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ABSTRACT In interconnection networks, data distribution and fault tolerance are crucial services. This
study proposes an effective algorithm for improving connections between networks. Transposition networks
are a type of Cayley graphs and have been widely used in current networks. Whenever any connection node
fails, users want to reconnect as rapidly as possible, it is urgently in need to construct a new path. Thus,
searching node-disjoint paths is crucial for finding a new path in networks. In this article, we expand the
target to construct independent spanning trees to maximize the fault tolerance of transposition networks.

INDEX TERMS Independent spanning trees, transposition networks, interconnection networks, Cayley
graphs.

I. INTRODUCTION
In modern, networks have extensively and progressively
increased in speed. Enterprises are concerned with user expe-
rience. Moreover, stability is a growing concern. Once a
connection node, such as a router, has failed, a network’s
most crucial problem is to use some other path to restore
connectivity. Node-disjoint paths can be found to solve such
problems.Whenever a node fails on the path to a source node,
systems can rapidly discover a new path to the source node.
However, every node may connect to several node-disjoint
paths, elegant and inelegant paths may overlap. As long as a
node has failed, the records of other nodesmay be invalid, and
thus, some living nodes may be unsearchable. Independent
spanning trees can be constructed to solve network connec-
tivity problems.

A set of spanning trees in a graph G are vertex (resp.,
edge) independent if they are rooted at the same vertex r ,
and for each vertex v ∈ V (G)\{r}, the paths from v to r
are vertex (resp., edge) disjoint [20]. Independent spanning
trees guarantee that for every node there exists a path to all
other nodes in different node-disjoint spanning trees. The
strategy of constructing multiple independent spanning trees
in networks can be used for fault-tolerant broadcasting and
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secure distribution [2], [14]. Oncewe construct k independent
spanning trees, we can obtain k node-disjoint paths for a node.
These independent spanning trees can ensure fault tolerance,
and this is because such a network can survive with k − 1
faulty components.

In the past twenty years, the IST problem has been solved
on several interconnection networks, including chordal
rings [15], twisted cubes [3], [27], cross cubes [7], Möbius
cubes [8], locally twisted cubes [5], [12], [23], par-
ity cubes [4], [26], hypercubes [28], [30], folded hyper-
cubes [32], star networks [17], Gaussian networks [13],
bubble-sort networks [18], [19], and recursive circulant
graphs with G(cdm, d) with d > 2 [31].
A Cayley graph 0 [1], is a graph that satisfies 0 =

0(G, S), for G is a finite group of V (0) and S is a sub-
set of G with E(0) = {(g, sg)|g∈G, s∈S} [29]. The trans-
position network [6], [9]–[11], [16], [25] is a subclass of
Cayley graphs. An n-transposition network refers to a net-
work whose nodes are permutations of n symbols, and a
node is adjacent to another node with an address that dif-
fers to arbitrary two-digit transposition. According to the
properties of Cayley graphs, an n-transposition network is
a symmetric graph [1]. Consider to symmetry properties
of transposition networks, such a network has a part of
structure similar to a bubble-sort network, star network, and
hypercube [21], [22].
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FIGURE 1. An example of independent spanning trees in
three-dimensional transposition networks. (a) Three-dimensional
transposition network T3. (b) The first spanning tree. (c) The second
spanning tree. (d) The third spanning tree.

Although research has been conducted on node-disjoint
paths of transposition networks [24], the literature on the
construction of independent spanning trees for transposition
networks is scant. In this article, we present a novel algo-
rithm for constructing maximal independent spanning trees
for transposition networks.

The remainder of this article is organized as follows.
Section II provides definitions of transposition networks and
introduces some necessary properties. Section III presents
the proposed algorithm for constructing independent span-
ning trees for transposition networks. Section IV provides
a demonstration of the validity of the proposed algorithm.
Finally, the conclusion are provided in Section V.

