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ABSTRACT The interaction among different Internet of Things (IoT) sensors and devices become massive
and insecure over the Internet as we probe to smart cities. These heterogeneous devices produce an enormous
amount of data that is vulnerable to various malicious threats. The generated data need to be processed and
analyzed in a secure fashion to make smart decisions. The smart urban planning is becoming a reality through
the mass information generated by the Internet of Things (IoT). This paper exhibits a novel architecture,
SafeCity, that limelight the ecosystem of smart cities consists of cameras, sensors, and other real-world
physical devices. SafeCity is a three-layer architecture, i.e., a data security layer, a data computational layer,
and a decision-making layer. At the first layer, payload-based symmetric encryption is used to secure the data
from intruders by exchanging only the authentic data among the physical devices. The second layer is used for
the computation of secured data. Finally, the third layer extracts visions from data. The secured exchange of
data is ensured by using Raspberry Pi boards while the computation of data is tested on trustworthy datasets,
using the Hadoop platform. The assessments disclose that SafeCity presents precious insights into a secured
smart city in the context of sensors based IoT environment.

INDEX TERMS Internet of Things, smart city, symmetric encryption, data management design, data
analytics, data mining.

I. INTRODUCTION
Currently, 55% population of the world is in the cities that are
expected to grow up to 67% by the year 2050 [1], [2]. The
gradual increase in the urbanization poses various encounters
for the decision-makers in proposing different facilities to
the inhabitants of these cities. The ICT (Information and
Communication Technologies) are used to make the cities
smart enough by deploying and promoting sustainable devel-
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opment practices for addressing the growing challenges of
urbanization. A solid foundation is offered for the Internet of
Things (IoT) with an advancement in the field of smart cities’
sensors by enabling them to interconnect [3]. Technology in
the shape of smartphones, sensors, and other devices is play-
ing a pivotal role in bringing the era of ubiquitous computing.
In 2017, Gartner predicted that the number of interconnected
devices will increase by 31% in 2017 by getting 8.5 billion
and exceeded 20+ billion by the year 2020.
The IoT-enabled environment is a pattern where the pro-

cessing of information is connected with every encountered
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activity [4]. A huge number of real-world physical devices
in a ubiquitous environment will generate voluminous data
containing a variety of information that needs new forms
of computation to facilitate enhanced decision making. The
vast amount of data generated by the ubiquitous devices
will add veracity, value, and variability to the Internet [5].
Advancement in the ubiquitous computing is causing in a
large-scale valuable data or information, and with the assis-
tance of Big Data tools and proficient machine learning
methods, there is a great potential of analytical amenities to
the smart cities [6]–[9]. A number of proposals are found
to process and analyze the data generated by heterogeneous
devices to perform efficient decision making.

Smart city data computation and pervasive intelligence
expose the networks to security attacks, malware, and other
cyber breaches. The inter-connectivity requirements of every-
day physical devices would probably add numerous ground-
breaking and resourceful malicious prototypes to IoT data
computing [10]. The presence of malicious intruders may
generate fabricated data to manipulate the sensed information
of legitimate devices. The intruders may adversely affect the
services and decision making in a ubiquitous environment.
Furthermore, these malicious entities may liftoff attacks like
denial-of-service by disrupting the transmission, and sensing
of a ubiquitous environment to reduce the eminence of smart
services [11].

Security provisioning in a ubiquitous environment is an
intricate work since every machine possesses its identifi-
able unique characteristics and the uniqueness to be veri-
fied when connected to the Internet. The solutions for these
ubiquitous devices in the marketplace lack the secured char-
acteristics and are exposed to an extensive kind of adver-
sarial attacks [12]. Besides, the existing privacy-preserving
and authentication algorithms for smart ubiquitous environ-
ments involve complex and resource-intensive operations that
require an abundance of resources. Most of these algorithms
are not suitable for delay-sensitive and priority-based traffic
generated in these environments.

In this article, we propose a safe and secured data manage-
ment design for smart city planning using ubiquitous comput-
ing. The key contributions of the proposed architecture are as
follows.

