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ABSTRACT Snow avalanche as a natural disaster severely affects socio-economic and geomorphic
processes through damaging ecosystems, vegetation, landscape, infrastructures, transportation networks,
and human life. Modeling the snow avalanche has been seen as an essential approach for understanding
the mountainous landscape dynamics to assess hazard susceptibility leading to effective mitigation and
resilience. Therefore, the main aim of this study is to introduce and implement an ensemble machine learning
model of random subspace (RS) based on a classifier, functional tree (FT), named RSFT model for snow
avalanche susceptibility mapping at Karaj Watershed, Iran. According to the best knowledge of literature,
the proposed model, RSFT, has not earlier been introduced and implemented for snow avalanche modeling
and mapping over the world. Four benchmark models, including logistic regression (LR), logistic model tree
(LMT), alternating decision tree (ADT), and functional trees (FT) models were used to check the goodness-
of-fit and prediction accuracy of the proposed model. To achieve this objective, the most important factors
among many climatic, topographic, lithologic, and hydrologic factors, which affect the snow accumulation
and snow avalanche occurrence, were determined by the information gain ratio (IGR) technique. The
goodness-of-fit and prediction accuracy of the models were evaluated by some statistical-based indexes
including, sensitivity, specificity, accuracy, kappa, and area under the ROC curve, Friedman and Wilcoxon
sign rank tests. Results indicated that the ensemble proposed model (RSFT), had the highest performance
(Sensitivity = 94.1%, Specificity = 92.4%, Accuracy = 93.3%, and Kappa = 0.782) rather than the other
soft-computing benchmark models. The snow avalanche susceptibility maps indicated that the high and very
high susceptibility avalanche areas are located in the north and northeast parts of the study area, which have
a higher elevation with more precipitation and lower temperatures.

INDEX TERMS Snow avalanche, susceptibility mapping, ensemble approach, feature selection.

I. INTRODUCTION
Snow avalanche is referred to the sudden descending
unstable snowpack often seen in cold and high altitude
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regions [1], [2]. Snow avalanche, as a natural disaster severely
affects socio-economic and geomorphic processes through
damaging ecosystems, vegetation, landscape, infrastructures,
transportation networks, and human life [3], [4]. The recent
frequency, irregularity, and uncertainty in the occurrence
regime of avalanche had been strongly linked to climate
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change and global warming [5]–[8]. Therefore, an avalanche
is fast becoming a significant risk in more nations [9]–[11].
Consequently, the advancement of the novel methods for
hazard assessment and risk management of snow avalanche
has increasingly become popular around the world for
effective mitigation and resilience [12]–[14]. Modeling the
snow motion has shown to be essential for understanding
the mountainous landscape dynamics to assess the avalanche
hazard susceptibility [15]–[17].

Modeling the snow avalanche is multidisciplinary in
nature and literature demonstrates significant overlapping
with atmosphere, hydrosphere, biosphere, lithosphere, and
anthroposphere [18]–[23]. Among the principal interacting
factors motivating the snow avalanche, the meteorology,
terrain, and snowpack had been well studied in the litera-
ture [11], [24], [25]. On the other hand, the recent rising
popularity of winter sports is increasing social exposure
to snow avalanches hazard and a meaningful rise in fatal
incidents [26]. Therefore, the advancement of novel tech-
niques for susceptibility mapping has become widely popular
to identify the hazardous regions [15], [16], [27], [28].
Susceptibility mapping techniques can complement early
warning systems and temporal models to save lives [29]–[32].
Traditional techniques for susceptibility mapping limits to
geospatial modeling using either simple statistical or decision
analysis methods [15], [17], [27], [33]–[35]. Although the
application of machine learning (ML) for susceptibility
mapping of a wide range of natural hazards has been
established, snow avalanche is yet to be explored [36].

MLmethods have recently gained popularity for advancing
high-performance prediction models in numerous application
domains. ML models have shown promising results in a
diverse range of applications, e.g., hydrological model-
ing [37], [38], earth system modeling [39], civil engineering
and estimation [40], energy systems sciences [41], [42],
and geosciences modeling [43]. ML models for suscep-
tibility mapping have shown to outperform conventional
models [44]. For instance, landslide and flood suscepti-
bility mapping with machine learning presents promising
results [45], [46]. However, applications of ML methods
for modeling snow avalanche have been not adequate [47].
Recently Choubin et al. [48] used the support vector machine
(SVM) considering several variables, e.g., terrain charac-
teristics, avalanche locations, and meteorological factors.
In another attempt, Rahmati et al. [49], in addition to
SVM, used random forest and naïve Bayes to identify
the susceptibility map and also to provide insight into
the most important factors of snow avalanche distribution.
Considering the limited number of literature on this realm,
further research is essential to explore the application of
more sophisticated machine learning methods to discover
models with higher accuracy. Consequently, contribution
of the present article is to explore the application and
performance of an ensemble intelligent learning model to
snow avalanche susceptibility mapping. According to the
best of our knowledge, the proposed model, RSFT, has not

earlier been introduced and implemented for snow avalanche
modeling and mapping over the world. A comparative
analysis of single models, several decision-trees, and an
ensemble model is presented in this paper.

