
Received July 6, 2020, accepted July 27, 2020, date of publication August 6, 2020, date of current version August 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014334

Precision Retaining Time Prediction of Machining
Equipment Based on Operating Vibration
Information
WEI DAI 1, (Member, IEEE), JIAHUAN SUN 1, TINGTING HUANG 1, (Member, IEEE),
ZHIYUAN LU 2, AND LIANDIE ZHU1
1School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
2School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Corresponding author: Tingting Huang (htt@buaa.edu.cn)

This work was supported in part by the Technical Foundation Program from the Ministry of Industry and Information Technology of China
under Grant JSZL2019601A003 and Grant JSZL2016601A003, and in part by the National Natural Science Foundation of China under
Grant 51705015.

ABSTRACT The precision of machining equipment is the main factor that affects the reliability of the
manufacturing system. The failure of equipment function which affects the efficiency of manufacturing
system is often caused by out-of-tolerance of precision. In this research, the precision degradation was
connected to the stress and frequency of the external load, and amethod was proposed to predict the precision
retention time (PRT) of machining equipment, in which the traditional fatigue theory was combined with the
monitoring technology of the operating vibration information. The calculation method of vibration energy
was derived based on the principle of mechanical dynamics. Combined with signal processing technology,
the complex loads were expressed by energy spectrum in frequency domain. According to the characteristics
of S-N curve and the historical test data, the F-E-T surface reflecting the relationship among load frequency,
vibration energy and precision retention time was obtained. The surface was used to predict the PRT of the
equipment under a certain processing task, and the effectiveness of the method was verified by a case study.

INDEX TERMS Operating vibration information, machining equipment, complex loads, vibration energy,
precision retention time (PRT).

I. INTRODUCTION AND LITERATURE REVIEW
For common machining equipment, especially high-grade
CNC machine tools, the loss of equipment function is gen-
erally not caused by the reduction of strength and stiff-
ness, but by the decrease of machining precision. In other
words, the machining precision is the key factor to deter-
mine whether the equipment is scrapped [1]. The decline
of the precision indexes of the workpiece is the specific
performance of precision degradation, such as the value of
dimensional deviation and circular degree. Therefore, it is a
significant part of fault prediction and maintenance decision
to carry out the study of precision retaining ability based on
precision degradation analysis [2].

According to the relevant research, the degradation of
precision index is often caused by the performance degra-
dation of equipment. And the performance degradation of
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equipment and components mainly results from the damage
caused by the external load [3]. In addition, there is a common
phenomenon in engineering practice, that is, performance
degradation is more obvious when the load frequency of the
component is close to its own first or several order natural
frequencies. Taking rolling bearing as an example, the inner
ring, outer ring, cage, rolling body and other parts of the
bearing have their respective corresponding failure frequen-
cies [4]. In consequence, the degradation of machining pre-
cision index is sensitive to frequency. It is not only related
to the load stress, but also has a close relationship with the
load frequency. These characteristics have also become the
challenge of studying the degradation and precision retaining
ability of machining equipment [5].

Precision retaining ability of machining equipment refers
to the ability of each precision index to remain within the
required range for a long time under normal operating con-
ditions [6]. According to the definition of precision retaining
ability, the precision retaining ability ofmachining equipment
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can be evaluated by the length of time for each precision index
to be kept within the required range, that is, the precision
retention time (PRT) [7]. Therefore, the prediction of PRT
is actually the prediction of useful life of machining equip-
ment. The existing life prediction theories mainly include
life prediction theories based on model and data-driven life
prediction theories. The former is based on the static charac-
teristic values such as the stress amplitude and the average
stress value. It is easy to cause estimation error because
the effect of load frequency on performance degradation is
ignored [8]–[10]. In addition, with the development of com-
puter technology, sensor technology and network technology,
the equipment life prediction method based on data-driven
has become a research focus. The operating vibration data
produced in the manufacturing process contains dynamic
information reflecting the state changes. Therefore, the key
information of the equipment condition can be determined
by monitoring the signals [11]–[13]. Some signal processing
methods, such as wavelet packet decomposition and neural
networks, have been used to extract features from vibra-
tion signals for equipment condition prediction [14]–[16].
However, the above method relies on a large number of
historical experimental data and lacks the consideration
of failure mechanism. Therefore, when the external load
changes, the prediction model will not be suitable for the
new environment. Taking the prediction method in [14] as
an example, the prediction error of the model is two to three
times that of the stable working condition when the operating
condition of the tool changes.