II. PRELIMINARIES
This section provides definitions of transposition networks
and some other relevant symbols.
Definition 1: Independent Spanning Trees constitute a set

of spanning trees that are rooted on the same node r in
a graph G such that any arbitrary node except r forms
node-disjoint paths to the root.
Example 1: Consider, for example, Figure 1, according to

the graph in Figure 1(a), we construct three spanning trees, as
illustrated shown in Figure 1(b), Figure 1(c), and Figure 1(d).
When we select a fixed root node r = 123 and any other
arbitrary node v, such as 321, the paths from v to r of the
three spanning trees are as follows:

p1 = (321, 231, 213, 123)
p2 = (321, 123)
p3 = (321, 312, 132, 123)

We can observe that except for the selected node v = 321
and the root r = 123, each of the three paths passes through
different edges. In addition to the selected node, choosing any
other node except for the root would result in the formation

FIGURE 2. Example of a four-dimensional transposition network T4.

of node-disjoint paths. Thus, the three spanning thees form a
set of independent spanning trees.
Definition 2: An n-transposition network, denoted as Tn,

contains n! nodes. Each node is labeled with an unique
address that belongs a 1, 2, . . . , n set of permutations. A node
v that belongs to a transposition network is adjacent to nodes
whose addresses switch any two arbitrary digits with the
digits in the address of v.

Figure 1(a) and Figure 2 present examples of T3 and T4,
respectively. Note that the networks can be presented in other
forms than those in Figure 1(a) and Figure 2.

For a node v, we define vi as the ith digit of the node. Thus,
v = v1v2 . . . vn. For the neighbor of v, N (v) can be presented
as follows:

N (v) = v1 . . . vi−1vjvi+1 . . . vj−1vivj+1 . . . vn,

for 1 ≤ i < j ≤ n (1)

Example 2: Consider, for example, a node v = 1234 in T4;
the neighbor of v can be calculated using equation 1:

N (v) =



2134, if i = 1, j = 2;
3214, if i = 1, j = 3;
4231, if i = 1, j = 4;
1324, if i = 2, j = 3;
1432, if i = 2, j = 4;
1243, if i = 3, j = 4.

Through the preceding calculation, we obtain six neigh-
bors of v. According to definition 2, every node in an n-
transposition network is labeled with a unique address of n
digits. Every digit can switch places with any other n − 1
digits. Therefore, we can deduce the following property:
Property 1: [22] An n-transposition network has connec-

tivity n(n−1)
2 .

Through property 1, we can calculate the total edges of
transposition networkG,E(G) = 1

2 (V (G)×N (v)) = n(n−1)n!
4 .
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FIGURE 3. Example of T3 in the form of a bipartite graph.

Property 2: [22] An n-transposition network is a bipartite
graph.
Example 3: Figure 1(a) displays an example of T3. We can

easily redraw the graph to the graph presented in Figure 3.
The bipartite graph is conducive to problem-solving.
Property 3: [21] An n-transposition network is vertex and

edge transitive.
Through property 3, the automorphism of transposition

networks simplifies constructions of independent spanning
trees that we can select a fixed node as root.

III. CONSTRUCTING INDEPENDENT SPANNING TREES ON
Tn
This section introduces the proposed algorithm for construct-
ing independent spanning trees on Tn. According to prop-
erty 3, every transposition network is vertex and edge transi-
tive, we select the address 12 . . . n as the common root of all
independent spanning trees on Tn for consistency. For clarity,
we set the root node as r , and for convenience, we write
v = 1234 as representing setting 1234 as the address of node
v.

According to property 1, an n-transposition network has
a connectivity of n(n−1)

2 , we deduce that exists n(n−1)
2

node-disjoint paths from a node to root. Therefore, we assume
that Tn comprises maximum independent spanning trees
n(n−1)

2 because every path from a node to root in different
independent spanning trees remains independent. To spec-
ify an independent spanning tree on Tn, we define Tn(i)
as the ith independent spanning tree on Tn, where i ∈
{1, 2, . . . , n(n−1)

2 }.

A. COMMON FUNCTIONS FOR CONSTRUCTION
For constructing independent spanning trees, we propose an
algorithm, namely Transform, that can implement a transpo-
sition operation, with v being the selected node, p being the
first selected position of the node, and q being the second
selected position of the node.

Algorithm 1 TRANSFORM (v, p, q)

v′ := v
v′p := vq
v′q := vp
return v′

Example 4: Let v = 2134. To switch two selected digits,
namely 2 and 4, of node v for the purpose of deriving a

neighbor of node v, we can substitute p and q with the posi-
tions of the digits in the TRANSFORM algorithm, respectively.
The position of digit 2 is 1 and the position of digit 4 is 4.
Thus, p = 1 and q = 4, and we can obtain the address 4132.