1. Payload-based symmetric encryption is proposed
for a smart ubiquitous environment that is simple,
lightweight, robust, and resilient against various mali-
cious threats. The proposed approach uses 128-bit
security primitives for secured exchange of data among
the real-world physical devices.

2. A customized utility is proposed for the efficient load-
ing of secured data into Hadoop. The proposed loading
utility is efficient in terms of time and storage. The
default HDFS (Hadoop Distributed File System) archi-
tecture is customized to achieve effective data storage.
Our customized HDFS reduces storage consumption
along with the network overhead.

3. The traditional YARN (Yet Another Resource Negotia-
tor) Hadoop definition is customized for efficient data

computation. This is accomplished by introducing the
concept of dynamic scheduling into the Hadoop YARN
definition.

The remaining paper is ordered as follows. In Section 2,
we spotlight the existing studies. In Section 3, we
spotlight our proposed SafeCity framework for an IoT sensors
based environment. In Section 4, the experimental results
for secured data transmission and processing are presented.
Finally, the paper is concluded in Section 5.

II. LITERATURE REVIEW
In this section, first we highlight the current works about
the secure transmission of ubiquitous data collected from the
smart cities, followed by their processing to extract valuable
features.

A. SECURED TRANSMISSION OF DATA
Over the last decade, a lot of hype has been witnessed around
building the concept of smart cities. Finally, the presence of
sensor-embedded Internet of Things (IoT) platforms, ubiq-
uitous connectivity, and cloud and data analytics has turned
this concept into a reality. Although cities around the globe
are seeking to become smarter, the applications of smart
cities face a plethora of challenges in terms of security and
privacy. These applications need to secure the gathered data
from unauthorized access, disruption, annihilation, modifi-
cation, inspection, and various other malevolent activities.
In literature, numerous studies exist to protect the volumi-
nous data traffic of smart ubiquitous cities from malicious
entities. The error-prone communication channels used by the
resource-starving sensors of smart cities limit the usage of
TLS (Transport Layer Security) for seamless traffic flow [13].
As a result, most of the sensor nodes in smart ubiquitous envi-
ronments rely on DTLS (Datagram Transport Layer Security)
for the secured transmission of their data [14]. Nonetheless,
the record layers of DTLS and handshake have a collective
overhead of 25 bytes in each datagram header. The DTLS
needs to be stripped of the resource-intensive operations to
suit the resource-starving sensor nodes of smart cities [15].

In [16], the authors proposed an extremely lightweight
encryption approach for the secured establishment of a uni-
cast communication system in smart cities. The authors
claimed that their model decreases the energy consumption
and computational time of the sensor nodes. However, they
did not provide any experimental and analytical results to
verify their claim. In [17], the authors studied the use ofDTLS
for secured communication in a smart ubiquitous environ-
ment. They argued that the streaming applications of smart
cities require an abundance of memory space and the use of
DTLS is not feasible for them. The authors emphasized the
use of compressed IPSec to offer security at the network layer
for streaming applications.

A robust and resilient secured scheme for ubiquitous appli-
cations of smart cities was proposed in [18]. An RSA-based
DTLS implementation was used for the secured exchange
of ubiquitous data. However, both the RSA and DTLS have
higher computational overheads due to resource-intensive
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handshake mechanisms. The presence of complex cipher
suites of RSA incurs a higher energy consumption and com-
putational overhead for the ubiquitous operation of sen-
sor nodes. The performance of the DTLS handshake was
evaluated for ubiquitous smart devices using the Elliptic
Curve Cryptography (ECC) [19].

In [20], a DTLS implementation for smartphones was pro-
posed using the Constrained Application Protocol (CoAP).
The proposed scheme involves computationally difficult
encryption suites, requires ample processing and powermem-
ory, and is not suitable for sensor nodes of the smart cities.
In [21], a lightweight encryption approach was proposed for
ubiquitous communication in a smart city environment. Prior
to establishing a secured session, the proposed approach val-
idates the identities of clients and servers. For authentication,
symmetric encryption with 128- bit security primitives were
used. However, the proposed scheme is not validated experi-
mentally to verify its efficiency, robustness, and resilience.