The flexibility in the use of equipment is caused by the
flexible product structure and customer requirements of con-
temporary manufacturing. The same machining equipment is
often used to perform multiple machining tasks. The degra-
dation law of equipment performance have a difference under
different processing tasks. Therefore, the accurate prediction
of PRT is inseparable from the consideration of machining
tasks. At present, some researches have been carried out to
predict the equipment life under various processing tasks.
Wang et al. [17] proposed a tool life prediction method to
solve the problem that tool life is difficult to predict accu-
rately due to the influence of processing tasks. The method
was based on the long short term memory network and
integrates the online learning module to realize the pre-
diction of tool life under variable working conditions.
Huang et al. [18] proposed a new multi-condition deep con-
volutional neural network model (MC-DCNN) to predict the
equipment life under multiple working conditions. Although
the above life prediction methods based on deep learning
consider various processing tasks, they rely on a large number
of historical experimental data. This kind of method can
accurately predict the equipment life under processing tasks
with historical data up to 95%, and the MSE of residual
life obtained by methods in [17] is only 2.93156 × 10−3.
For new processing tasks without a large amount of data
accumulation, the accuracy of life prediction is usually less
than 85%.

Some scholars regard the variation of machining tasks as
an uncertain factor affecting the performance of machining
equipment and predict the life of equipment based on the
stochastic process model. Sun et al. [19] proposed a hybrid
model combining random process with artificial intelligence
model. Aiming at the problem of tool wear, the relationship
between signal characteristics and tool wear quantity was
constructed by BP neural network. Then, the wear predicted
by BP neural network is modeled by wiener process and the
tool life can be predicted. This kind of life prediction method
based on stochastic process model can give a prediction
value with confidence level, considering the change of task
load in the process of equipment degradation. The result is
more reasonable. However, the parameter estimation in the
modeling process has a great influence on the accuracy of
the model and the performance degradation data which the
model depends on is difficult to obtain. In addition, it is
equivalent to simplifying the relationship between processing
tasks and equipment performance degradation by considering
the influence of machining tasks as an uncertain factor. This
will result in a large deviation in the forecast results. The
deviation is usually larger than the error of life prediction
method based on deep learning.

Based on the above considerations, it is necessary to com-
bine the traditional fatigue theory with the monitoring tech-
nology of the operation information to predict the precision
retention time of machining equipment. The machining task
load can be quantified through the equipment operation sig-
nal. And the relationship between task load and equipment
precision degradation will be studied to predict the PRT
under different machining tasks. The machining equipment
is always under the complex alternating load during the pro-
cessing. The energy information contained in the operating
vibration signal can more accurately reflect the stress infor-
mation and frequency information of the task load. Therefore,
it is realistic to take the operating information of equipment
as the load information and combine it with the fatigue theory
to predict the precision retention time of the equipment. The
operation vibration information of machining equipment is
composed of simple harmonics at multiple frequencies. The
change is random and cannot be expressed by explicit func-
tion. In consequence, the task load is treated as complex load
in this paper. In the time domain, the change of stress under
complex load is irregular, which requires a large number
of cycle counting. The amount of data being processed is
very large [10]. However, from the perspective of frequency
domain, the complex load information is not completely
indescribable. In order to reflect the comprehensive influence
of load frequency and load stress on equipment damage,
a method for calculating vibration energy spectrum based
on power spectrum density (PSD) analysis is proposed in
this paper. PSD is an important parameter in signal spectral
analysis. It is the statistical result of the structure response
under the excitation of random dynamic load. It is a relation
curve of power spectral density value to frequency value [20].
In the design of random vibration test, the researchers used
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PSD to simulate the external load of the product in actual
operation [21].

In this paper, a method to predict the precision retention
time of machining equipment by considering the action of
task load is presented. This method is suitable to solve the
problem of equipment precision degradation under the flex-
ible processing task. The rest of this paper is arranged as
follows: In section II, the calculation method of vibration
energy under simple load is analyzed in detail. In Section III,
the calculation method of energy spectrum under complex
loads is introduced. In Section IV, the specific process of
precision retaining time prediction based on F-E-T surface
is presented. In Section V, the proposed method is verified by
specific experimental data. Section VI summarizes the article
and looks forward to the future research direction.

II. VIBRATION ENERGY UNDER SIMPLE LOAD
A. DYNAMIC MECHANISM OF PRECISION DEGRADATION
A variety of processing tasks need to be undertaken by
machining equipment during its life cycle. The processing
task load is treated as a complex load. A complex load
can be decomposed into a series of simple loads at a sin-
gle frequency. In this section, the calculation method of
vibration energy with physical significance for the simple
load is proposed according to the principle of mechanical
dynamics [22].

