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ABSTRACT LIght Detection And Ranging (LIDAR) sensors provide preview measurements of wind speed
in front of the device. This preview may be used to improve important aspects of the operation of wind
turbines, such as structural load, while limiting the control effort. In this paper, a single model-based
predictive controller, taking advantage of the incoming wind in advance LIDAR measurements, is applied
to the generator torque reference of the wind turbine in order to reduce torsional shaft vibrations. The
controlled system is tested in a simulation environment that reproduces a set of gusts and turbulent wind
fields above the nominal, where the structural loads are higher. The performances obtained are comparedwith
the baseline and with those extracted from a single model predictive controller version without disturbance
previsualization. Then, the effect of the coherence between the effective wind estimated from the LIDAR
measurements and the real wind is considered. The practical implementation is demonstrated on real-time
controller prototypes applied to a Hardware-In-the-Loop Simulator that reproduces realistically the dynamic
behavior of the National Renewable Energy Laboratory 5 MW reference wind turbine.

INDEX TERMS LIDAR, disturbance preview, feedforward control, model-based predictive control,
hardware-in-the-loop simulation, load reduction, practical implementation, parameter uncertainty, real-time
control, wind turbine.

I. INTRODUCTION
One of the main objectives of wind turbines (WT) control
is to reduce fatigue and extreme loads on the drive train
and blades, while keeping the control action limited and
the generated power stable. Improvements in these aspects
result in a longer lifetime for the turbine, as well as a
reduction in maintenance, thus lowering the cost of energy.
However, this is a difficult task, as the transients caused by
the bursts and turbulence represent unknown disturbances to
the controller. Feedback-based controllers can only compen-
sate for such transients with a delay, when their effects are
shown at the system outputs and the WT actuators propagate
the corresponding generated control action. Such a delay
could be compensated for by using a controller that includes
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feedforward action, but a sufficiently early preview measure-
ment of such disturbances is required. ADoppler LIDARmay
provide such a measurement.

The feedforward control to manage WT is first proposed
in [1] , using measurements from a weather tower, as LIDAR
sensors were then still too expensive. Later, the use of optical
fiber substantially reduced the costs, and LIDAR started to
be used for remote measurements of incoming wind [2].
Since then, LIDAR-based turbine control has been studied
for both below (region 2) and above (region 3) nominal
winds. However, it was demonstrated -see [3] and [4]- that
the improvements obtained in the energy capture did not
compensate sufficiently the disadvantages associatedwith the
LIDAR-assisted control (structural load and torque fluctua-
tions) for WT in region 2. Therefore, much work has been
focused on using LIDAR-assisted preview-based control to
regulate the rotor speed and mitigate the structural loads in
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region 3. In fact, the potential of this approach has been
extensively demonstrated by using both the effective wind
preview throughout the rotor for collective pitch control,
[5]–[14], and on each blade for individual pitch control,
[15]–[17]. In addition, the LIDAR-assisted control of the
yaw or speed has also been studied to improve the extracted
energy, [18], [19]. Comprehensive reviews of the related
literature as well as critical discussions on the state of the art
and future of the LIDAR-assisted wind turbine control may
be found in [20]–[22].

The mentioned controllers range from simple feedfor-
wards, based on inverse models -see e.g. [9]-, to more com-
plex model predictive controllers (MPC). These MPCs use
the previsualization of the disturbance caused by the incom-
ing wind in order to optimize the control actions during the
prediction horizon, avoiding to some extent the effects of
the estimation delay, appeared in the controllers based on
feedback [10], [14], [15], which causes a substantial improve-
ment in the performance of the controlled system. However,
it soon became clear that the improvement achieved in this
way is largely conditioned by the quality of the effective wind
measurement that can be taken in practice by the installed
LIDAR. On the other hand, the LIDAR-assisted MPC faces
the same practical implementation problems as the MPC
without preview. The handling of highly non-linear wind
turbine dynamicsmeans that a trade-off between performance
and computational load must always be made. Moreover, it is
very difficult to ensure in advance the formal stability of such
controllers and, even more, without drastically limiting their
performance. A solution to these implementation problems is
based on using a single linear model of the wind turbine in the
internal prediction of the MPC, for the whole range of wind
speeds in the region 3 -see reference [23] for further details-.

This work describes a Single Model Predictive
Control (SMPC) controller that uses the same single linear
turbine model and settings already presented in [23], but
now also incorporating the prediction of the disturbance
posed by fluctuations in the aerodynamic torque, caused
by alterations in the incoming effective wind, realistically
measured by a LIDAR system. The control goal again focuses
on the reduction of the structural load on the transmission
train, without excessively altering the generated power. The
performance achieved by this controller is compared with the
baseline and with one of those presented in [23]. Finally, such
comparison is related to the quality of the available preview
effective wind measurement.