B. DATA PROCESSING AND FEATURE EXTRACTION
In this section, the challenges and issues in the existing
works for smart city planning utilizing the Big Data analytical
techniques are presented. In [22], the authors designed a
model to compute Big Data generated in the loT-based smart
health setting. It involves the separation of vigorous data
into subclasses that are based on hypothetical simulation of
data fusion to improve computational effectiveness. The key
issues underlined in this model are the use of customary
MapReduce Cluster management for Apache Hadoop server,
insufficient data loading to Hadoop, a conceptual framework,
and the utilization of only healthcare datasets.

A Big Data analytics framework comprised of various
tiers was proposed for urban planning in [23]. Each tier of
the framework is responsible for different activities of the
Big Data analytics to have efficient modularization of the
overall process. Although, it is a complete framework from
data generation and collection to application and usage of
the analyzed data, it causes significant delay in processing
and the use of classical MapReduce deteriorates the per-
formance [24]. Moreover, prior to data loading, the authors
focused on data aggregation while overlooking the data load-
ing competence.

An IoT-enabled framework using Hadoop-based Big Data
analytics was proposed in [25] for a smart city application.
The proposed framework has different layers from data acqui-
sition to the application. The main problem of this framework
is that the data loading efficiency was ignored.

A proposal based on the analysis of Big Data that endorses
the perception of SCC (smart and connected societies) for
smart cities was proposed in [26]. The SCC model is a
conceptual framework that was not implemented. A similar
model was proposed for the ubiquitous smart city application
in [27]. However, this model was not implemented as well.
Moreover, [26] and [27] overlooked the data loading and
ingestion into a distributed ubiquitous smart city environ-
ment. In addition, many solutions have been proposed to treat
similar problems of Big Data analytics in smart ubiquitous

environments [28], [29]. Vecular fog computing may also
be utilized for smart city planning [30]. However, a critical
issue in the design of these methods is the deployment of
a traditional cluster resource management scheme and insuf-
ficient data loading to the Hadoop server.

A graph-oriented architecture to analyze the Big Data in a
smart ubiquitous transportation system was proposed in [31].
This graph-based solution is more scalable and efficient, but
it incurs additional delay due to graph processing. In addition
to processing delay, the proposed solution was tested only
for the transportation dataset, and loading the Big Data to
the Hadoop server and its efficiency was overlooked. The
proposed architecture was tested only for a healthcare dataset.
The authors proposed a multi-level data processing scheme,
based on parallel processing, for Big Data analysis. However,
a YARN-enabled solution was provided but the data ingestion
efficacy was ignored.

III. A SAFE AND SECURED DATA
MANAGEMENT FRAMEWORK
For a smart and safe city to perform intelligent and secure
decisions, the ubiquitous data collected by the devices are
processed using different approaches. In SafeCity, the data
analysis and machine learning approaches are applied to the
data generated and acquired in a ubiquitous environment. The
acquisition is carried out by systems that convert the analog
information into digital. The cellular technology, i.e, 4G/LTE,
is used as a ridging technology between the users, devices,
and the system, as shown in Figure 1.

FIGURE 1. Overview of the proposed system.

To design a ubiquitous environment, numerous surveil-
lance cameras, wired and wireless sensors, and device-
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mounted sensors are deployed. Data sensing, acquisition, and
collection are performed in this environment. Digital loggers
and digital data acquisition systems are used to detect and col-
lect data from devices and disseminate them with the help of
the Internet. The produced ubiquitous data are secured before
forwarding to a computational unit for safe and secured pro-
cessing and transmission. Afterward, the decisions are made
on the secured ubiquitous data. The proposed system is a
three-layer architecture, i.e., a ubiquitous data security layer,
a ubiquitous data computation layer, and a decision-making
layer. A payload-based authentication approach is utilized
in the first layer to make the ubiquitous data secured from
adversaries.

This layer ensures that only secured data is forwarded.
The second layer is accountable for the resource-intensive
processing of secured ubiquitous data at the conventional
computing platforms. Finally, the third layer provides insights
from the ubiquitous data and makes smart decisions. The pro-
posed architecture is shown in Figure 2. The comprehensive
description of each layer is given in the following subsections.