FIGURE 1. Location of the study area.

II. MATERIAL AND METHODS
A. STUDY AREA; DESCRIPTION AND LOCATION
The study area is Karaj watershed located between latitudes
35◦ 52’ and 36◦ 10’ N and longitudes 51◦ 03’ and 51◦ 36’ E
in Iran (Fig. 1), with an area of is 845 km2. Topographically,
the elevation of the watershed changes from 4365 m to
1633 m a.s.l. respectively in the east and southwest. The
climate of the watershed is mostly extra-cold-humid and
cold-humid. The annual precipitation varies between 300 to
600 mm, which falls mostly as snow. This watershed is the
main source of drinking water and irrigation water for Karaj
and Tehran plain [50], [51].

The Karaj-Chalous way is located in this watershed.
It usually has considerable traffics during the year, due to
the main path between capital and the Caspian Sea, beautiful
nature, and winter games. Therefore, heavy transit across
stony and high-gradient paths makes this watershed to be
important because of the natural hazards such as snow
avalanches. According to the reports, the avalanches in this
watershed have been caused to kill the people and fall
vehicles into valleys [48].

B. SNOW AVALANCHE INVENTORY
Location of the occurred snow avalanches during the snow
season (i.e., from December to March) from 2019 to
2020 were collected using field surveys. At first, according
to the digital topographic and morphometric layers (such as
valleys and slope) and Google Earth images, the sensitive
hillsides to snow avalanches were determined. This helped to
identify the probable location of the snow avalanches. Then,
the estimated locations were visited and confirmed by the
various field surveys, and finally, the final snow avalanche
inventory map was prepared (Fig. 1). A total set of 171 snow
avalanches were recorded, of which 70% (119 cases) of the
data were randomly applied for training, and the rest (30%
or 52) were considered for validating the machine learning
models.
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FIGURE 2. Snow avalanche conditioning factors: a) slope angle, b) aspect, c) elevation, d) curvature, e) profile curvature, f) plan curvature, g)
stream power index (SPI), h) topographic wetness index (TWI), i) length of slope (LS), j) topographic position index (TPI), k) terrain roughness
index (TRI), l) valley depth (VD), m) vector ruggedness measure (VRM), n) convexity, o) distance to river (DTR), p) drainage density, q)
temperature, r) precipitation, s) distance to fault (DTF), t) lithology, and u) land use.
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FIGURE 2. (Continued.) Snow avalanche conditioning factors: a) slope angle, b) aspect, c) elevation, d) curvature, e) profile curvature, f) plan
curvature, g) stream power index (SPI), h) topographic wetness index (TWI), i) length of slope (LS), j) topographic position index (TPI), k) terrain
roughness index (TRI), l) valley depth (VD), m) vector ruggedness measure (VRM), n) convexity, o) distance to river (DTR), p) drainage density, q)
temperature, r) precipitation, s) distance to fault (DTF), t) lithology, and u) land use.

C. SNOW AVALANCHE CONDITIONING FACTORS
The construction and the flow regime of snow avalanches
forcefully belong on the topography of the path. Its
dynamics are generally controlled by the intrinsic fea-
tures of snow, which are unstable and maybe to change
during the flow itself [52]. However, various climatic,
topographic, lithologic, and hydrologic variables affect the
snow accumulation and snow avalanche occurrence. So,
in this research, many important factors including elevation,
slope, aspect, curvature, profile curvature, plan curvature,
terrain roughness index (TRI), topographic position index
(TPI), vector ruggedness measure (VRM), length of slope
(LS), valley depth (VD), convexity, rainfall, temperature,
lithology, distance to fault, topographic wetness index (TWI),
stream power index (SPI), drainage density (DD), distance to
river, and land uses were considered (Fig. 2).