Suppose that x(t) is a simple load related to simple har-
monic excitation force F(t), and its form is as follows:

x(t) = A cos(ωt + ϕ) (1)

In which, A is the amplitude of the device response signal
and ϕ is the initial phase Angle. The magnitude of A is
determined by the frequency ratio and the damping ratio,
as shown in (2) and (3).

A =
F
k
β = A0β (2)

β =
1√

(1− r2)2 + (2ζ r)2
(3)

In which, A0 is the equivalent static displacement, which
represents the displacement generated on the device after
the amplitude of the excitation force is statically processed.
k is the elastic modulus of the material, which reflects the
stress-strain law of the material in the static environment.
β is the displacement amplification coefficient. The closer
the load frequency is to the sensitive frequency of the struc-
ture, the greater the displacement amplification coefficient is.
r = ω/ωn is the frequency ratio. ξ is the damping ratio.

Both the stress amplitude and the vibration frequency will
affect the precision degradation of machining equipment.
Therefore, vibration energy is proposed to reflect the com-
prehensive effect of stress amplitude and vibration frequency
on the equipment. According to the definition, mechanical
energy is the sum of kinetic energy and potential energy.
So, the mechanical energy of the equipment subjected to the

load is:

E =
1
2
kx2 +

1
2
mv2 (4)

The elastic coefficient k = mω2
n. The velocity ν can be

obtained by taking the derivative with respect to x(t).

v = −Aω sin(ωt + ϕ) (5)

By substituting the value of k , v and x into the mechanical
energy expression, the instantaneous mechanical energy E
can be obtained after simplification.

E =
mA2

4

[(
ω2
+ ω2

n

) (
ω2
n − ω

2
)
cos 2 (ωt + ϕ)

]
(6)

From the above equation, it can be seen that the mechan-
ical energy borne by the equipment caused by the load is
composed of two parts, one is a constant independent of
time, the other is a variable with time. The magnitude of
the instantaneous energy is proportional to the square of the
response displacement x(t).
After a long period of steady-state operation of the equip-

ment, if the time is T , the total mechanical energy of the
equipment is the integration of instantaneous energy with
time T :

ET =

t=T∫
t=0

Edt

=

t=T∫
t=0

mA2

4

[(
ω2
+ω2

n

)
+

(
ω2
n−ω

2
)
cos 2 (ωt+ϕ)

]
dt (7)

If the equipment runs for a long time and T is much greater
than cos2(ωt + ϕ), the simple harmonic vibration can be
neglected in the total mechanical energy of the equipment,
which is abbreviated as:

ET ∼=
T
4
mA2

(
ω2
+ ω2

n

)
(8)

The external load is doing work on the equipment all the
time and the dissipated energy of the device is constant.
Since the energy borne by the equipment is proportional to
the time, the energy will gradually accumulate over time.
However, the energy bearing capacity of the equipment is
limited. When the energy is accumulated to a certain degree,
the stability and precision retaining ability of the equipment
will be destroyed [23]. Therefore, the dynamic mechanism
of equipment precision degradation is also analyzed from the
perspective of energy accumulation by the above equations.

B. CALCULATION OF VIBRATION ENERGY
In order to reflect the influence of vibration frequency ω on
vibration energy, the expression of displacement amplifica-
tion coefficient is substituted into the expression of cumula-
tive vibration energy:

ET =
T
4
mA20 · β

2
(
ω2
+ ω2

n

)
=

T
4
mA20 ·

(
r2 + 1

)
ω2
n(

1− r2
)2
+ (2ζ r)2

(9)
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The accumulated energy dissipated in the form of vibration
is calculated by the above formula. It can be seen that the
vibration energy accumulates linearly with time under the
same load. The vibration energy per unit time is more repre-
sentative of the size of the simple load. Therefore, the vibra-
tion energy defined in this paper is the instantaneous energy,
as shown in (10):

E =
1
4
mA20 · β

2
(
ω2
+ ω2

n

)
=

1
4
mA20 ·

(
r2 + 1

)
ω2
n(

1− r2
)2
+ (2ζ r)2

(10)

When the damping ratio ξ is constant, the change curve
of vibration energy E with frequency ratio r is shown
in Figure 1.

FIGURE 1. The relation between vibration energy and frequency ratio
under simple load.