FIGURE 2. System architecture of SafeCity.

A. DATA SECURITY LAYER
This layer of SafeCity is linked to the data sources. The
data received from the sensors are in the form of mes-
sages. At this layer, message identification and authentication

are performed using a simple payload-based authentication
scheme. The proposed scheme uses the CoAP protocol [32]
for message exchange and authentication at the application
layer of each data source. In ubiquitous environments, most
of the CoAP-based solutions are relied on the use of DTLS
to ensure the protected transfer of resources between the
devices. However, the DTLS-enabled CoAP stack incurs
an excessive computational and communication overhead.
Furthermore, the use of DTLS in combination with CoAP
adds an extra layer of protocol header for security provision-
ing. In our approach, the security of data messages is not
compromised while transferred between clients and servers.
The session key is transmitted within the payload mes-
sages while authentication is achieved at the request-response
communication, as shown by the top layer in Figure 2.
In SafeCity, CoAP is equipped with secured features for
authentication, efficiency, robustness, and defense against a
number of malevolent threats.

FIGURE 3. Mutual authentication.

During the authentication process, the resource-constrained
clients communicate with a server to verify each other identi-
ties. As an example, the ubiquitous clients of Figure 1 observe
various events such as, temperature, humidity, pollution, and
fire eruption, at the server. For a server to provide access to
the residing resources, both the parties need to be mutually
authenticated. In SafeCity, the authentication is accomplished
using four handshake messages. A maximum of 256-bits is
used within the payload of each message. The four hand-
shake messages are session launch, server challenge, client
challenge and reply, and server reply, as shown in Figure 3.
The session launch is headed by a provisioning stage where
the clients share a secret key with the server. The server
conserves a trace of keys, based on an associated unique
identifier (ID). The exchange of a session key between the
client and server takes place upon successful authentication.
For each client, a session key is implanted on the device at the
manufacturing time. If an impostor strives to rage the client,
a specific alarm is spawned to notify the crack. To encode
the payload of authentication information, the Advanced
Encryption Standard (AES) is utilized.
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During the session launch, a secret key λi is shared with
the server, where λi is 128-bit long. The λi is identified only
by clienti (it belongs) and server, where i ∈ {1,2,3,. . . ,I }.
Each i has a unique identifier that helps the server to execute
a look-up table for verification of identity. The session launch
is similar to a Hellomessage and its payload consists of CoAP
options fields, i.e., Auth and Auth-Msg-Type, to indicate
the type of operations performed between the client and a
server. After the session launch, the next step is the server
challenge, in which the server creates a challenge for the
client. The encounter containing a pseudo-random nonce ηr
and a session key µ produced by the server. The following
equations are used to create a challenge.

ϑ = λi ⊕ µ (1)

Cr = AES{λi, (ϑ |ηr )} (2)

where, i is the ID of a client, ϑ is the intermediate value
generated by the server, and Cr is the challenge sent to i.
In the client challenge and reply message, the client retrieves
ηr and λ from the server challenge and creates a challenge in
response using the following equations.

ϑ ′ = ηr ⊕ λi (3)

Ci = AES{µ, (ϑ ′|ηi)} (4)

where ηi is the pseudo-random nonce and ϑ’ is the intermedi-
ate value generated by the client, and Ci is the challenge sent
to the server. Upon receiving, the server tries to retrieve ηr
from the client’s challenge. If this nonce is present, the status
of i changes to Authenticated, and the server responses to
the client’s challenge to complete the authentication process,
using the following equation.