An ASTER digital elevation map (DEM) with a cell size of
10×10mwas applied to calculate topographic variables. The
elevation (Fig. 2c) of a beginning region is remarkable in that
more snowfalls at greater elevations and there is more snow
loading as a result of wind by the procedure of windward
slopes being scoured and deposition happening over ridges
onto slopes [53]. The mixed topographic effects can create
situations that are desirable for avalanche formation [54]. The
key characteristic for a beginning region is the attendance of
a convenient slope (generally 25◦ – 45◦, Fig. 2a) that permits
an avalanche to begin and move downhill [55]. The shape of
slope impresses its capability to gather snow. The concavity
or convexity (Fig. 2n) in the transverse profile (cross partial)

orientation can affect deposition and depth of snow. Those
paths that have a curved horizontal or cross-sectional profile
are capable to ensnare breezing snow from many orientations
related to the wind orientation [56]. Length of slope (LS)
is the interval from the origination of the overland stream
along its stream track to the position of either focused
stream or deposition. The LS was evaluated by measuring
perpendicular to the contour (Fig. 2i). Aspect (Fig. 2b) influ-
ences solar radiation earned at the snowpack and impresses
the temperature gradient and snow level heating [57]. TPI
(Fig. 2j) measures the comparative topographic situation of
the focal point as the difference between the elevation at
this point and the average elevation within predestinated
vicinity. Employing TPI, landscapes can be categorized in
slope situation classes [58], [59]. One exclusively appealing
vector dispersion method is the vector ruggedness measure
expanded by Sappington et al. [60], based on the vector
approach offered by Hobson [61]. VRM (Fig. 2m) shows
the roughness of the terrain that is most significant in the
motion of snow avalanches. The measure is well suited to
catch the procedure of ground smoothing of snow [62]. The
TRI (Fig. 2k) represents the quantity of elevation diversity
among contiguous cells of a digital elevation grid. It computes
the diversity in elevation amounts from a center cell, and the
eight surrounding cells [63]. The helpful geomorphological
data can be gotten utilizing curvature analysis [64]. Curvature
(Fig. 2d) is the initial derivation of the slope or aspect
and parameterizes the concaveness and convexity of the
region [65]. The process can be accomplished across
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(plan curvature) or along the decline line of the slope (profile
curvature). In this study, the profile curvature (Fig. 2e) is
calculated as the alternation in the slope angle. Plan curvature
(Fig. 2f) used for removing greatly concave or convex regions
limiting the fraction diffusion of avalanche liberate and is
evaluated as the alternation in aspect [24], [66], [67]. Valley
depth (VD) (Fig. 2l) is computed as the diversity between the
elevation and an interpolated ridge level. It was estimated by
using the homonym algorithm on SAGA GIS.

Precipitation and temperature are the most momentous
meteorological elements. Because rainfall and near-surface
temperature variations can affect both the attributes of
available slabs and the potential for the constitution of
subsequent weak layers at the snowpack, therefore, they are
the main consideration when estimating snow stability [53],
[68]. In the current study, these factors are considered during
the snow season, i.e., from December to March (Fig. 2q and
Fig. 2r). The data recorded by the stations were achieved from
the Iranian water Resource management company (IWRMC)
also the Iran Meteorological Organization.

Lithology (Fig. 2t) and land use (Fig. 2u) affect snowpack,
too. Land use, like the attendance of jungle, can bridle
avalanching. In accordance with the land use map, rangelands
extend most of this study region (Fig. 2u). Boulder structures
and lithology are the principal agents accountable for the
slope fracture in indigenous hazards, like landslides, snow
avalanches, and other mass movements. Various lithological
units may vary the capability of the study region into an
avalanche area [15].

The proximity of a snowpack to faults or rivers can speed
up the snowpack motion and construct a snow avalanche. The
regions adjacent faults or rivers must be more sensitive to the
avalanche occurrence. Spatial Analyst Tool (i.e., Euclidean
distance) in the ArcGIS environment was used to calculate
DTF and DTR (Fig. 2s and Fig. 2o). Another parameter is
SPI (Fig. 2g), which evaluates the potential of streams to
change the geomorphology of a region. SPI is the extent of
the erosive power of flowing water by perceiving the relation
between discharge and particular catchment zone [69], [70].
The drainage density (Fig. 2p) of an area is determined
by the slope measure, the nature and propensity of the
bedrock, and likewise by the structure and species of the
geological configuration. They reflect the density of flows per
unit ground and can be of momentous value for avalanche
happening. TWI index plays a serious role in the spatial
variation of hydrological conditions as soil moisture does.
In this paper, TWI was prepared in SAGA GIS software
(Fig. 2h).

D. MULTICOLLINEARITY DIAGNOSTIC STATISTICS TEST
As the results of the modeling process may be affected
by the correlation between the factors, the multicollinear-
ity of the factors should be analyzed. The tolerance
(TOL = 1−R2) and its reciprocal, named variance inflation
factor (VIF = 1/1− R2) measures are the two essential
indicators to check the correlation among the independent

variables. A TOL less than 0.2, and VIF exceeds 10 are
the indicators for occurring the multicollinearity between
independent variables [71], [72].

