’s
Cyberthreat Research and Reports. Accessed: Dec. 19, 2019. [Online].
Available: https://securelist.com/iot-a-malware-story/94451/

[14] C. Kruegel and Y. Shoshitaishvili, ‘‘Using static binary analysis to find
vulnerabilities and backdoors in firmware,’’ in Proc. Black Hat USA,
Aug. 2015, pp. 8–15.

[15] P. Celeda, R. Krejci, J. Vykopal, and M. Drasar, ‘‘Embedded malware—
An analysis of the chuck norris botnet,’’ in Proc. Eur. Conf. Comput. Netw.
Defense, Oct. 2010, pp. 3–10.

[16] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, ‘‘A large-scale
analysis of the security of embedded firmwares,’’ in Proc. EURECOM,
Sophia-Antipolis, Biot, France, 2014, pp. 95–110.

[17] A. Azmoodeh, A. Dehghantanha, and K.-K.-R. Choo, ‘‘Robust malware
detection for Internet of (Battlefield) things devices using deep eigenspace
learning,’’ IEEE Trans. Sustain. Comput., vol. 4, no. 1, pp. 88–95,
Jan. 2019, doi: 10.1109/TSUSC.2018.2809665.

[18] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K.-R. Choo,
‘‘A deep recurrent neural network based approach for Internet of Things
malware threat hunting,’’ Future Gener. Comput. Syst., vol. 85, pp. 88–96,
Aug. 2018.

[19] H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, ‘‘A novel graph-based approach
for IoT Botnet detection,’’ Int. J. Inf. Secur., vol. 18, pp. 1–11, Oct. 2019.

145784 VOLUME 8, 2020

http://dx.doi.org/10.1109/MC.2017.201
http://dx.doi.org/10.1109/MC.2017.62
http://dx.doi.org/10.1109/TSUSC.2018.2809665


H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

[20] D. D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated
dynamic analysis for linux-based embedded firmware,’’ inProc. Netw. Dis-
trib. Syst. Secur. Symp., 2016, pp. 1–16, doi: 10.14722/ndss.2016.23415.

[21] H.-S. Ham, H.-H. Kim, M.-S. Kim, and M.-J. Choi, ‘‘Linear SVM-based
Android malware detection for reliable IoT services,’’ J. Appl. Math.,
vol. 2014, pp. 1–10, Sep. 2014.

[22] A.-D. Schmidt, H. G. Schmidt, J. Clausen, K. A. Yuksel, O. Kiraz,
A. Camtepe, and S. Albayrak, ‘‘Enhancing security of linux-based Android
devices,’’ in Proc. 15th Int. Linux Kongress, 2008, pp. 1–16.

[23] L. Liu, G. Yan, X. Zhang, and S. Chen, ‘‘Virusmeter: Preventing your cell-
phone from spies,’’ inProc. Int. Workshop Recent Adv. Intrusion Detection,
2009, pp. 244–264.

[24] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online malware
detection with performance counters,’’ ACM SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 559–570, Jun. 2013.

[25] H.-V. Le, Q.-D. Ngo, and V.-H. Le, ‘‘Iot Botnet detection using system call
graphs and one-class CNN classification,’’ Int. J. Innov. Technol. Exploring
Eng., vol. 8, no. 10, pp. 937–942, Aug. 2019.

[26] D. Davidson, B. Moench, S. Jha, and T. Ristenpart, ‘‘FIE on firmware,
finding vulnerabilities in embedded systems using symbolic execution,’’
in Proc. 22nd USENIX Secur. Symp., 2013, pp. 463–487.

[27] T. Ronghua, ‘‘An integrated malware detection and classification system,’’
Ph.D. dissertation, Deakin Univ., Melbourne, VIC, Australia, Aug. 2011.

[28] A. Moser, C. Kruegel, and E. Kirda, ‘‘Limits of static analysis for malware
detection,’’ in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421–430.

[29] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, ‘‘Learning and
classification of malware behavior,’’ in Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (Lecture Notes in Computer Science),
vol. 5137. Berlin, Germany: Springer, 2008, pp. 108–125.