Cr = AES{λi, (ηr |µ)} (5)

B. DATA PROCESSING AND COMPUTATION LAYER
Versatile analysis and intelligent processing on huge data
streams can be unrealistic and infeasible if the data streams
are not properly pre-processed. Data pre-processing are per-
formed prior to the core computation and processing. The pre-
processing steps involve the reduction to realize the reduced
data with similar properties, data transformation to standard-
ize data to an appropriate arrangement for processing, and
data cleansing. These activities are carried out using machine
learning approaches. The objective is to dig out the data
about various sets of an IoT domain, based on its charac-
teristics. Next, the data loading is performed using multiple
attribute criteria model (MACM) in the context of the Hadoop
ecosystem. The MACM includes parallel data loading using
the customized utility. The HDFS saves the huge files in
small chunks that are customized to avoid too much data and
metadata, that would otherwise create the overhead.

In HDFS, a replication method is to replicate the original
chunk of data which is a time-consuming task. As a result,
customized replication is proposed in this paper. Moreover,
the Sqoop utility is used due to the parallel loading of data

using the map method. The proposed scheme utilizes Sqoop
that offers connectivity to the external databases. The uti-
lization of Sqoop brings a variety of features in SafeCity,
such as loading with increments, complete import, paral-
lel import, and corresponding export, compression, easy
movement, enterprise independence, and auto-generation of
tedious user side’s code. Data processing and analytics are
carried out using the MapReduce programming paradigm.
Hadoop divides input dataset into small blocks of same size
files, known as input splits. The size of the split is usu-
ally identical to the block or chunk size. One specific task
(known as map task) is formed for each split that performs
the function of the map, defined by the programmer, for each
row (a record). A RecordReader is used to arrange the rows
as a pair (key-value). The MapReduce process is depicted
in Figure 4. The outputs of the map are not stored in HDFS,
these results are stored in the local storage. Results from a
number of mappers are the input for the reduce task. Reduce
tasks do not include the advantage of data locality charac-
teristic. Therefore, the stored map results have to transfer
crossway the system to that specific location, where the job
of reducing is performing. The of the reducer result is stored
on HDFS.

FIGURE 4. MapReduce paradigm.

Our projected scheme is grounded on the up-to-date depic-
tion of Apache Hadoop framework which is embedded with
Yet Another Resource Negotiator (YARN) and is account-
able for data computation and cluster management. Unlike
conventional MapReduce, the computation elements and
resource management is separated by YARN. The YARN-
enabled model is not limited to the MapReduce classical
mechanism. The YARN is preferred due to limitations of
classical MapReduce that are mostly associated with scal-
ability and workload support. In the proposed architecture,
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YARN has a ResourceManager that runs as a master dae-
mon by managing the accessible cluster resources among a
wide range of competing and contending applications. The
ResourceManager keeps track of the available resources and
live nodes on the cluster. As it is the solo process having
this information, so it coordinates the resource allocation
and scheduling between the submitted applications. The allo-
cation decisions are made in a secured, multi-tenant, and
shared way, e.g. based on queuing capacity, data locality,
an application priority, etc. On the submission of an applica-
tion, a lightweight process instance, also known as Applica-
tionMaster, is initiated that is responsible for the execution
of all the tasks within an application. It is comprised of
tasks monitoring, restarting failed tasks, and calculating the
overall values of the used application counters. In the existing
literature, the classical MapReduce framework is utilized
where a single JobTracker is responsible to take care of these
responsibilities for all the jobs. Utilizing a single JobTracker
in huge clusters exposes them to the scalability bottleneck.

FIGURE 5. Yet another resource negotiator (YARN).

Different tasks associated with a particular application and
an ApplicationMaster are controlled, monitored, and man-
aged by the corresponding NodeManagers. Unlike the Task-
Tracker of a classical MapReduce framework, NodeManager
is an efficient and more generic version of the TaskTracker.
The NodeManager has many resource containers that are
created dynamically, rather than having a defined number of
slots (maps and reduces). All the components of the YARN
such as ResourceManager, NodeManagers, ApplicationMas-
ter, and containers cooperate with each other in a specific way
upon the submission of an application in the cluster of YARN.
This interaction of different parts of a YARN framework is
shown in Figure 5.