To prevent confusion regarding whether a digit is meant as
a literal integer or a position index, we propose an algorithm,
namely Location, to determine the position of the digit as its
solution, with v being the selected node, d being the selected
digit, and n being the dimension of transposition network n
in which v is set:

Algorithm 2 LOCATION (v, d , n)

i := 1
l := −1
while i ≤ n do

if vi = d then
l := i
i := n+ 1

i := i+ 1

return l

To construct independent spanning trees, we must spec-
ify the neighbor selection procedure. The Select algorithm
(Algorithm 3) can select different neighbors of a node based
on a selected vertex v, the identification i of the spanning
tree, and the dimension of the transposition network n. The
algorithm can ensure the selection of different neighbors with
the same v and n for each identification i of a spanning tree.

Algorithm 3 SELECT(v, i, n)

p := 1
q := i+ 1
while q > n do

p := p+ 1
q := q−n+ p

return TRANSFORM(v, p, q)

We subsequently present the construction of independent
spanning trees on transposition networks of low dimension,
and expand the dimension by induction. Because T1 is a
singleton graph and T2 is a path graph on two vertices, the
problem is trivial. Therefore, we start our construction on a
three-dimensional transposition network. Before describing
the algorithm, we introduce the following definitions, which
are the foundations of our algorithms.
Definition 3: The function CREATE_TREE(r) creates a

graph with root node r.
Definition 4: Let v be a node in a graph G. The function

ADD_LINK(v, u) adds a new node u to G, with u being con-
nected with v.
Definition 5: Let s be a vector of nodes in a graph G. The

function GET_eLEMENT(s) returns a node in the queue s.
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FIGURE 4. Independent spanning trees of T3 in the form of bipartite
graphs. (a) First spanning tree. (b) Second spanning tree. (c) Third
spanning tree.

Definition 6: Let s be a vector of nodes in a graph G. The
function REMOVE(s) removes the first node in the queue s.

B. CONSTRUCTING INDEPENDENT SPANNING TREES ON
T3
Based on T3, it is difficult to observe any regularity between
the three independent spanning trees directly according to
Figure 1. From another perspective, we can reconstruct the
set of independent spanning trees in the form of bipartite
graphs. Figure 4 shows the results, which correspond to those
in Figure 1(b), Figure 1(c), and Figure 1(d). According to the
derived results, we can design a top-down algorithm, namely
Construct_T3, for constructing independent spanning trees
for T3, as presented in Algorithm 4. Note that r represents
the root, i represents the identification of the spanning tree,
and n represents dimension 3.

Algorithm 4 CONSTRUCT_T3(r , i, n)

CREATE_TREE(r)
v := SELECT(r , i, n)
ADD_LINK(r, v)
s := N (v)
while s 6= null do

v′ := GET_ELEMENT(s)
if v′ 6= r then

ADD_LINK(v, v′)
if i = 1 then

ADD_LINK(v′,TRANSFORM(v′, 1, 2))

REMOVE(s, v′)

if i 6= 1 then
s′ := N (r)
while s′ 6= null do

v′ := GET_ELEMENT(s′)
ADD_LINK(TRANSFORM(v, 1, 2), v′)
REMOVE(s′, v′)

return

We can classify the construction process executed using the
algorithm into two cases.

Case 1: Select(r , i, n) = Transform(r , 1, 2)
Only one spanning tree is constructed in Case 1,
as illustrated in Figure 4(a).

Step 1 Select Transform(r , 1, 2) as the only children c of
the root.

Step 2 Select all neighbors of c, except for r , as the chil-
dren of c, assuming that the children are set as S.

Step 3 Select Transform(v, 1, 2) as the children of every
node for v ∈ S.

Case 2: Select(r , i, n) 6= Transform(r , 1, 2)
Figure 4(b) and Figure 4(c) present examples of
trees constructed in Case 2.

Step 1 Select a neighbor of the root, except for the node in
Case 1, as the only child c of the root.

Step 2 Select all neighbors of c, except for r , as the chil-
dren of c.