The relation between vibrational energy and frequency
ratio can be discussed through the Figure above. Under the
initial conditions or when the frequency ratio r → 0,
the displacement amplification coefficient is close to 1. The
response displacement of the equipment is close to the initial
static displacement. However, with the increase of load fre-
quency, when r < 1, the vibration energy borne by the equip-
ment gradually increases. The maximum value is reached
at the time point close to 1 but less than 1. When r = 1,
resonance phenomenon occurs, and the vibration energy is
relatively large. When r > 1, the vibration energy gradually
decreases. And when r is much greater than 1, the vibration
energy of the system gradually approaches zero. Therefore,
it can be concluded that if the external load has the same
amplitude, the excitation effect of different frequency loads
on the same equipment failure mode is also different. The
closer the load frequency ω is to the sensitive frequency ωn,
the greater the vibration energy of the equipment. Vibration
energy is a physical quantity which can reflect the combined
action of load amplitude and vibration frequency.

According to the calculation of vibration energy, if the
load amplitude A0, load frequency ω and the sensitive fre-
quency ωn corresponding to the precision index n are known,
the vibration energy causing degradation of the precision

index n can be obtained. When the specific form of the
response signal x(t) of the load is unknown, the above param-
eters can be obtained by collecting the operation information
of the equipment.

III. ENERGY SPECTRUM UNDER COMPLEX LOADS
A. ESTIMATION OF POWER SPECTRUM
The vibration energy of the above simple load only considers
the influence of simple harmonics at a single frequency.
In the actual manufacturing process, the processing task is
a complex load, which is formed by the simple harmonic
superposition of multiple frequencies. Therefore, it is neces-
sary to comprehensively consider the energy of several simple
harmonics from the perspective of frequency domain and
draw the energy spectrum of the equipment. According to the
conclusion of the previous section, the operation information
can provide important information for the expression and
quantification of the processing task load.

Empirical mode decomposition (EMD) algorithm and cor-
relation analysis can be used to select the sensitive frequency
ωn for precision index n. EMD is used to decompose the
running signal into multiple modes (IMF). The decompo-
sition process amplifies the smaller frequency peaks in the
original signal and separates different frequency components.
Through the correlation analysis of frequency peak and pre-
cision index, the frequency that is most sensitive to precision
index n is obtained as the sensitive frequency ωn. With the
degradation of equipment precision, the measured values of
frequency peaks and precision index will change. Assuming
that a signal has M frequency peaks, M sets of variables of
the frequency peaks and precision index can be obtained in
the process of precision degradation. The correlation coeffi-
cients of each set of variables with the same dimension are
calculated separately. The calculation formula of correlation
analysis is as follows.

ρ(ai, bn) =

∑
(ai − ai)(bn − bn)√∑

(ai − ai)2
√∑

(bn − bn)2
(11)

In which, ai is a set of variables consisting of the peak
frequency of group i; bn is a set of variables consisting of the
measured value of equipment precision index n ; ai and bn
are the mean values of the variables ai and bn respectively.
A certain running signal and the three modes decomposed
by EMD are shown in Figure 2. The value of the correlation
coefficient between the three frequency peaks and precision
indexes is calculated respectively. The greater the absolute
value is, the more sensitive the frequency band is to the
precision index.

In addition, PSD is a very important characteristic in
the analysis of stationary random signals in the frequency
domain. It is similar to the amplitude spectrum. But its calcu-
lated value is the amplitude squared [20]. The calculation is:

SX ( f ) =
∫
∞

−∞

RX (τ )e−j2π f τdτ (12)
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FIGURE 2. A certain running signal and the three modes decomposed by EMD.

In which, RX (τ ) is the autocorrelation function of the original
signal x(t). The distribution of the operating signal on the
frequency is obtained by PSD analysis, which represents the
distribution of current processing task load at different fre-
quencies. The power spectrum of task load can be estimated
by using the power spectrum density obtained from multi-
ple samples. Since the power spectrum is a relation curve
between the power spectrum density and the frequency value,
the complex load can be divided into several simple loads
through the PSD analysis. And the square of the amplitude
A20 and its corresponding frequency ω can be obtained. G is
assumed to be the power spectrum density of a simple load.
So, the power spectrum of complex task loads is calculated to
be G(ω).

B. CALCULATION OF ENERGY SPECTRUM
The amplitude spectrum of complex loads is obtained by anal-
ogy with the calculation method of vibration energy under
simple load.