The paper is organized as follows: Section II presents
how the incoming disturbance is extracted from the mea-
surements obtained in advance by the LIDAR and explains
how it fits into the SMPC approach, described in [23] for the
case when no disturbance previsualization is available. Then,
Section III summarizes the comparative results obtained from
a perfect disturbance previsualization in order to study the
potential performance of the proposal. To do so, the National
Renewable Energy Laboratory (NREL) 5 MW reference
turbine is exposed to coherent gusts and three-dimensional

stochastic wind fields. Such a study is carried out based on
both numerical simulations and using real-time controller
prototypes, applied to the Hardware-in-the-Loop (HiL) wind
turbine simulator, also used in [23] but conveniently modi-
fied. In section IV, the obtaining of realistic LIDAR mea-
surements is described, and, in Section V, the reduction on
the structural load, obtained as a function of the quality of
the LIDAR preview, is presented and commented. Finally,
SectionVI concludes the paper with a summary and the future
perspectives of the work.

II. LIDAR-ASSISTED LINEAR SMPC
The SMPC controllers presented in [23] use a single internal
linear model to obtain the behavior of the WT rotor and
drive-train during the prediction horizon. Such a model is
a three-mass model, for the mechanical part, in series with
the dynamic model of the generator electric behavior. The
mechanical model considers the inertia of the effective flex-
ible part of the blades Jbl , the inertia of the rigid part of
the blades plus the hub Jhub and the inertia of the generator
Jgen. Such three masses are linked by two flexible elements
representing the stiffness and damping of the blades and
drive-train. The inputs to the internal model are, at one end,
the aerodynamic torque Taero that the incident wind applies
on the blades and, at the other, the generator torque reference
T ∗em provided by the controller. Taero is considered ameasured
disturbance (MD) and T ∗em is the manipulated variable (MV).
When no measurements of the effective windWm on the rotor
are available, the aerodynamic torque Taero must be estimated
from its effects on the angular speed of the generator ωgen.
This may be done either by external preprocessing or by tak-
ing advantage of the MPC state observer -see section III. D.
in [23] for details-. In both cases, the estimation suffers from
a certain delay that impairs the performance achieved in
reducing the structural load.

Now, we assume that the incoming wind measurements
obtained through a LIDAR focused at a certain distance from
the rotor are used to calculate the effective wind Wm that
will affect the WT, with some anticipation. This anticipation
depends namely on the focal distance and the average speed
of the wind, and the assumption is made that it will be greater
than the duration of our SMPC prediction horizon. Obviously,
it will be also necessary to estimate the aerodynamic torque
Taero that such effective wind Wm will induce in our rotor of
radius R. In order to do so, the reduced aerodynamic model,
already presented in [23], is utilized:

Taero =
1
2
ρπR3

CP(λ, β)
λ

W 2
m = 0.5ρπR2W 3

m
CP(λ, β)
ωrot

being : λ =
ωrotR
Wm

(1)

where ρ is the air density, β the pitch angle, λ is the tip
speed ratio, ωrot the angular speed of the rotor and Cp the
effective power coefficient, implemented as a look-up table
and extracted from steady-state simulations of the NREL
5MW turbine withWT_Perf [24].
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The processing of the model (1) that allows implementing
the Taero preview starts with the accumulation in buffers of
enough input data to fulfill its evolution during the prediction
horizon (N samples). It is clear that we do not have future
values for the pitch angle β and rotor speed ωrot , since they
depend on the action of the pitch control loop that is not
included in the model. However, the dynamic behavior of that
loop and, therefore, of those variables, is much slower than
the control of the torque of the generator we are dealing with.
This allows us to update, at each sampling time, the complete
content of such buffers with the N -times repeated current
measurement of such variables.

As can be seen in Figure 1, the model (1) is computed
to obtain, at each sampling instant, the preview of Taero,
defined as a measured disturbance (MD) in the SMPC. Later,
this preview is introduced in the internal model, giving rise
to an approach similar to the version 1 of the SMPC con-
troller described in section III. D. 1. of [23]. In that case,
as no disturbance preview was available, the disturbance was
considered equal to the last calculated value over the whole
prediction horizon. Since this calculation is always obtained
with a certain delay, the control action cannot anticipate the
arrival of important changes in the incident wind. However,
by having a preview of the disturbance, the controller may
predict the effect on the system in time to compensate for the
control action delays (algorithm execution, instrumentation,
actuator,...), improving in many cases the resulted perfor-
mance, without the need to increase the control action.

FIGURE 1. Internal model and disturbance estimator for the SMPC
LIDAR-assisted version.

As in that case, the internal model is also provided with an
additional input 1Taero–see figure 1-, defined as an unmea-
sured disturbance (UD1), in order to give robustness to the
approach, given the errors prone to occur in the Taero pre-
viewer. These errors can take place due to multiple causes,
namely, the aerodynamic model of the turbine, the measure-
ment of the effective wind Wm and the approximation made
for the ‘‘prediction’’ values for β and ωrot . Assuming that
such errors may turn out to be persistent, the SMPC internal
model is extended with a new state –an integrator is used
as an input disturbance model for 1Taero- and the Kalman
filter, incorporated in the SMPC controller, is in charge of

estimating its value. The same procedure may be used to
estimate the entire input unmeasured disturbance, not only
the errors made in its calculation, and obtain good control
results. In fact, the alternative controller version SMPC UD,
which is used for comparison in this study, works in this way
–see section III.D.2. of [23] for details-.