Step 3 Let c′ = Transform(c, 1, 2). Select the neighbors
of c′, except for c, as the children of c′.

Notably, although T3 seems to be a simple case, the
construction algorithm plays a crucial role in constructing
high-dimensional transposition networks.

Algorithm 5 PARENT_T3 (v, i, n)

p := null
u := SELECT(r, i, n)
if v 6= r then

if v = u then
p := r

else if v ∈ N (r) then
if i = 1 then

p := TRANSFORM(v, 1, 2)
else

p := TRANSFORM(u, 1, 2)

else
p := u

return p

Due to the top-down nature of the construction algorithm,
whether the spanning trees constructed by the algorithm
include all nodes may be unclear. Therefore, we propose
an algorithm, namely Parent_T3 (Algorithm 5). Parent_T3
returns the parent of node v except for the root; it is based
on the selected node v, identification of the spanning tree i,
and the dimension of the transposition network n. Note that
we always select r = 12 . . . n as the root for consistency.

C. CONSTRUCTING INDEPENDENT SPANNING TREES ON
Tn

Next, for Tn with n ≥ 4, the construction of independent
spanning trees requires special technique to address the prob-
lem.
Definition 7: In Tn, an i-container, i = 1, 2, . . . , n (n

refers to the dimension of the network) represents a set that
includes all the nodes for which the last digit equals i.

The container concept is essential for constructing inde-
pendent spanning trees on Tn. Figure 5 shows an example
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FIGURE 5. Example of containers on T4.

FIGURE 6. Example of transposition position.

for containers on T4, nodes in a dotted circle are classified
as same container.

According to the group method in definition 7, we define
a concept about transposition position:
Definition 8: A fixed node in every container is adjacent

to a node with the same transposition position, and the trans-
position position of a node is the node that takes a particular
TRANSFORM operation on the fixed node.

In this article, we selected root and Transform(v, 1, 2) for v
∈ N (r) in any other container as fixed nodes.
Example 5: Taking T4 as the example. Consider

4-container and 3-container, we selected root and
TRANSFORM(v, 1, 2), namely v = 2143, as fixed nodes. As
we implement TRANSFORM operation to both fixed nodes,
such as TRANSFORM(v, 1, 3), we will receive v1 = 3214
and v2 = 4123 respectively. v1 and v2 is said taking same
transposition position (see Figure 6).

Based on our algorithm, we can distinguish three cases:

Case 1: (Select(r, i, n))n 6= rn; the children of the root
do not belong to the n-container.

FIGURE 7. First step constructed in Case 1 of our algorithm.

FIGURE 8. Second step constructed in Case 1 of our algorithm.

FIGURE 9. Third step constructed in Case 1 of our algorithm.

FIGURE 10. Fourth step constructed in Case 1 of our algorithm.

Step 1 First, select a node that does not belong to the
n-container as the only child c of the root (see
Figure 7).

Step 2 Next, select all neighbors of c in the current
container as the children of c (see Figure 8).

Step 3 Next, select all neighbors of Transform(c, 1,
2) in the current container as the children (see
Figure 9).

Step 4 Finally, select all neighbors of the nodes in
the current container (see Figure 10).
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FIGURE 11. First step constructed in Case 2 of our algorithm.

FIGURE 12. Second step constructed in Case 2 of our algorithm.

FIGURE 13. Third step constructed in Case 2 of our algorithm.

Case 2: Select(r , i, n) 6= Transform(r , 1, 2) and
(Select(r, i, n))n = rn; the children of the root
belong to the n-container, except for the node
in Special Case.

Step 1 First, inside the n-container, construct a tree
that exhibits the same behavior as that of T3
Case 2 (see Figure 11). Note that the node v =
Transform(r , 1, 2) belongs to the special case
and is thus not selected.

Step 2 Next, select all neighbors of Select(r , i, n) as
the children of Select(r , i, n) (see Figure 12).

Step 3 Finally, execute selection and construction
processes similar to those in T3 Case 2 (see
Figure 13).

Special case: Select(r , i, n) = Transform(r , 1, 2); the chil-
dren of the root are denoted Transform(r , 1,
2) and are treated as a special case.