The application is submitted using the Hadoop jar com-
mand in CLI or using Java IDE to RM, in a similar way to
classical MR. A complete list of running jobs on the Hadoop
cluster and all the available and accessible resources on every
NM (live) are maintained by RM. The RM needs to decide
which application is the next to acquire a piece of cluster
resource. A number of constraints are taken into considera-
tion while taking this decision such as fairness and capacity
of the queue. The RM employs a scheduler that focuses
mainly on scheduling activities. It deals with accessing the
resources of a cluster and decides when and who will access
them.Within an application, the taskmonitoring is not carried
out by the scheduler and it never tries to restart a failed
task. When the submission of a new application is accepted
by ResourceManager, first the scheduler decides to select a
container where ApplicationMaster will be started and run.

The ApplicationMaster will be in charge of the entire life
cycle of the application when it starts. Primarily, Applica-
tionMaster would be requesting for various resources to the
overall manager (ResourceManager) in order to inquire for
different containers that are required to execute tasks of a
particular application. A request for a particular resource
is just a demand for several containers to assure various
resource necessities, i.e., a number of resources. For example,
CPU share, MB memory, preferred location, e.g. rack name,
hostname or if no preference is required then ∗ is used, and
priority inside the current application.

The ResourceManager grants a container, whenever possi-
ble, that satisfies the request made by an ApplicationMaster.
On a specific host, the application is permitted by the
container to utilize specified resources. ApplicationMaster
requests the NodeManager to launch an application-specific
task to utilize these resources after a container is granted.

Please recall that the NodeManager is responsible to man-
age the host on which a particular container is assigned. The
application-specific task could be any particular task written
in any framework, e.g. MapReduce. The NodeManager only
monitors and examines the resource usage in the containers.
It does not monitor the tasks and destroys them if they use
more than the allocated memory.

The ApplicationMaster is responsible for monitoring the
restarting tasks in fresh containers that are failed, the progress
of tasks and its application, and provides the progress back
to a client. The ApplicationMaster closes itself and releases
its container on completion of the application. Nevertheless,
the RM does not check the tasks inside an application at
all. It only confirms the health of the ApplicationMasters.
In this paper, a flowchart is proposed using the MapReduce
programming paradigm that is applied to a water dataset. This
flowchart is used to collect the values/quantity of water con-
sumption against different houses to govern the level of water
and its demand. The pictorial illustration of recommended
MapReduce is depicted in Figure 6.

The mapper gets the offset of a line as a specific key and
the entire row is considered as a value. The time parameter
(timestamp) and associate values are produced as output
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FIGURE 6. MapReduce flowchart for water dataset.

Algorithm 1Mapper for Water Dataset
BEGIN
Input:
key: line-offset
value: = row

Output:
key: fecilityID
value: LOTLINK
//containing water consumption measurement

// line splitting
fecilityID, LOTLINK: = line.split (‘\t’)
key: = fecilityID
value: = LOTLINK
emit (key, value)

END

by the mapper. The reducer clusters the necessary associate
values alongside every timeStamp and relates with the TLV
(threshold limit value). Information with regard to the water
consumption of different houses is obtained with the help of
such algorithms. As the MapReduce executes various jobs
in 2 phases, i.e., Map phase and Reduce phase, therefore,
a separate Map function and a Reduce function is proposed
for the flowchart of Figure 6. In Algorithm 1, we present the
mapper for the water dataset and in Algorithm 2, we present
the reducer for the same dataset.

Algorithm 2 Reducer for Water Dataset
BEGIN
Input:
key: fecilityID
value: LOTLINK

Output:
key: fecilityID
value: LOTLINK greater than threshold

initialize threshold
final []
FOR each (LOTLINK) at fecilityID DO
IF (LOTLINK > threshold)
Begin

final.append (LOTLINK)
key: = fecilityID
value: = final
emit (key, vaue)

End IF
END

C. DECISION-MKING LAYER
The intelligent decision making is the key to our SafeCity
framework that includes the prediction, creation of training
sets, thresholds setting, rules definition, and event manage-
ment. It acts as the moderator between the end-users and
it is carried out by the decision-making agent, based on AI
approaches. Various limits are defined and several rules are
set for the assessment of different datasets. The processing of
data is carried out using these rules according to proposed
algorithms. The TLV (Threshold Limit Value) is a precise
value set for each dataset also known as threshold or limit
which is the base for event generation and decision making.
Likewise, several rules are set centered on corresponding
limits in the form of if/then statements that are utilized for
decision making. The notification and event alert component
determines the specific recipient of a generated event. Hence,
it notifies the operator with the generated event for further
actions.