[30] L. K. Yan and H. Yin, ‘‘DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,’’ in Proc.
21st USENIX Secur. Symp. (USENIX Secur.), 2012, pp. 569–584.

[31] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
‘‘An Android application sandbox system for suspicious software detec-
tion,’’ in Proc. 5th Int. Conf. Malicious Unwanted Softw., Oct. 2010,
pp. 55–62.

[32] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, andY.Weiss, ‘‘‘Andromaly’:
A behavioral malware detection framework for Android devices,’’ J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161–190, Feb. 2012.

[33] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, ‘‘TaintDroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,’’ ACM Trans.
Comput. Syst., vol. 32, no. 2, pp. 1–29, Jun. 2014.

[34] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, ‘‘Crowdroid: Behavior-
based malware detection system for android,’’ in Proc. 1st ACMWorkshop
Secur. Privacy Smartphones Mobile Devices SPSM, 2011, pp. 15–26.

[35] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis. Birming-
ham, U.K.: Packt Publishing Ltd, 2013.

[36] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, ‘‘IoTPOT: A novel honeypot for revealing current IoT threats,’’
J. Inf. Process., vol. 24, no. 3, pp. 522–533, 2016.

[37] Detux: The Multiplatform Linux Sandbox. Accessed: Mar. 10, 2020.
[Online]. Available: https://github.com/detuxsandbox/detux

[38] K.Monnappa, ‘‘Automating linuxmalware analysis using limon sandbox,’’
in Proc. Black Hat Eur., Aug. 2015, pp. 34–46.

[39] REMnux: A Free Linux Toolkit for Reverse-Engineering and Analyzing
Malware. Accessed: Mar. 10, 2020. [Online]. Available: https://remnux.
org/

[40] Padawan Live. Accessed: Mar. 10, 2020. [Online]. Available: https://
padawan.s3.eurecom.fr/about

[41] D. Uhrıcek. LiSa–Multiplatform Linux Sandbox for Analyzing IoT Mal-
ware. Accessed: Mar. 11, 2020. [Online]. Available: http://excel.fit.vutbr.
cz/submissions/2019/058/58.pdf

[42] B. Vignau, R. Khoury, and S. Halle, ‘‘10 years of IoT malware: A feature-
based taxonomy,’’ in Proc. IEEE 19th Int. Conf. Softw. Qual., Rel. Secur.
Companion (QRS-C), Jul. 2019, pp. 458–465.

[43] A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, ‘‘A method to
detect Internet of Things botnets,’’ in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (EIConRus), Jan. 2018, pp. 105–108,
doi: 10.1109/EIConRus.2018.8317041.

[44] J. Ceron, K. Steding-Jessen, C. Hoepers, L. Granville, and C. Margi,
‘‘Improving IoT Botnet investigation using an adaptive network layer,’’
Sensors, vol. 19, no. 3, p. 727, Feb. 2019.

[45] S. S. Bhunia and M. Gurusamy, ‘‘Dynamic attack detection and mitigation
in IoT using SDN,’’ in Proc. 27th Int. Telecommun. Netw. Appl. Conf.
(ITNAC), Nov. 2017, pp. 1–6.

[46] G. Sagirlar, B. Carminati, and E. Ferrari, ‘‘AutoBotCatcher: Blockchain-
based P2P botnet detection for the Internet of Things,’’ in Proc. IEEE 4th
Int. Conf. Collaboration Internet Comput. (CIC), Oct. 2018, pp. 1–8.

[47] W. Li, J. Jin, and J.-H. Lee, ‘‘Analysis of botnet domain names for IoT
cybersecurity,’’ IEEE Access, vol. 7, pp. 94658–94665, 2019.

[48] C.-J. Wu, Y. Tie, K. Yoshioka, and T. Matsumoto, ‘‘IoT malware behavior
analysis and classification using text mining algorithm,’’ in Proc. Comput.
Secur. Symp., Oct. 2016, pp. 1–7.

[49] N.-P. Tran, N.-B. Nguyen, Q.-D. Ngo, and V.-H. Le, ‘‘Towards malware
detection in routers with C500-toolkit,’’ in Proc. 5th Int. Conf. Inf. Com-
mun. Technol. (ICoIC), May 2017, pp. 1–5, doi: 10.1109/ICoICT.2017.
8074691.