Note 1: Observe that the preview calculation described
above requires the use of a nonlinear function to calculate
the CP effective power coefficient. However, this calculation
is implemented outside the internal model of the MPC con-
troller, thus allowing us to maintain the use of a single linear
internal model and the advantages that this entails. Note that
these advantages include a low computational burden and,
most importantly, the in advance proof of stability based on
the application of a terminal weight on the system states.
Such terminal weight is obtained easily from a simple matrix
Lyapunov equation and does not represent a notable limitation
on the performance of the controlled system –see section III.
C. of [23] for details-.

III. CONTROLLER POTENTIAL PERFORMANCE
In this section, it will be assumed that the effective wind
calculated from the LIDAR measurements coincides exactly
with the real one. This is carried out to make the effect of
disturbance previsualization more apparent and better ana-
lyze the reachable potential (maximum) performance. First,
the comparative results are obtained using numerical sim-
ulations. Then, the modifications made in the HiL simula-
tor of the NREL 5 MW WT, used in [23], are described.
Such modifications allow the real-time implementation of the
LIDAR-assisted version. Finally, we present the comparative
results obtained in such experimental testing. In both studies,
the settings that impose the aggressiveness of the controller
and the speed of the state observer are the same as those used
in [23].

A. SIMULATION RESULTS
For this controller with disturbance preview, the most impor-
tant improvements may be expected in the reduction of
extreme loads when wind gusts episodes occur. However,
it can also significantly reduce fatigue loads and, therefore,
both cases are investigated in this section.

1) EXTREME LOADS
As in section IV. A. in [23], hub height time series have
been created with extreme operation gusts according to IEC
standard [25] at vrated+ 2 m/s= 13.2 m/s and vout = 25 m/s,
being vrated and vout the rated and cut-out wind speeds for
the NREL 5MW WT, respectively. Then, the performance
of the LIDAR-assisted (MDL) and the compact version 2
(UD) –see section III. D. 2. in [23]- SMPC controllers are
compared with the baseline in Table 1. Besides, in order to
check the robustness to modeling errors, increments on the
mass (ice, dust, . . . ) of the rotor has been considered. Specif-
ically, changes on Jbl and Jhub inducing a 10 % alteration on
the natural frequencies of the mechanical system have been
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TABLE 1. Percentage reduction in TLSS for extreme loads.

introduced in the WT model and the related results added to
such comparison.

Specifically, the maximum (MaxTLSS) and standard (σ )
deviations (% reduction with respect to baseline) on the
torsional torque on the low-speed turbine shaft (TLSS ) are
presented in Table 1. The improvement obtained by MDL
control is very high with respect to the baseline case, but not
much greater than that achieved by the UD controller, without
preview. This is probably due to the intense adjustment of the
state observer used here. Such adjustment manages to reduce
to the minimum the delay in the internal estimation of the
Taero disturbance. Furthermore, as expected, it is also noted in
Table 1 that the robustness to modeling errors is better in the
UD controller, given that its performance does not depend so
much on the internal model by having more feedback action.

2) FATIGUE LOADS
As in section IV. B in [23], to evaluate the fatigue load, a set of
A-type turbulent wind fields according to IEC 61400-1 [25]
in full-load operation region (mean wind speeds of 14, 18 and
24) generated with Turbsim [26] has been applied to the
simulation environment. Then, the lifetime Damage Equiv-
alent Loads (DEL) for the low-speed shaft torsion torque
(TLSS ) were calculated on the basis of a rainflow count-
ing with Wohler exponent of 4, typical for steel generator
shafts [27]. The maximum (DEL), standard (σ ) TLSS devi-
ations (% reduction to baseline), and power mean increase
were also computed and presented in Table 2. The observed
fatigue load reduction in slightly better in the LIDAR-assisted
case, and the robustness is conserved.

TABLE 2. Percentage reduction in TLSS for fatigue loads.

B. ADAPTED REAL-TIME EXPERIMENTAL PLATFORM
The Real-Time (RT) control experiments are implemented
on the hardware platform described in [23], section V. It is

composed conceptually by two elements: aWTHardware-in-
the-Loop (HiL) simulator, that reproduces the scaled behavior
of the 5MWNREL turbine on amechanically coupledmotor-
generator set, and a rapid-prototyping system, devoted to put
the turbine controllers into action and analyze their compu-
tational burden. The WT HiL simulator uses RT software
to compute the aerodynamic and mechanical turbine models
and, then, an electric motor to impose the resulting action on
the generator shaft. On the other hand, the RT control plat-
form implements the pitch, the generator, and the grid-side
converter controllers. Anyway, given that the LIDAR-assisted
version of the SMPC controller needs some new inputs (β
and the wind previewWm from the LIDAR), the experimental
setup is correspondingly modified.