IV. SYSTEM EVALUATION AND ANALYSIS
The detailed analysis and discussion of results achieved
using SafeCity discuss in this segment. The secured data
authentication is realized using Raspberry Pi boards for the
client-server interface model. The Libcoap library is used for
Raspbian operation system that provides basic communica-
tion among the ubiquitous devices. The analysis is carried out
on a dataset that is realistic to evaluate the SafeCity scheme
using the premeditated algorithms. The implementation of
our ubiquitous data computation layer is carried out using
the Hadoop cluster on Ubuntu OS along with Sqoop. More-
over, Java is used for the MapReduce implementation by
utilizing the pre-defined classes (mapper and reducer). The
data is received from diverse but trustworthy sources that
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are authentic. These datasets contain the transportation data,
i.e., vehicles on roads in Aarhus city, Denmark. The water
dataset homes are gained from the houses in Surrey, Canada.

A. SYSTEM EVALUATION FOR SAFETY AND SECURITY
The experimental results concerning the ubiquitous data secu-
rity layer are illustrated here. A comparison of our payload-
based authentication for SafeCity and CoAP-based DTLS
implementation for smartphones is provided in Figure 7.
DTLS+ denotes a smartphone (ubiquitous device) operating
as a server and a workstation as a client. On the other hand,
DTLS∗ denotes the handshake between a smartphone and a
workstation, where the smartphone operates as a client and
the workstation as a server. As the figure shows, SafeCity has
a much lower handshake duration and standard deviation in
comparison to DTLS∗ and DTLS+.

FIGURE 7. Handshake duration.

FIGURE 8. Average response time.

Similarly, SafeCity focuses on asynchronous communi-
cation of CoAP messages over the UDP sockets. A record
of transferred Confirmable (CON) requests is maintained by
every client. The mean reaction time for one CON request
message of 1 byte is compared with DTLS exchange and the
CoAP protocol with no added security, in Figure 8. SafeCity
has a much lower average response time in comparison to
DTLS because the latter involves computationally complex
cipher suites and a resource-intensive record layer. CoAP
with no added security has a slower response time but it is
prone to various malicious and adversarial attacks.

TABLE 1. Average consumption (kb).

The memory utilization of a CON request is evaluated
at the compile time in Table 1. The proposed SafeCity is
compared with the existing schemes for a CON message of
minimum 500 bytes, as depicted in Figure 9 too. Among
the current schemes, CoAPBlip [33] allocates considerable
storage to messages at the compile time of the message.
TinyCoAP [34] is a variation of the standard libraries of
C that need the TinyOS element for its installation on a
ubiquitous device. HTTP has a short foot-print of memory
as it doesn’t offer a trustworthiness method or correlation
of a request/response. Both TinyCoAP and CoAPBlip use
resource-consuming libraries and have a much higher mem-
ory consumption.

FIGURE 9. Average memory consumption.

B. SYSTEM EVALUATION FOR DATA PROCESSIGN
AND COMPUTATION
Our SafeCity architecture generates alerts in real-time for a
particular ubiquitous environment. In this section, we evalu-
ate SafeCity in terms of efficiency by considering the execu-
tion time and throughput. To examine the system performance
in real-time, various datasets, such as vehicular and water, are
replayed to our Hadoop-based YARN framework of SafeCity.
The throughput is assessed using datasets by increasing the
data size. The efficiency concerning throughput is measured
as shown in Figure 10. It can be observed that with the
growth in size, the processing speed is reduced. The system
throughput of Yarn-based framework is considerably higher
in comparison to the existing classical MR-based solution.

Table 2 reveals the processing time, also known as the
execution time proposed framework in the context of data
volume. The execution time is evaluated for different sizes
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FIGURE 10. System throughput.

TABLE 2. Processing time of proposed framework.