[50] C. Dietz, R. L. Castro, J. Steinberger, C. Wilczak, M. Antzek, A. Sperotto,
and A. Pras, ‘‘IoT-Botnet detection and isolation by access routers,’’ in
Proc. 9th Int. Conf. Netw. Future (NOF), Nov. 2018, pp. 88–95.

[51] R. Doshi, N. Apthorpe, and N. Feamster, ‘‘Machine learning DDoS detec-
tion for consumer Internet of Things devices,’’ in Proc. IEEE Secur.
Privacy Workshops (SPW), May 2018, pp. 29–35.

[52] I. Indre and C. Lemnaru, ‘‘Detection and prevention system against
cyber attacks and botnet malware for information systems and Internet of
Things,’’ in Proc. IEEE 12th Int. Conf. Intell. Comput. Commun. Process.
(ICCP), Sep. 2016, pp. 175–182.

[53] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
‘‘Online passive-aggressive algorithms,’’ J. Mach. Learn. Res., vol. 7,
pp. 551–585, Dec. 2006.

[54] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming,
‘‘AD-IoT: Anomaly detection of IoT cyberattacks in smart city using
machine learning,’’ in Proc. IEEE 9th Annu. Comput. Commun. Workshop
Conf. (CCWC), Jan. 2019, pp. 0305–0310.

[55] N. Moustafa and J. Slay, ‘‘The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the compari-
son with the KDD99 data set,’’ Inf. Secur. J., A Global Perspective, vol. 25,
nos. 1–3, pp. 18–31, Apr. 2016.

[56] D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and
Y. Elovici, ‘‘HADES-IoT: A practical host-based anomaly detection sys-
tem for IoT devices,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Jul. 2019, pp. 479–484.

[57] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K.-R. Choo, ‘‘Detect-
ing crypto-ransomware in IoT networks based on energy consump-
tion footprint,’’ J. Ambient Intell. Humanized Comput., vol. 9, no. 4,
pp. 1141–1152, Aug. 2018.

[58] M. Ficco, ‘‘Detecting IoT malware by Markov chain behavioral models,’’
in Proc. IEEE Int. Conf. Cloud Eng. (IC2E), Jun. 2019, pp. 229–234.

[59] S. Sachdeva, R. Jolivot, and W. Choensawat, ‘‘Android malware classifi-
cation based on mobile security framework,’’ IAENG Int. J. Comput. Sci.,
vol. 45, no. 4, pp. 514–522, 2018.

[60] T. Janarthanan and S. Zargari, ‘‘Feature selection in UNSW-NB15 and
KDDCUP’99 datasets,’’ in Proc. IEEE 26th Int. Symp. Ind. Electron.
(ISIE), Jun. 2017, pp. 1881–1886.

[61] Z. Liu, L. Zhang, Q. Ni, J. Chen, R. Wang, Y. Li, and Y. He, ‘‘An integrated
architecture for IoT malware analysis and detection,’’ in Proc. Int. Conf.
Internet Things Service, 2018, pp. 127–137.

[62] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX Annu. Tech. Conf., FREENIX Track, vol. 41, 2005, p. 46.

[63] D. C. DuVarney, V. N. Venkatakrishnan, and S. Bhatkar, ‘‘SELF: A trans-
parent security extension for ELF binaries,’’ in Proc. Workshop New Secur.
Paradigms NSPW, 2003, pp. 29–38.

[64] W. K. K. Oo, H. Koide, and K. Sakurai, ‘‘Analyzing the effect of moving
target defense for a Web system,’’ Int. J. Netw. Comput., vol. 9, no. 2,
pp. 188–200, 2019.

[65] C. Wiederseiner, V. Garousi, and M. Smith, ‘‘Tool support for automated
traceability of Test/Code artifacts in embedded software systems,’’ in Proc.
IEEE 10th Int. Conf. Trust, Secur. Privacy Comput. Commun., Nov. 2011,
pp. 1109–1117.