The block diagram explaining the modified platform is
presented in Figure 2, where the LIDAR block is dedicated to
prepare the SMPC controller effective wind previsualization
Wm. By now, such a preview is identical to the delayed signal
Wa, created with Turbsim, feeding the aerodynamic model
located inside the HiL WT simulator. Evidently, such delay
matches the prediction horizon used in the SMPC controller.

FIGURE 2. Adapted experimental platform scheme.

C. REAL-TIME CONTROL EXPERIMENTS RESULTS
The same experiments described in section III.A. have been
implemented in deterministic real-time (RT) on the described
experimental platform. Anyway, both control and observer
setup have been relaxed –exactly as in [23]- in order to
reduce the disturbances on the generated power and attain a
more robust behavior for the controlled system under intense
measurement noise.

1) EXTREME LOADS
The signals of interest, measured in the RT experimental
platform, when applying the two SMPCs and the baseline
controller under an extreme operation gust, according to IEC
standard, at vout = 25 m/s, are depicted in Fig. 3. Namely,
the actual pitch angle β, the rotor angular speed ωrot , the
generator torque Tem, the torsional torque referred to the low-
speed shaft TLSS and the mechanical power (Temωgen) are
presented.
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Note 2: Note that the actual pitch β has been extracted
from the RT execution of the pitch actuator model in the WT
HiL simulator and then provided as a voltage input to the RT
control prototype, in order to emulate a blade angular position
sensor output. The ωrot is derived from the measured ωgen,
Tem is obtained from the measured currents on the generator
machine (isq) and the mechanical power by multiplying such
measured ωgen and Tem. In this way, the RT control results
incorporate the effects of the common WT instrumentation.
Anyway, nowadays the wind turbines often incorporate addi-
tional sensors, e.g. in the hub for ωrot , or strain gauges in
the root of the blades, from which the Tblades torque of our
internal model can be obtained -see Figure 1 and [23] for
details-. Such signals may be also emulated by hardware in
the context of our WT HiL simulator, as it is done for β,
to provide more measured outputs to the SMPC controllers.
In this way, the robustness against modeling errors could
be substantially improved and the important effect of the
realistic measurements better taken into account.

To facilitate a clear analysis of the disturbance previsual-
ization effect in Fig. 3 and 4, errors in the internal model are
avoided in these RT experiments and a detailed comparison
of the manipulated variable T ∗em is presented in Fig. 4. It is
evident that the control action of the MDL version -see tem-
poral evolution of the manipulated variable T ∗em- anticipates
the appearance of the disturbance –wind gust-, reducing the
torsion of the axis with respect to the UD case, in which
this preview is not available. Moreover, such an important

FIGURE 3. Experimental performance on extreme gust at vout = 25 m/s:
Baseline control (black), SMPC versions MDL (blue) and UD (red).

FIGURE 4. Manipulated variables T∗em on extreme gust at vout = 25 m/s.
Baseline control (black), SMPC versions MDL (blue) and UD (red).

FIGURE 5. Experimental performance on extreme gust at vrated+2 m/s =
13.2 m/s and 10 % internal model error: Baseline control (black), SMPC
versions MDL (blue) and UD (red).

improvement is obtained without increasing notably the vari-
ation of the generated mechanical power with respect to the
UD case.

Next, to study the robustness to model parameter uncer-
tainly, as in section III. A, an increment in the rotor inertia,
producing a 10% error in the torsional frequencies of the
internal model of the SMPCs, is introduced. Again, the same
signals of interest, obtained by the two SMPC versions and
the baseline controller under extreme down (vrated+2m/s =
13.2 m/s) operation gust, according to IEC standard, are
depicted in Fig. 5. Besides, Table 1 presents the experi-
mental load reduction (in %) with respect to the baseline,
numerically.
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The obtained reduction on the extreme loads on the tor-
sional torque on the low-speed shaft (TLSS ) -and the corre-
sponding vibrations on the transmission train-, thanks to the
LIDAR disturbance previsualization, are again apparent on
Fig. 5 and, numerically, in Table 1, even with an important
error in the model. Thus, the SMPC-MDL robustness to
model parameter uncertainly is demonstrated.

On the other hand, Table 1 shows that the significant drop
in performance suffered by the UD version of the SMPC
when relaxing the settings of the controller and state estimator
with respect to the simulation-based study -see [23] for more
details-, does not take place in the LIDAR-assisted version
(MDL). It is probably due to the effect of the anticipation of
the control action that allows maintaining the performance
despite using a less aggressive setting.

2) FATIGUE LOADS
The responses to the 15 % turbulent wind of mean speed
of 24m/s, when a 10% error is present in the internalmodel of
the SMPC versions, are now displayed in Fig. 6. In addition,
Table 2 presents the obtained improvements in a comparative
numerical way. The experimental platform needs 30 seconds
to reach Region 3 and, at the second 39, the SMPC controllers
are activated to reduce the load.

FIGURE 6. Experimental performance on turbulent wind at 24 m/s with
15 % of turbulence and 10 % internal model error: Baseline control
(black), SMPC versions MDL (blue) and UD (red).