Step 1 First, inside the n-container, construct a tree
that exhibits same behavior that of T3 Case 1
(see Figure 14).

Step 2 Next, for Transform(r , 1, 2) andN (Transform
(r, 1, 2)) in the n-container, select all

FIGURE 14. First step constructed in Special case of our algorithm.

FIGURE 15. Second step constructed in Special case of our algorithm.

FIGURE 16. Third step constructed in Special case of our algorithm.

neighbors in any other container as their chil-
dren (see Figure 15).

Step 3 Finally, for the nodes v selected in Step 2,
select Transform(v, 1, 2) as the children (see
Figure 16).

With the cases above, we design algorithm 6 pre-
senting the constructions of independent spanning trees
on Tn with n ≥ 4, with v representing the selected
node, i representing the identification of the spanning
tree, and n representing the dimension of the transposition
network.

Algorithm 7 shows the Parent function for n ≥ 4, with v
representing the selected node, i representing the identifica-
tion of the spanning tree, and n representing the dimension
of the transposition network. Note that we always retain the
same root node for consistency.

Table 1 lists every node and its parent in every independent
spanning tree.

Figures 17-19 show examples of Case 1, Case 2, and
Special case pertaining to the construction of independent
spanning trees for T4 using our algorithm.
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Algorithm 6 CONSTRUCT_Tn (r , i, n)
CREATE_TREE(r)
v := SELECT(r , i, n)
ADD_LINK(r, v)
s := N (v)\{r}
while s 6= null do

v′ := GET_ELEMENT(s)
ADD_LINK(v, v′)
s′ := N (v′)\{v}
if i = 1 then

if v′n = rn then
while s′ 6= null do

w := GET_ELEMENT(s′)
if wn 6= v′n then

ADD_LINK(v′,w)
ADD_LINK(w,TRANSFORM(w, 1, 2))

REMOVE(s′,w)

ADD_LINK(v′,TRANSFORM(v′, 1, 2))
else if v′n = rn then

while s′ 6= null do
w := GET_ELEMENT(s′)
if v′ = TRANSFORM(v, 1, 2) and wn = rn then
ADD_LINK(v′,w) else if v′n 6= rn then

if wn = v′n then
ADD_LINK(v′,w)
if w = TRANSFORM(v′, 1, 2) then

s′′ := N (w)\{v′}
while s′′ 6= null do

w′ := GET_ELEMENT(s′′)
if w′n = wn then
ADD_LINK(w,w′)
REMOVE(s′′,w′)

REMOVE(s′,w)

else
while s′ 6= null do

w := GET_ELEMENT(s′)
if wn 6= v′n then ADD_LINK(v′,w) else if v′ =
TRANSFORM(v, 1, 2) and w 6= v then

ADD_LINK(v′,w)
s′′ := N (w)
while s′′ 6= null do

w′ := GET_ELEMENT(s′′)
if w′n 6= vn then ADD_LINK(w,w′)
REMOVE(s′′,w′)

REMOVE(s′,w)

REMOVE(s, v′)
return

IV. PROOF OF VALIDITY
This section demonstrates the validity of the algorithm.
Because of the few nodes of T3, we can check the inde-
pendence of spanning trees directly. We start our proof with
n ≥ 4.
Lemma 1: Every pair of nodes in any two different con-

tainers have no share neighbors.
Proof: Because the last digits of the addresses of the

nodes inside a container are the same, every node remains
unique as we hide its last digit. To move to another container,
the last digit of the address must be changed because it is not

Algorithm 7 PARENT (v, i, n)

p := null
u := SELECT(r , i, n)
if v 6= r then

if v = u then
p := r

else if un = rn then
if vn = rn then

if v ∈ N (r) then
if i = 1 then

p := TRANSFORM(v, 1, 2)
else

p := TRANSFORM(u, 1, 2)

else
p := u

else
if v ∈ N(SELECT(r, i, n)) then

p := u
else if i = 1 then

if v ∈ N (r) or N (v) ∩ N (r) 6= φ then
p := TRANSFORM(v, 1, 2)

else
p :=
TRANSFORM(v,LOCATION(v, 4, n), 4)