E. FACTOR SELECTION AND RANKING BY INFORMATION
GAIN RATIO (IGR) TECHNIQUE
Feature selection with higher predictive ability is an essen-
tial step in hazard modeling [73]–[75]. Information gain
ratio (IGR) is a ratio of information gain to the inherent
information. This technique was suggested by Quinlan [76],
to decrease a bias towards multi-valued properties by
capturing the number and extent of branches into account
when selecting a property. IGR biases the decision tree versus
perceiving properties with a major number of distinguished
amounts. The IGR is often applied to decide which of the
parameters are the most relevant to use in the modeling
process. In this study, a 10-folds cross-validation technique
was used to obtain the final decision of the IGR factor
selection method. The IGR weight of the slope angle in
cluster C, is calculator as follows [76], [77]:

Gain ratio (Slope, C) =
Gain(Slope, C)

Spliti info (Slope)
Gain (Slope, C) = Entropy (Slope, C)

−Entropyp(Slope, C),

Entropy (Slope, C) = −p(Slope
∣∣C)log2p(Slope |C)

(1−p(Slope
∣∣C))log2(1−p(Slope|C)),

p(Slope |C) = freq(Slope, C)
/
|C|,

Entropyp(Slope, C) =
∑
i

|Ci|

|C|
Entropy (Slope, C),

Spliti info (Slope) = −
∑
i

|Ci|

|C|
log

∑
i

|Ci|

|C|
, (1)

where the slope is slope angle as one of the snow avalanche
conditioning factors, C is the class label (snow avalanche
and non-snow avalanche), freq(Slope, C), Ci and |Ci| are the
frequency of the slope angle class in C, the i-th sub-cluster
of C, and the number of slope angle class in Ci, respectively.

F. MODEL DESCRIPTION AND IMPLEMENTATION
After preparing the predictive variables and selecting the key
ones using the IG, the k-fold (k= 10) cross-validationmethod
was applied to calibrate the models by the 70% of the data.
Then using the rest of the dataset (30%) the modeling process
was evaluated. A summary description of the applied models
is presented as follows:
Logistic regression: The major difficulty of implementing

statistical models for avalanche susceptibility is concerned
with the spatial variation of the morphological, metamor-
phism, snowpack dynamics factors. Furthermore, the dynam-
ics of sun and wind and the angel of exposure would
increase the model uncertainty and the overall snowpack
quality. The efficacy of these parameters is modeled using
the statistical technique of binary logistic regression (LR).
LR is generally utilized to clarify event occurrence or
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non-occurrence (dichotomous associate variable) from a set
of parameters [78]. Such models have mostly been applied
with prosperity in hazard management to illustrate the
location of occurrences [79].
Logistic Model Tree (LMT): The LMT basically consists

of a model with a dependent controlled training algorithm
that incorporates decision tree learning and LR. LMT is
established according to the initial opinion of a model tree:
a decision tree that has linear regression models at its
leaves to supply a piecewise linear regression model also
usual decision trees with permanents at their leaves would
generate a piecewise permanent model [80]. In the logistic
variant, the LogitBoost algorithm is utilized to generate a
logistic regression model at each knot in the tree. Therefore,
the knots are divided with the C4.5 pattern. Every LogitBoost
invocation is warm-started from its outcomes in the parent
knot. Eventually, the tree is pruned [81].
Alternating Decision Tree (ADT): The ADT is a gener-

alization of weighted aggregates of decision trees (DT) for
classification. ADT integrates the DT and boosting technique
to produce decision legislations. ADT could create easy
decision tree constructions where decision legislations are
simple to explicate. Moreover, the training procedure needs
fewer repetitionswith the use of theAdaBoost algorithm [82].
An ADT includes of two sorts of knots formed in intermittent
layers, prediction knots, and decision knots. Decision knots
determine a declare situation whiles prediction knots include
a unit number. ADT always has prediction knots as both root
and leaves. A sample is categorized by an ADT by pursuing
all ways for which all decision knots are correct and collecting
any prediction knots that are wended [83], [84].
Functional Tree Base classifier: A functional tree (FT)

is an algorithm that has represented hopeful consequences
in other environmental fields such as landslide, floods, and
forest fires; however, it has rarely been probed for snow
avalanche modeling. The principal discrepancy between FT
and traditional decision tree algorithms is that FT applies
logistic regression functions for the dividing in the internal
knots (named diagonal split) and forecast at the leaves, whiles
these traditional algorithms apportion the entrance data at tree
knots by comparing the quantity of several entrance features
with a stable [83], [85]. FT has three variants of (i) FT internal
applies regression models for only the internal knots, (ii) FT
leaves applied regression models for only leaves, and (iii) the
complete FT that applies regression models for the internal
knots and the leaves, which used in this study.
Random Subspace ensemble classifier: Random Sub-

space (RS) classifier presented by Ho [86] presents an
ensemble of diverse classifiers for particular data space.
Classification consequences are on the basis of these specific
classifiers’ generation by most voting. As RS is a subspace
of the principal data extent, the training objects would be
smaller for the principal data, whereas it is bigger for the
subspace data. The principal data extent is diminished, but the
training object extent remains identical, which imputes more
training sample extent, helps for better classification [87].