Again, the obtained improvement by the SMPC-MDL ver-
sion, based on the perfect previsualization of the incom-
ing effective wind on the rotor, is very high, doubling the
drive-train load reduction gained by the UD version. The
robustness to model errors seems to be also very high.

IV. REALISTIC LIDAR MEASUREMENTS
A. BACKGROUND
Early work on LIDAR-assisted control [5], [7], [28] assumed
that incoming winds could be measured exactly. Thus, it is
supposed to be no difference between the measured and
actual effective winds and there is no error in the calcula-
tion of the instant that such wind reached the rotor. Later,
realistic LIDAR models started to be used [7], [29]. Such
models included the spatial averaging of the measurements
and the limitation of the line-of-sight. In addition, the wind
evolution is also included as a source of error in other
works [13], [14], [16], taking into account how the wind
changes from the time it is measured until it impacts the rotor.
Some papers [12], [30] also consider the uncertainty in the
calculation of the instant in which the wind actually reaches
the rotor.

It is clear that implementing a feedforward-based control,
when the preview signal includes too much error, implies
some risk, since the controller reacts to such error, turn-
ing its action into something potentially counterproductive.
Therefore, many recent works, focused on the design of
LIDAR-assisted controllers [9], [31], propose characterizing
the measurement error and filtering the signal to eliminate
the components that do not maintain sufficient correlation
with the effective wind, actually reaching the rotor. Besides,
others [11], [33] propose to include such correlation directly
in an optimal control scheme.

On the other hand, it has been shown [32], [34] that,
by soundly manipulating the preview obtained from the
LIDAR measurements, it is possible to notably improve the
estimate that can be made of the disturbance that the incom-
ing wind will actually cause in the rotor. Specifically, in
Simley et al. [32] –see also [21] and [36]-, a minimum mean
square error (MMSE) estimate of the effective approaching
wind can be obtained by using an optimal filter whose design
depends on the mentioned correlation between the LIDAR
measurement and the actual disturbance. To calculate such
correlation, the true wind disturbance must be estimated [35],
by roughly using the turbine as an anemometer. In these
works, the mentioned filtering should cover the control actu-
ator bandwidth, that, is, up to 1 Hz. Very recently, an artifi-
cial neural network (ANN) trained online is used in [37] to
soundly correct the errors of the LIDAR previsualization.

B. REALISTIC LIDAR MEASUREMENTS GENERATION
For wind speeds above nominal, the WT control goals are
focused on regulating the rotor speed and minimizing the
structural load, while keeping the control action limited.
Achieving such goals allows the turbine lifetime to be notably
increased and, therefore, the cost of energy to be reduced.
The benefit of using a LIDAR sensor in order to achieve such
control objectives depends on the measurement coherence,
that is, the correlation as a function of frequency between the
anticipated wind measurement and the one that the turbine
will actually receive.
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Our aim now is to use a method, well established in the
literature, to generate realistic LIDAR measurements with
different quality levels. Then, such measurements are used
in the real-time control experiments in order to determine
the impact of the LIDAR measurement quality on the SMPC
control performance. The main finding will be to determine
how good these previews must be for the performance to be
good enough in order to justify the use of a LIDAR sensor.

One way to define formally such measurement coherence
as a function of frequency (f ) is given by

γ 2
am (f ) =

|Sam (f )|2

Saa (f ) Smm (f )
(2)

where γ 2
am (f ) it is themagnitude squared coherence, Sam(f ) is

the cross power spectral density between the measured wind
Wm and the actual windWa experienced by the turbine. Such
wind Wa is estimated by an observer using the turbine itself
as an anemometer [35]. Normally, such a method provides
a good estimate up to frequencies covering the bandwidth
of interest. On the other hand, Smm(f ) and Saa(f ) are the
individual power spectral densities of themeasured and actual
signal, respectively.

Such squared coherence magnitude can go from one to
zero, where one indicates perfect correlation. Therefore,
a correlation of less than one means that the measurement
includes errors that, in this case, maybe due to measurement
noise, wind evolution occurred from focal length, and WT
induction zone. The mentioned last two errors are more
important at high frequencies, causing the coherence to go
normally from values close to one at low frequencies to
values close to zero at high frequencies. The exact shape
of the coherence function depends on the configuration of
the LIDAR sensor and wind and environmental conditions.
Evidently, such function shape may be also altered if some
advancedmethod, like those described in [32], [37], is applied
to the sensor output to improve the coherence of the signal.