else
w = TRANSFORM(u,LOCATION(u, vn, n), 4)
if N (v) ∩ N (r) 6= φ then

p := TRANSFORM(w, 1, 2)
else

p := w

else
if v ∈ N (u) then

p := u
else if vn = un then

p := TRANSFORM(u, 1, 2)
else

p := TRANSFORM(v,LOCATION(v, un, n), 4)

return p

equal to the last digit in the container at the destination. There-
fore, we search the target container and make appropriate
exchanges for the final digits. Because all nodes in a container
are unique, the addresses of the nodes remain uniquewhenwe
exchange the last digits. �
Theorem 1: For n ≥ 4, Tn−1 is a part of Tn.
Proof: Consider the container problem; we can obtain

all nodes of T3 in a 4-container. The relation between nodes
remains the same as we hide the last digits of the addresses
(neighbors are still in relation of transposition). Therefore,
T3 is a part of T4. We can obtain all nodes of Tn−1 in any
i-container, i = 1, 2, 3, . . . , n. A transposition operation from
a node to another node in the same container never switch
with the last digit. We can consider it as an n−1-transposition
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TABLE 1. Parent of every vertex v ∈ V (T4) in T4(i ) for i ∈ {1, 2, . . . , 6}.

FIGURE 17. Independent spanning trees constructed in Case 1 of our
algorithm for T4. (a) First result constructed in Case 1. (b) Result
constructed in Case 1.

network because relation between nodes remains transposi-
tion with ignoring the last digits. Therefore, for n ≥ 4, Tn−1
is a part of Tn. �

FIGURE 18. Independent spanning trees constructed in our algorithm
for T4. (a) Case 1. (b) Special case.

FIGURE 19. Independent spanning trees constructed in Case 2 of our
algorithm for T4. (a) First result constructed in Case 2. (b) Result
constructed in Case 2.

Lemma 2: All nodes in a container and all neighbors of
them includes all nodes of the transposition network.

Proof: In a container, all nodes are unique. Because a
node is adjacent to n(n−1)

2 nodes, the number of neighbors

VOLUME 8, 2020 147129
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FIGURE 20. Examples of independent spanning trees in T3 belongs to a
part of T4 (a) An example in Special case. (b) An example in Case 2.

inside the container can be subtracted; a node can connect
to n(n−1)

2 −
(n−1)(n−2)

2 = n − 1 nodes outside the current
container. According to Lemma 1, we can conclude that for
all the nodes in a container, each node does not share neigh-
bors in any other container, which means all the neighbors are
unique. Because a container contains (n− 1)! nodes, we can
directly multiply it: (n−1)× (n−1)! = (n−1)(n−1)! nodes.
After adding back the number of nodes in the container,
we can obtain the number of all nodes in a transposition
network. �
Theorem 2: For n ≥ 4, the independent spanning trees of

Tn−1 are a part of the independent spanning trees of Tn.
Proof: On the basis of Algorithm 7, we implement a

version of algorithm 4 designed for T3 inside a container.
Because Algorithm 4 forms independent spanning trees,
we can conclude that the independent spanning trees of T3 are
a part of the independent spanning trees of T4 (see Figure 20).
We can expand the proof by enlarging the bipartite set of a
container for higher dimensions. In a container for every con-
tainer base construction, the algorithm always do an T3-like
construction. The spanning trees of Tn are clearly expansion
of Tn−1 by connecting nodes to central nodes. Because the
basic algorithm remains the same, we can conclude that for
n ≥ 4, the independent spanning trees of Tn−1 are a part of
the independent spanning trees of Tn. �
Theorem 3: For n ≥ 4, Tn(1), Tn(2), . . . , Tn(

n(n−1)
2 ) are

n(n−1)
2 independent spanning trees of Tn constructed by the

CONSTRUCT_Tn (r, i, n) algorithm.
Proof: We prove the correctness of our algorithm with

the following cases.

Case 1: The constructions of Case 1 are base on a
single container except root container.
Consider Figures 7-10. Through the men-
tioned algorithm CONSTRUCT_Tn (r , i, n), we
can walk through a container first. Note
that the node first walked in has the same
transposition position as TRANSFORM(r , 1, 2),
which belongs to Special case. Subsequently,
we walk through the container with T3-like
behavior. Finally we walk through all neigh-
bors of the nodes that belong to this container.
According to Lemma 2, we can ensure that we
walk through all nodes of transposition net-
work. Because each container is isolated from
other containers, we can conclude that the
spanning trees are independent of one another.
Through our algorithm, we can construct n−1
independent spanning trees in Case 1.