This algorithm is an appropriate selection where there are
a large number of properties. RS is widely adopted by
scholars for plenty of proofs such as the clarified model,
plain explanation, and training times are lesser compared
to others, increased extension with reduced overfitting. The
most important parameters used in this ensemble model
are the number of seed and the number of iterations that
the optimal values of these factors are obtained base on
trial and error technique. The RS method can increase
generalization accuracies of decision tree-based classifiers
without loss of accuracy on training data, which is one of the
major problems when it comes to tree-based classifiers [88].
However, the proposed model, RS-FT, uses the FT as a base
classifier and the RS to enhance the power prediction of the
FT algorithm.

G. MODEL COMPARISON AND VALIDATION MEASURES
1) STATISTICAL-BASED EVALUATED MEASURES
An arbitrary test seldom ignores the stuff you are searching
for (i.e., it is sensitive) and seldom mistakes it for something
else (i.e., it is specific). Hence, when estimating diagnostic
tests, it is significant to compute the sensitivity and specificity
for that test to specify its benefit. The sensitivity of a test
is likewise named the true positive rate (TPR) and is the
ratio of samples that are really positive that impute a positive
consequence using the test in question [89]. The specificity
of a test also mentioned as the true negative rate (TNR), is
the ratio of samples that test negative applying the test in
question that are truly negative. Sensitivity and specificity of
a diagnostic test are represented such as the possibility (as a
percent). Accuracy demonstrates the deficit of forecasts that
are true. Accuracy confines from 0 to 1 that 1 display the
complete prediction. Kappa statistic evaluates the accuracy
when compared with a random classifier (which exhibits a
Kappa quantity of 0%). The greater the statistic is, the more
accurate the consequence is [83]. AUC (AreaUnder Curve) of
the ROC curve is one of the most significant estimate metrics
for surveying any performance of the classification model.
It shows the degree or measure of separability. It defines how
much model is able to identify between the classes. An AUC
quantity of 1 demonstrates a complete model. For this statistic
0 is a non-informative model [90], [91].

2) NON-PARAMETRIC STATISTICAL TESTS
The Freidman [92] and Wilcoxon tests [93] are non-
parametric tests that were other evaluation metrics used
to check the models’ performance. Friedman’s test shows
generally the performance of the models [94], [95]. The null
hypothesis indicates lack of a significant difference among
the models, and if it is not true (p-value < 0.05), the null
hypothesis will reject. In this situation, we can conclude that
all models are significantly different in terms of performance.
But it is not known between which models there are statistical
differences. Therefore, to detect this challenge the Wilcoxon
signed-rank test is often used to check a pairwise comparison
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between two or more models. The null hypothesis in this test
is judged based on p-value and z-value. If between two or
more models p-value and z-value are < 0.05 and beyond the
critical values of±1.96, respectively, then the null hypothesis
is not true and rejected and there is a significant statistical
difference between two or more models [96], [97].

III. RESULTS AND DISCUSSION
A. MULTICOLLINEARITY TEST
The result of the correlation among the independent vari-
ables is shown in Table 1. It indicating that there is no
multicollinearity between the variables considered in this
study [71], [72], [98]. Therefore, we considered all the factors
for the modeling process by machine learning.

TABLE 1. The multicollinearity analysis for independent variables.

B. THE MOST IMPORTANT FACTORS FOR SNOW
AVALANCHE OCCURRENCE
The predictive capability of the snow avalanche conditioning
factors using 10-folds cross-validation of the IGR technique
is shown in Fig. 3. This figure has composed of red and
blue rectangles that indicate ineffective and effective factors
on snow avalanche occurrence in this study, respectively.
According to this, the most important factor is TPI with
AM equals to 0.306, follows by Slope (0.191), SPI (0.190),
VD (0.157), DD (0.126), LS (0.113), distance to river (0.098),
convexity (0.088), lithology (0.087), Aspect (0.045), plan
curvature (0.044), TWI (0.034), and temperature (0.030).
Additionally, it is concluding that elevation, VRM, curvature,
profile curvature, distance to fault, TRI, rainfall, and land
use factors due to having AM equals to 0 and non-having
predictive capability were not taken into account for model-
ing process and they were removed from the snow avalanche
modeling.