[66] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan, ‘‘DASE: Document-
assisted symbolic execution for improving automated software testing,’’
in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., May 2015,
pp. 620–631.

VOLUME 8, 2020 145785

http://dx.doi.org/10.14722/ndss.2016.23415
http://dx.doi.org/10.1109/EIConRus.2018.8317041
http://dx.doi.org/10.1109/ICoICT.2017.8074691
http://dx.doi.org/10.1109/ICoICT.2017.8074691


H.-V. Le, Q.-D. Ngo: V-Sandbox for Dynamic Analysis IoT Botnet

[67] Debian Squeeze and Wheezy Images for QEMU. Accessed: Mar. 28, 2019.
[Online]. Available: https://people.debian.org/~aurel32/qemu/

[68] G. Verma, M. Imdad, S. Banarwal, H. Verma, and A. Sharma, ‘‘Develop-
ment of cross-toolchain and linux device driver,’’ in System and Architec-
ture. Singapore: Springer, 2018, pp. 175–185.

[69] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, ‘‘A hybrid intrusion detection
system design for computer network security,’’ Comput. Electr. Eng.,
vol. 35, no. 3, pp. 517–526, May 2009.

[70] S. O. Amin,M. S. Siddiqui, C. S. Hong, and S. Lee, ‘‘RIDES: Robust intru-
sion detection system for IP-based ubiquitous sensor networks,’’ Sensors,
vol. 9, no. 5, pp. 3447–3468, May 2009, doi: 10.3390/s90503447.

[71] R. Agarwal and M. V. Joshi, ‘‘PNrule: A new framework for learn-
ing classifier models in data mining (a case-study in network intru-
sion detection),’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2001,
pp. 1–17.

[72] A. A. Gendreau and M. Moorman, ‘‘Survey of intrusion detection systems
towards an end to end secure Internet of Things,’’ in Proc. IEEE 4th Int.
Conf. Future Internet Things Cloud (FiCloud), Aug. 2016, pp. 84–90, doi:
10.1109/FiCloud.2016.20.

[73] B. Krebs. Source Code for IoT Botnet ‘Mirai’ Released. Accessed:
Sep. 30, 2016. [Online]. Available: https://krebsonsecurity.com/2016/10/
source-code-for-iot-botnet-mirai-released/

[74] S. Edwards and I. Profetis, ‘‘Hajime: Analysis of a decentralized Internet
worm for IoT devices,’’ Rapidity Netw., vol. 16, pp. 1–18, Oct. 2016.

[75] VirusTotal—Free Online Virus, Malware and URL Scanner. Accessed:
Apr. 25, 2018. [Online]. Available: https://www.virustotal.com/en/

[76] H. V. Le. (2020). V-Sandbox. GitHub Repository. Accessed: Apr. 25, 2020.
[Online]. Available: https://github.com/ndhpro/V-Sandbox

HAI-VIET LE received the master’s degree in com-
puter systems and networking from the Irkutsk
National Research Technical University, Irkutsk,
Russia, in 2014. He is currently pursuing the Ph.D.
degree with the Graduate University of Science
and Technology, VietnamAcademy of Science and
Technology (VAST), Hanoi, Vietnam. He is also
working as a Lecturer with the Department of
Information Technology and Information Security,
People’s Security Academy, Hanoi. He has been

doing research, application, and teaching since then in the fields of network
security, artificial intelligence, machine learning, and more recently in mal-
ware analysis.

QUOC-DUNG NGO received the Ph.D. degree
in informatics applied in automation and manu-
facturing from the Grenoble Institute of Technol-
ogy, Grenoble, France. He is currently working
as a Lecturer with the Department of Informa-
tion Technology, Posts and Telecommunications
Institute of Technology, Hanoi, Vietnam. He has
actively participated in all the research activities.
He has many books and has more than ten research
articles to his credit. He has also guest-edited sev-

eral edited books. His research interests include network security, malware
analysis, artificial intelligence, and optimal energy.

145786 VOLUME 8, 2020

http://dx.doi.org/10.3390/s90503447
http://dx.doi.org/10.1109/FiCloud.2016.20