In order to study the influence that the quality of the Taero
preview, extracted from in advance incoming wind measure-
ments, has on the performance of the LIDAR-assisted SMPC,
themethod, proposed inDunne and Pao [33], to generate real-
istic LIDARmeasurements with different coherence profiles,
will be here followed. In such motivating work, the actual
windWa is generated and, after the preview delay, applied to
the WT aerodynamic model. Meanwhile, the wind measured
by the LIDAR Wm, which is then sent to become an input to
our SMPC MDL controller –see Figures 1 and 2-, is calcu-
lated according to

Wm = LWa + Hn (3)

where L is a low-pass filter, H is a high-pass filter and n is
white noise. Filters L and H are designed to achieve that the
coherence shape, as a function of the frequency, betweenWm
and Wa, is the desired one and that the power spectrums of
both signals match, that is, Saa = Smm. It is convenient that
Saa = Smm because the difference in power spectrums could

affect the controller gain. So, we have –see [33]-

|L| =
√
coh(f ) (4)

6 L = 0 (5)

|H | =
√
|Wa|

2 (1− |L|2) ∧ 6 H = irrelevant (6)

where coh(f) is the coherence of the LIDAR-based measure-
ment, defined as in the expression (2), that we wish to obtain
betweenWm andWa. The magnitudes for the H and L filters
obtained by expressions (4) and (6) ensure that the coherence
shape is coh(f) and that Saa = Smm. The phase for filter L
in expression (5) ensures that the average phase betweenWm
and Wa is zero, which is the case when we have correctly
calculated and imposed the preview time.

As in [33], a Butterworth low-pass filter of order 1 is used
for L. Then, several coherence target functions, for different
bandwidths (cutoff frequencies, where the magnitude of the
filter response is (0.5)1/2 of its DC value) of interest for
our filter L are obtained. Using such coherence functions,
digital filter L is calculated by applying expression (4). How-
ever, it is impossible to obtain a causal filter that also meets
the condition (5). To roughly solve this problem, the phase of
L is approximately converted first to a time delay, extracted
by using a very low frequency of the bandwidth. Then, such
delay is added to the preview delay applied to Wa before
it feeds the aerodynamic model –see figure 2-. In this way,
although it is not really fulfilled expression (5), the preview
time imposed between Wm and Wa is approximately correct.
Finally, expression (6) may be used to design the H filter.

C. APPROACH AND BANDWIDTH RANGE
This study on the impact of the LIDAR coherence does
not apply to extreme loads, since the prediction of gusts
is hardly affected by the considered measurement errors,
given the spectral content of such gusts. Therefore, only the
reduction of fatigue load caused by turbulent wind in the
transmission train is considered here. More precisely, the aim
of our approach relies on how the performance of the LIDAR-
assisted SMPC control is affected by the preview errors,
within a plausible range, for turbulent winds in region 3.

Since the present approach needs a scenario as realistic
as possible, the control experiments have been exclusively
performed on the NREL 5MWWT HiL Simulator. Such WT
HiL simulator has been described in section III. B. and used
to obtain the experimental results presented in section III. C.,
for the ideal LIDAR case. Besides, the SMPC controller
and state observer settings are the same as those used in
section III.C and the versionMDwithout preview [23]. How-
ever, the design of the LIDAR block in theWTHiL simulator
-see Figure 2-, that was transparent (Wm = Wa) then, has now
been altered. For the present study, such block implements the
operation described in section IV. B and defined by expres-
sions (3)-(6), according to the scheme shown in Fig. 7.

On the other hand, using the LIDAR patterns studied by
Schlipf [38] for the NREL 5MW WT, the coherence band-
width (BW) range can reach 0.2186 Hz. in the best case, for
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FIGURE 7. LIDAR block in NREL 5MW WT HIL Simulator: Experimental
generation of realistic LIDAR measurements.

the LIDAR configuration used there -see also [33]-. However,
given the mentioned works of Simley et al. [32], [35], [36],
in this study the bandwidth of interest has been extended up
to 1 Hz, that is, the bandwidth of the pitch actuator, as it
is where their method based on optimal filters may provide
sufficient coherence. In our case, the preliminary idea is that
the generator torque SMPC control system under study here
could take advantage of a preexistent LIDAR preview taken
for a pitch feedforward control system -for example, those
described in [9], [33], [36] that may be working in parallel.
Of course, the settings of a LIDAR sensor may be reconfig-
ured in order to optimize the in advance wind measurements
for its use with the load reduction SMPC controller. Besides,
it is probable that, in such a case, a broader bandwidth for the
wind previsualization could be obtained.

V. REALISTIC PERFORMANCE FOR THE LIDAR-ASSISTED
SMPC (REAL-TIME CONTROL EXPERIMENTS RESULTS)
A. EXTREME LOADS
As stated before –see section IV. C-, the experimental real-
time control results remain approximately the same for real-
istic previews of the incoming wind –see section III.C.1-.