FIGURE 3. The most important snow avalanche conditioning factors in
the study area.

Our results indicate that topographic factors (TPI, slope,
LS, VD, convexity, aspect and plan curvature) along with
climatic factors (temperature), geological factors (lithology)
and hydrological factors (SPI, DD, distance to river and TWI)
are responsible for snow avalanche occurring in the study
area. Hydrologically, terrain factors such as TPI and slope
angle (> 30 degrees) are the main factors that a?ects snow-
pack stability [48], [57], [99]; therefore, these factors can
control or accelerate the avalanche occurrences [55], [100].
Few studies have been conducted on snow avalanche
susceptibility mapping because of its high complexity [101].
For example, Choubin et al. [48] predicted the prone areas
to snow avalanche using SVM and multivariate discriminant
analysis (MDA). They pointed out that the TPI and slope
angle was the most significant factor based on the sensitivity
analysis of these two mentioned models. It indicates the
obtained results in agreement with their results.

C. MODEL PERFORMANCE, VALIDATION, AND
COMPARISON
We successfully trained the RS ensemble model based on
selecting the optimal values of the number of seed and
iteration as two most important parameters used in the
RS ensemble model. Fig. 4a-b is shown the results of the
modeling process by the new proposed model using AUC
measures. Regarding these Figures, it is observed that the
optimum values for number of seeds and iterations were 4 and
10, respectively. Indeed, based on these obtained values the
RS was optimized and the result is shown in Tables 1 and
2 using training (performance/goodness-of-fit) and validation
(prediction accuracy) datasets. According to Table 2, results
of the training dataset showed that the most sensitivity was
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FIGURE 4. Number of the seeds and iterations of RS ensemble model;
illustration of the optimal values.

obtained for the RS ensemble model (94.1%) indicated that
94.1% of the pixels determined as snow avalanche correctly
classified as snow avalanche pixels. It is followed by LR
and LMT (92.4%), FT (91.6%) and ADT (83.3%) models.
Moreover, the highest value of specificity (92.4%) was
acquired for the proposed ensemble model, RS. It is indicated
that 92.4% of non-snow avalanche pixels correctly classified
as non-snow avalanche pixels. The ADT and LR, LMT, and
FT with values of 91.5% and 87.4% were ranked in the next
positions. The accuracy is a standard and remarkable measure
that can represent both sensitivity and specificity was the
highest for the new proposed model (93.3%). However,
the LR, LMT, and FT models with accuracy equal to 89.9%
and ADT model with accuracy equal to 87% were other
powerful compared models. Results also based on F1-score
indicated that the RS ensemble model (93.3%) outclassed
the LR and LMT (90.2%), the FT (89.7%) and the ADT
(87.6%) models. The kappa similar to the above-mentioned
measures also was the highest value for the RS ensemble
model (0.812), followed by LR and LMT (0.798), FT (0.790)
and ADT (0.740) models. Eventually, the AUC as one of the
most important measures in the assessment of the model was
the highest for the RS (0.935) model. It is followed by LR
(0.930), LMT (0.927), ADT (0.929) and FT (0.918) models.

From Table 3, based on the validation dataset, the results
also indicated a higher ability for the RS ensemble model in
terms of sensitivity (90.4%), specificity (92.3%), accuracy
(91.3%), kappa (0.615), and AUC (0.868). Furthermore,
the result indicated the superiority of the ADT model (75%)
to LR, LMT, and FT models (73.1%) in terms of sensitivity.

TABLE 2. Model performance using the training dataset.

However, the specificity based on the validation dataset
was 86.5%, 84.6%, and 82.7%, respectively for FT, LMT,
and LR and ADT commonly. After the proposed ensemble
model, the FT had the highest accuracy (79.8%), followed
by LMT and ADT (78.8%), and LR (77.9%). Similar to the
earlier evaluation metrics, results concluded that the F1-score
were the most values for the RS ensemble model (91.3%).
It was followed by the FT, ADT, LMT, and LR models.
According to the kappa and AUC, the powerful models after
the RS model were known as LMT, FT, LR, and ADT.
As a final result, it can be concluded that the new ensemble
proposed model, RS, well trained and successfully had the
highest performance and prediction accuracy base on the
training and validation datasets, respectively, compared to
other well-known soft computing benchmark models.

TABLE 3. Model performance using the validation dataset.