Case 2: The construction of Case 2 are base on mul-
tiple containers.
Consider Figures 11-13. Through the algo-
rithm CONSTRUCT_Tn (r , i, n), we can walk
through the starting container without the way
in Special case. Compared with Case 1, the
construction is valid because every node cre-
ated in Case 1 in root container is a leaf node.
Next, we walk through a node in every con-
tainer. Compared with Case 1, through the
execution of T3-like construction, Case 2 is
valid because the transposition position in this
case is not the same as that in Case 1. Apart
from internal nodes, all other nodes are leaf
nodes in Case 2 and Case 1, demonstrating
the independence of the trees. Through our
algorithm, we can construct (n−1)(n−2)

2 − 1
independent spanning trees in Case 2.

Special case: The constructions of Special case are base on
root container.
Consider Figures 14-16. Through our algo-
rithm CONSTRUCT_Tn (r , i, n), we can walk
through the starting container with the
fixed starting node TRANSFORM(v, 1, 2). We
can prove its independence because Spe-
cial case is independent of Case 2 (accord-
ing to Algorithm 4), and also independent
of Case 1 because every node created in
Case 1 in the starting container is a leaf
node. Next, we walk through all neighbors
of TRANSFORM(r , 1, 2) and TRANSFORM(N (r),
1, 2). Compared with Case 2, when we con-
struct a node-disjoint path back to the root,
we can walk through the neighbor of the
root and then back to the root in Case 2.
By contrast, in Special case, we can walk
through the neighbor of the aforementioned
node, and can walk through TRANSFORM(r ,
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1, 2) and then back to the root. This thus
renders the two cases independent of each
other. Next, we can walk through the neigh-
bor of the node in the previous step through
TRANSFORM(v, 1, 2). In Case 1, under the
condition of neighbors of TRANSFORM(r , 1, 2),
we observe the same transposition position.
Because the node TRANSFORM(v, 1, 2) equals
the neighbor of the root, it is valid to construct
because Case 1 entails walking through the
node and back to the root. However, Special
case entails starting from the node and walk-
ing through TRANSFORM(v, 1, 2) and back to
TRANSFORM(r , 1, 2), which verifies the inde-
pendence of the two cases. Through our algo-
rithm, we can precisely construct one inde-
pendent spanning tree through Special case.
On the basis of the preceding proof, we can
conclude that all spanning trees in all cases
are independent of each other. Furthermore,
through mathematical calculations, the total
independent spanning trees constructed in ther
three cases are (n − 1) + ( (n−1)(n−2)2 − 1) +
(1) = (n)(n−1)

2 . Therefore, we can conclude
that for n ≥ 4, Tn(1), Tn(2), . . . , Tn(

n(n−1)
2 )

are n(n−1)
2 independent spanning trees of Tn

constructed by the CONSTRUCT_Tn (r , i, n)
algorithm.

�
Lemma 3: The time complexity of the algorithm is

O(n2 × N ), where N is the number of nodes of an
n-transposition network.

Proof: Because every node and every directed edge are
traversed once, the time complexity of of the algorithm in an
n-transposition network is the summation of the numbers of
nodes and directed edges. The number of nodes is n! and the
number of directed edges is n!× n(n−1)

2 . The time complexity
is O(n! + n! × n(n−1)

2 ) = O(n! × (1+ n(n−1)
2 )) = O(n2 × n!).

�

V. CONCLUSION
In this article, we study the problem of searching and con-
structing independent spanning trees on transposition net-
works, which are vital for interconnection networks. The
present study is the first to construct maximal independent
spanning trees on transposition networks.

Appealing topics for future work can involve determining
low-cost methods for constructing independent spanning
trees. It is a challenge to pursue the goal of reducing
the heights of ISTs (the longest path from the root to
any leaf) and the time complexity of the algorithm. More-
over, many problems involving Cayley graphs and other
interconnection networks remain unsolved. We expect that
our algorithm can make notable contributions to graph
theory.
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