B. FATIGUE LOADS
The HiL Simulator for the NREL 5 MW WT has been fed
with turbulent winds, generated again with Turbsim [26],
of 14, 18 and 24 m/s. of average speed and turbulences
of 18 %, 17 % and 15 %, respectively. The corresponding
realistic LIDAR readings have been generated following the
procedure described in section IV. The obtained results for
the torsional load of the turbine shaft have been processed
to calculate the DELs that describe the fatigue load. Then,
the experimental tests have been repeated considering an
internal model with an error in the natural vibration fre-
quencies up to 10 %. The results regarding the DEL per-
centage improvement, with respect to the baseline control,
of the LIDAR-assisted SMPC controllers, are presented in
Figures 8, 9 and 10, for the three mentioned average wind
speeds, respectively. The bandwidth -cutoff frequencies,
where the magnitude of the L filter response is (0.5)1/2

of its DC value- of the LIDAR previsualization used by
the SMPC-MDL is in the Y-axis. Within such bandwidth,
the magnitude squared coherence, between the anticipated

FIGURE 8. Experimental load reduction of the SMPC-MDL for different
LIDAR coherence bandwidths on turbulent wind at 14 m/s with 18 % of
turbulence: No model error (blue) and 10 % model error (yellow).

FIGURE 9. Experimental load reduction of the SMPC-MDL for different
LIDAR coherence bandwidths on turbulent wind at 18 m/s with 17 % of
turbulence: No model error (blue) and 10 % model error (yellow).

FIGURE 10. Experimental load reduction of the SMPC-MDL for different
LIDAR coherence bandwidths on turbulent wind at 24 m/s with 15 % of
turbulence: No model error (blue) and 10 % model error (yellow).

wind measurement and the one that the turbine is actu-
ally experiencing, is supposed to be sufficiently good. The
improvements obtained by using an ideal LIDAR (BW INF
Hz) and SMPC-UD (say, BW 0Hz) is also incorporated to
that axis as limiting references.

Note 3:When the LIDAR previsualization gives no useful
information about the stochastic nature of the incoming wind
(BW = 0 Hz.), the wind preview Wm may be described as
a DC offset (wind average speed) plus white noise. In such
a case, given the structure of the SMCP LIDAR-assisted
version –see Fig. 1-, the additional input 1Taero, defined as
an unmeasured disturbance (UD1), represents now the whole
Taero and the SMPC Kalman Filter remains in charge of esti-
mating it. In this way, the SMPC MDL version ‘‘converges’’
to the UD version, when the LIDARmeasurements coherence
is completely lost.
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Therefore, it may be seen in Figures 8-10 how the quality
of the wind preview affects the comparative performance
of the LIDAR-assisted SMPC-MDL version, related to the
performance achieved by the UD version -without preview-.
By considering preview coherence bandwidths between 1 and
0.0125 Hz, it is clear that the obtained load reduction mono-
tonically decreases, as the preview coherence decreases, from
the ideal LIDAR (perfect preview) to the SMPC-UD (no
preview) case. The robustness tomodel parameter uncertainly
behaves in a very similar fashion.

Anyway, it turns out to be crucial to obtain suffi-
ciently reliable LIDAR measurements of the incoming wind
to justify the use of the preview-assisted SMPC option.
In particular, for this case study, it seems mandatory to apply
some technique in order to improve the quality of the preview
for high frequencies (up to 0.75Hz.-1 Hz.), as those described
in [21], [32], [36] and, very recently, [37]. Only by obtaining
sufficient coherence in such bandwidths, the obtained reduc-
tions in the drive train load are big enough to justify the use
of LIDAR.

Finally, the responses to the 15 % turbulent wind of mean
speed of 24m/s, when a 10% error in the internal model of the
SMPC versions is present, and a LIDAR preview with 1 Hz.
coherence bandwidth is used, are now displayed in Fig. 11.
Again, the experimental platform needs 30 seconds to reach
Region 3, and, at second 39, the SMPC controllers are acti-
vated to reduce the load. Right then, it may be seen how,
indeed, the torque on the shaft TLSS is remarkably stabilized
with respect to the baseline case and the SMPC UD version.
The vibrations associated with natural frequencies related
to the flexibility of the main mechanical components of the
turbine are also largely eliminated from the pitch angle β and
rotor speed ωrot . On the other hand, the generator torque Tem
activity is significantly increased compared to the baseline
control and this, in turn, is partly transferred to the generated
mechanical power Temωgen.

However, as we may observe, by comparing Fig. 6 and 11
–and also in Fig. 10-, the load reduction when a LIDAR pre-
view coherence bandwidth of 1 Hz., is only slightly impaired
with respect to the perfect preview case (70,59 to 67,17 %
load reduction). Even more, the control effort in Tem and
the corresponding disturbance in the generated mechanical
power has been reduced.

To verify this effect, Figure 12 shows the electric power
measured by the REGEN Unidrive unit in the NREL WT
5MW HiL Simulator hardware –scaled-. As we can see,
the power provided to the grid, when a realistic LIDAR
preview is used, seems less disturbed than when using a ‘‘per-
fect’’ preview or even the SMPC UD version, without wind
previsualization. Therefore, if an effective wind preview, with
sufficient coherence up to about 1 Hz, is achieved, the use of
LIDAR-assisted SMPC control is fully justified.

At this point, in order to further confirm such important
assertion, it seems appropriate to complete the study with
a frequency analysis of the signals of interest presented
in Figures 11 and 12. Therefore, the Fast Fourier Transforms

FIGURE 11. Experimental performance on turbulent wind at 24 m/s with
15 % of turbulence and 10 % internal model error: Baseline control
(black) and SMPC versions MDL with 1 Hz. LIDAR coherences bandwidth
(light blue) and UD (red).