The proposed model, RS, had a high goodness-of-fit and
prediction accuracy for the study area, but the comparison of
this model with previous studies in this field is not possible,
due to lack of similar study. According to the literature,
it can be declared that this work is a pioneer study on snow
avalanche susceptibility by a machine learning ensemble
model. Although many studies have been focused on the
RS as an ensemble model on natural hazard events such
as landslide susceptibility mapping [94], [102]–[104], and
groundwater potential mapping [105], there is no research
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FIGURE 5. Snow avalanche susceptibility maps prepared by the models: (a) RS ensemble model, (b) FT, (c) LMT, (d) LR, and (e) ADT.
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FIGURE 6. Histogram of snow avalanche susceptibility classes of all machine learning models.

on the RS based on the FT model on snow avalanche
susceptibility mapping worldwide. In other words, the ability
of RS for modeling of natural hazards has been earlier
confirmed the abovementioned researchers. According to our
results, this model can be used for other mountain areas
prone to snow avalanche. However, the parameters used in
the proposed model should be optimized based on the input
dataset in each study area.

Compared to the previous study in this watershed,
the RS model used in this study has a higher accuracy
(91.3%) than the SVM and MDA models conducted by
Khosravi et al. [39], respectively with 83% and 85% accu-
racy. Therefore, RS ensemble technique could well enhance
the performance and prediction accuracy in snow avalanche
mapping. The obtained result was for the ability of RS
including: (i) in the smaller subspaces training the base
classifier is easy, (ii) the substituting a single classifier
with an ensemble is not adversely affected the accuracy of
classification, (iii) in the random subspaces the base classifier
is well enhanced than those in the original feature space [104].

D. SNOW AVALANCHE SUSCEPTIBILITY MAPPING
The RS ensemble model and all four soft computing
benchmark models well trained based on the training dataset
and snow avalanche susceptibility indexes (SAIs) were
computed and then it was obtained and assigned for each
pixel of the study area. Consequently, snow avalanche
susceptibility maps were generated for each model. Although
there are some classification methods to classify the SAIs
in the ArcGIS such as equal interval, manual, quintile,
natural breaks, geometrical interval, and standard deviation,
we tested all these methods and finally we selected natural
breaks as the classification method to classify the probability

of snow avalanche occurrence in the study area due to more
agreement and concordance it to the snow avalanche location
occurred in the study area. Basically, we classified all maps
into five classes that are shown in Fig. 5a-e.

With a detailed and expert look at the snow avalanches
susceptibility maps (Fig. 5a-e) and matching with the
conditioning factors considered in this study, it can be
concluded that the HS and VHS avalanche classes are
located in the north and northeast parts of the study area.
These areas are mostly at higher altitudes with more rainfall
and lower temperatures, which are more likely to occur.
Choubin et al. [48] with SVM and MDA models prepares
snow avalanche susceptibility maps for the used study area
and they found that the HS class is mostly near the streams
and matches with hillsides around the water pathways that
their results confirmed also the obtained results of this study.

Fig. 6 shows the histogram of snow avalanche suscep-
tibility classes and its coverage by pixels of the study
area. According to this Figure, it can be concluded that
in the RS ensemble model 45.927%, 8.737%, 6.454%,
7.238% and 31.644% of VLS, LS, MS, HS, and VHS
susceptibility classes respectively are corresponded to snow
avalanche of 12.281%, 1.754%, 2.924%, 3.509%, and
79.532%. In the FT model, the susceptibility classes have
been occupied by the percentage of pixels of 40.442%,
17.969%, 15.222%, 11.121% and 15.247% and percentage
of snow avalanche of 9.942%, 7.602%, 9.357%, 16.959%,
and 56.140%. In the LMT model, VLS, LS, MS, HS,
and VHS susceptibility classes have pixels of 28.172%,
20.177%, 17.543%, 15.813%, and 18.296%, respectively.
However, these classes have been covered by snow avalanche
of 7.602%, 8.187%, 4.678%, 11.696%, and 67.836%, respec-
tively. In the LR model most of the area has been covered
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by VLS class (37.595%), follows by VHS (20.240%),
MS (13.004%), LS (17.339%), and HS (11.821%) classes.
However, VHS class has covered most of snow avalanche
locations (67.836%), followed by HS (9.942%),MS and VLS
(7.772%), and LS (4.678%). In the ADT model 63.589%,
5.318%, 3.715%, 4.344% and 22.934% of VLS, LS, MS, HS,
and VHS susceptibility classes respectively are corresponded
to snow avalanche of 20.648%, 1.170%, 4.094%, 3.509% and
70.760%.

Overall results based on Fig. 5a-e and Fig. 6 show that
although in all models from VLS to VHS the number of snow
avalanche locations has been increased, this process is more
considerable in the RS ensemble mode that 79.532% of snow
avalanches are located in the VHS class.