TABLE 3. Average consumption (kb).

of data. The data size is started from 500MB and experienced
up to 13 GB of data.

Table 3 determines the processing time in comparison
to the classical structure. The time is calculated for minor,
average, and huge datasets. It is observed that the pro-
cessing time improves when the dataset size is increased.
Figure 11 demonstrates the execution time of jobs using our
Yarn-based framework in comparison to the existing scheme.
The execution time is evaluated for small, medium, and large
datasets. It is observed that the processing time improves
when the dataset size is increased. It is mostly because of the
data loading efficiency and improvement.

C. DATA ANALYSIS
The time difference of data loading is not perceptible
when the size is smaller. The data ingestion time is pretty
evident when the bulk of a dataset is larger due to the

FIGURE 11. Execution time (s).

replication approach. The query that arises is the threshold
data, to discover the TLV size, the data loading performance
is measured by testing the different sizes of data.

The TLV size is the point where the time difference
becomes positive (greater than 0) which means a significant
change occurs. The TLVs for various attributes are set using
the outputs of similar trials. Taking into account the data
ingestion tool experiments, the TLV size is 900MB (size of
data). At this value, the effect of the data ingestion period is
experienced as shown in Figure 12. This figure demonstrates
that 1GB of size does not generate any change even if the
automated ingestion is practice. The productivity is attained
when dataset size is greater than 900 MB at least.

FIGURE 12. Data loading efficiency.

The water consumption is evaluated to achieve sustainable
water management in the city due to the inconsistent con-
sumption of water could be a disaster in the future. The data
utilized in our research contains information about the city of
Surrey, Canada. It comprises of the water intake of the houses
in Surrey that is processed using our proposed algorithms.
The results are demonstrated in Figure 13.

It shows the houses consumed more than 82000 liters
each month. The defined TLV is 82000 found from the rule
engine. The water usage higher than the TLV is particu-
larly highlighted in this figure and this can cause frightening
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FIGURE 13. Water consumption.

situations for the authorities. It is observed that almost 50%
of the consumers consumed more than the threshold limit.
Most of the consumers, above the TLV limit, consumed water
between 110000 to 120000 liter, which is quite alarming.
Up-to-date fabrication methods could be industrialized to
control the issues of the consumers in a city.

FIGURE 14. Number of vehicles on the road.

FIGURE 15. Average speed of automobiles.

Regarding traffic management, we consider the traffic data
about road congestion. The data is intelligently processed
using the SafeCity framework to overcome the traffic issues
when the vehicles on roads surpass TLV. Figure 14 reveals

the vehicles and the corresponding TLV. It depicts vehicles
at a different time on the roads. It is observed that due to
schooling hours, there are more cars between 8:05-12:15 PM
due to school and office timing in the city.

Furthermore, the average speed of vehicles is revealed
in Figure 15. It is noticed that the average speed of the
vehicles is quite alike all day, except from 13:00 to 18:00,
when there are few vehicles.

V. CONCLUSION
This paper has envisioned the vital role of safety and secu-
rity in IoT-enabled data computation and communication to
achieve safe and secure decisions. The data generated by IoT
sensors exploit the association between various features of
data and enables the meaning of a safe city. We have sug-
gested the conception of SafeCity and proven its applicability
using apache and Hadoop, via cautious investigation and
assessment of the presence of residents in the evolving smart
cities. SafeCity carefully controls the encounter of security
and computation faced by the ubiquitous data. It is a layered
architecture that is composed of a data security layer, data
computation layer, and decision-making layer. A payload-
based authentication approach is utilized at the ubiquitous
data security layer to secure the ubiquitous data from malev-
olent entities.

The data computation layer is liable for the processing
of secured data. Finally, the decision-making layer extracts
insights for making smart decisions. The ubiquitous data
security is evaluated using the Raspberry Pi boards while the
ubiquitous data computation is tested on trustworthy datasets,
using Hadoop. In association with the current methods,
SafeCity is trivial about handshake duration, response time,
and average memory consumption. Furthermore, it attains a
lesser processing time, greater throughput, and efficient about
massive data ingestion.
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