FIGURE 12. Generated electrical power measured –scaled- by the REGEN
Unidrive unit in the NREL 5MW turbine HIL Simulator. Turbulent wind at
24 m/s with 15 % of turbulence and 10 % internal model error: Baseline
control (black) and SMPC versions: MDL (blue), UD (red) and MDL with
1 Hz. LIDAR measurement bandwidth (light blue).

(FFT) of such signals have been calculated and presented
in Figure 13. In such a figure, it may be seen that the effects
of the torsional vibrations on pitch angle, generator speed,
and low-speed shaft torque are greatly attenuated. It may
also be seen that the power of some frequency components
is increased to some extent in the generator torque and,
correspondingly, in the generated mechanical power. How-
ever, we may also see that the frequency components of the
generated electrical power, supplied to the grid by the three
controllers on the comparison, are very similar.

Note 4: Let’s look one more time, in figure 13, at the
generated power FFTs, both mechanical and electrical. It may
be seen that only the very low-frequency components (below
0.75 Hz., approximately) of the increase in the disturbances,
observed in the mechanical power -due to the control action-,
pass clearly through the DC bus to reach the electrical
power, supplied to the grid. This effect can also be seen in
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FIGURE 13. Fast Fourier Transforms of signals of interest in figures
11 and 12. Turbulent wind at 24 m/s with 15 % of turbulence and 10 %
internal model error: Baseline control (black) and SMPC versions:
UD (red) and MDL with 1 Hz. LIDAR measurement bandwidth (light blue).

figures 11 and 12. Such disturbances, as shown in figure 11,
are caused by the low-frequency oscillations in ωrot , due to
the performance of the pitch control loop, which are then
transferred to ωgen and, finally, to the generated power. For-
tunately, these observed fluctuations in the electrical power
are relatively small in magnitude –see figure 12-. How-
ever, if necessary, they could be avoided when applying the
SMPC controllers, by renouncing -partially or totally- to
prevent their impact on the torsion of the shaft. In order
to do this, we should inject such low-frequency fluctuation
-in counter phase- into the SMPC low-speed shaft torque
reference T ∗LSS , via ωgenf (remember, T ∗LSS = Prated /ωrot =
PratedNgear /ωgenf ). By now,ωgenf is fixed at theωgen nominal
value, given that the present study aims to analyze the SMPC
capacity to reduce at a minimum the WT structural load.
Now, alternatively, to obtain ωgenf , we may low-pass filter
ωgen measurement by using cut-off frequencies around 1 Hz.
-see FFTs of the generator powers in figure 13- and add the
result in counterphase to the ωgen nominal value. In this way,
it would be possible to importantly reduce the fatigue load on
the transmission train originated by the elasticity of the shaft
and rotor (1.7 and 4 Hz.), while allowing –partially or totally,
at will- the low-frequency shaft torsion in order not to convert
such mechanical vibrations into electrical ones. By design-
ing the low-pass filter -cutoff frequency and order- used to
produce ωgenf , we may balance the partial transmission of
mechanical vibrations to electrical disturbances in the context
of the wind turbine controller.

C. COMPUTATIONAL BURDEN
The real-time controllers have been implemented on an Intel
Core2 Duo E8400 3 GHz industrial computer equipped with

Simulink Real-Time –see [39]- kernel. The KWIK algo-
rithm –see [40]- has been used to solve the optimization
quadratic problem. The SMPC controllers have been imple-
mented by using a standard 80 Hz. sampling frequency. The
maximum computational delays for de LIDAR-assisted ver-
sion was 5,129e-5 s., corresponding to a maximum number
for iterations of 7. On the other hand, the more compact
UD version has given a maximum computational delay of
3,41e-5 s. with 4 iterations at most. In both cases, the compu-
tational burden does not reach 0.4 % and, therefore, the cor-
responding delay is negligible. Further details are available
in [23].

VI. CONCLUSION
In this paper, a single model-based predictive controller
taking advantage of the incoming wind in advance mea-
surements is applied to the torque of a wind turbine gen-
erator in order to reduce structural loads. First, to analyze
the potential performance of such a controller, it is assumed
that the effective wind preview is perfect. In this way, very
important reductions are obtained with respect to the case
without preview, for both extreme loads and fatigue, during
the experimental real-time control tests that are carried out
on rapid controller prototypes working versus a reference
wind turbine Hardware-in-the-Loop simulator. However, it is
also demonstrated later that these improvements are con-
ditioned to have an effective wind preview presenting an
acceptable coherence with respect to the actual wind, for a
sufficiently wide bandwidth. In fact, for this case study, it may
be necessary the use an advanced method (optimal filters,
neural networks, . . . ) to improve this preview or, alternatively,
the custom configuration of the used LIght Detection And
Ranging (LIDAR) sensor for this controller. Incorporating
more wind turbine sensor measurements into the described
approach and studying the effect on the obtained performance
remains as future work.
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