E. VALIDATION OF SNOW AVALANCHE SUSCEPTIBILITY
MAPS
We designed the ROC curve and AUC to check the
performance of the RS ensemble model and four soft
computing benchmark models based on training (goodness-
of-fit/performance) and validation (prediction accuracy)
datasets (Fig. 7a, b). The result explored that the RS reached
a high performance (AUC = 0.889) and prediction accuracy
(AUC = 0.867). To check its applicability, performance,
and perdition accuracy, the result was compared with four
machine learning benchmark models. It can be observed
that the AUC based on the training dataset for the RS, LR,
FT, ADT, and LMT respectively, were 0.889, 0.879, 0.878,
0.872, and 0.864 (Fig. 7a). However, it has been reported
by some researchers that the results based on the validation
dataset are showed the priority of the models in terms of
usage [106]–[108]. Based on the validation dataset, the result
concluded that the RS had the highest value of AUC (0.867),
followed by LR and LMT (0.850), ADT (0.842), and FT
(0.830) models. In other words, the RS ensemble model not
only could well enhance the performance of the FT base clas-
sifier but also had the highest prediction accuracy compared
to other machine learning benchmark models (Fig. 7b).

In addition to the ROC curve and AUCmetric, we checked
the applicability and statistical treatment of the RS ensemble
proposed model with other benchmark models. The results
based on the Friedman test showed that there was a statistical
difference between all models because of significant equaled
to zero at a 95% confidence level (Table 4), but it could not
able to specify between which one of the models. To detect
this challenge and know the statistical treatment between the
models Wilcoxon signed-rank test was conducted (Table 5).
Also, the result indicated a difference (rejecting the null
hypothesis) between the ensemble proposed model and each
compared model at a 95% confidence level because of a
significance level less than 0.05 and z value exceeding the
critical values ranging from −1.96 to +1.96.

Overall, it is observed that the ensemble proposed model
had a higher performance and well prediction accuracy than
all comparison models in the study area. One important
issue for both classification or regression of machine learning

FIGURE 7. ROC curve and AUC: (a) Training
(goodness-of-fit/performance), and (b) Validation (prediction accuracy)
datasets.

TABLE 4. Performance evaluation of the snow avalanche susceptibility
models using Friedman’s test.

methods particular for susceptibility mapping is uncertainty.
The sources of the uncertainty can be related to input
factors, model structure, model parameters, and etc [109],
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TABLE 5. Performance evaluation of the snow avalanche susceptibility
models using Wilcoxon signed-rank test (two-tailed).

[110]. Although we tried to reduce the uncertainties of the
machine learning models through (i) best feature selection,
and (ii) optimizing the parameters [95], there are some
approaches such as Gaussian Process Regression (GPR) can
address this by calculating the uncertainties of predicted
values [111], [112]; which is recommended for future studies.

IV. CONCLUSION
The current paper presented an intelligent ensemble model
(i.e., RSFT) for snow avalanche susceptibility mapping in
the Karaj watershed, Iran. 21 conditioning factors tested by
the IGR technique, and the ineffective factors (no predictive
ability) were removed. Modeling with the most important
factors (including TPI, slope, SPI, VD, DD, LS, distance to
river, convexity, lithology, aspect, plan curvature, TWI, and
temperature), demonstrated that the proposed RSFT model
had a higher prediction accuracy in the spatial prediction of
snow avalanches. Therefore, the results highlighted that the
combination of the RS ensemble intelligent model and the
functional tree as a base classifier provides a high quality of
snow avalanche susceptibility map which is outperformed the
LR, LMT, FT, and ADT models.

With a detailed and expert look at the snow avalanches
susceptibility maps and matching with the conditioning
factors considered in this study, it can be concluded that the
high and very high susceptibility avalanche areas are located
in the north and northeast parts of the study area. The study
area ismostly at higher elevationswithmore precipitation and
lower temperatures, which are more likely to occur.

The predictive capability of the RS model is depended on
the inputs, and also parameters used such as the number of
seeds and number of iterations not only for snow avalanche
but also for other natural hazards. Optimizing the best number
of inputs and the best values for parameters was the main
difficulty of the research. Since these parameters reflect the
uncertainty and can affect the results of the modeling process,
other optimization methods should be checked.

Snow avalanche forecasting and simulation is a difficult
task because of the variability of spatiotemporal of snowpack
properties and the complex interactions of the snow layers.
On the other hand, snow avalanches are serious threats for
people, structures (buildings), and infrastructures. Therefore,
the methodology developed in this study as a promising

technique can help risk-based decision making in reducing
the loss of lives, decreasing the damage to infrastructure
caused by avalanches, and providing critical information for
hazard managers.
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