[A (ω)]2 = [β (ω)]2 · G (ω) (13)

When the sensitive frequency ωn corresponding to the pre-
cision index n and the power spectrum G(ω) of the complex
task load are known, the energy spectrum E(ω) resulting in
the degradation of the precision index n can be obtained as
follows:

E (ω) =
1
4
mG (ω) · [β (ω)]2

(
ω2
+ ω2

n

)
=

1
4
mG (ω) ·

(
ω2
/
ω2
n + 1

)
ω2
n(

1− ω2
/
ω2
n
)2
+
(
2ζω

/
ωn
)2 (14)

An example of the time domain waveform x(t), power spec-
trum G(ω) and energy spectrum E(ω) under the complex
loads are shown in Figure 3. The power spectrum G(ω)

FIGURE 3. Time domain waveform, power spectrum and energy spectrum
under the complex loads.

reflects the frequency distribution of the complex load ampli-
tude. Based on the power spectrum, the calculation of energy
spectrum E(ω) takes into account the sensitive frequency of
precision index n. It can be seen from the figure that the
vibration energy causing the equipment precision degradation
is more concentrated near the sensitive frequency 5KHz due
to the influence of the load frequency. At the same time,
the vibration energy is not strictly subject to the variation law
of simple load with frequency in Figure 1 due to the influence
of load amplitude. Therefore, the vibration energy reflects the
comprehensive effect of the amplitude and frequency on the
degradation of the equipment precision.

144160 VOLUME 8, 2020



W. Dai et al.: Precision Retaining Time Prediction of Machining Equipment

IV. EXPERIMENTAL SETUP AND DATA ACQUISITION
A. F-E-T SURFACE BASED ON FATIGUE LIFE CURVE
As the equipment is working for a long time, the equip-
ment may be out of precision due to damage accumulation.
According to the cumulative damage rule, damage will occur
inside the equipment under each load. From the perspective of
frequency domain, it is considered that with the accumulation
of load energy at each frequency, damage will also occur
inside the equipment. The equipment precision is out of
tolerance when the load energy at any frequency accumulates
to a certain value. Therefore, the precision degradation under
single frequency is similar to the fatigue problem under stress.

The fatigue life curve is a very important tool in the fatigue
analysis of materials. The curve takes the number of cycles
N when the material reaches failure as the abscissa and the
maximum stress σ on the specimen as the ordinate. Stress
includes bending stress, tensile stress and compressive stress.
Since stress and strain begin with the letter S in English, these
three curves are also collectively referred to as S-N curves.
In the stage of high cyclic fatigue, the power series equation
can be used to describe the relationship between cyclic times
and fatigue stress [24]:

σmN = C (15)

In which, σ is the stress level; N is the number of cycles,
that is, the fatigue life; m and C are constants related to the
material. It can be seen that the number of cycles of the
material is a finite constant in the region of finite life.
The greater the stress, the smaller the fatigue life. If the
logarithm is taken from both sides of the above equation,
the following equation can be obtained:

lg σ = (lgC − lgN )/m (16)

In log-log coordinates, the S-N curve is a straight line with a
slope of −1/m [25].
Based on the characteristics of S-N curve of fatigue life,

the functional relationship among load frequencyF , vibration
energy E and precision retention time T is used to deduce the
F-E-T surface and the E-T curve at each frequency.

B. CALCULATION OF THE PRECISION RETENTION TIME
Since the energy of complex load exists in a continuous
frequency range, the functional relationship among load fre-
quency F , load energy E and precision retention time T will
form a surface in the three-dimensional space. The F-E-T
surface is used to estimate the precision retention time of the
equipment under complex loads. The F-E-T surface refers to
a series of E-T curves corresponding to different frequencies.

When F is constant, an E-T curve is formed by taking
the load energy E as the independent variable. According to
the nominal stress method, the relationship between the load
stress σ and load times N under constant amplitude loads
satisfies the following [24].

σmN = σm
−1N0 = C (17)

Since σ ∝ A, let σ = cA (c is a constant). The vibration
energy in unit time of simple load can be expressed as:

EC =

t=2π/ω∫
t=0

Edt =
π

2ω
mA2(ω2

+ ω2
n) (18)

From the above equation, EC = cEσ 2 (cE is a constant)
can be obtained. In addition, N ∝ T . Therefore, (16) can be
converted into (19):

Em/2C T = C ′ (19)

In which, C ′ is a constant, considered to be the cumulative
limit of the energy that the equipment can withstand. It is
determined by the type of precision index. m is a constant.
It is the same as m in the nominal stress method.

When considering a precision index n, it is considered that
the load energy and precision retention time at each frequency
obey the E-T curve derived above. When the total energy of
the equipment at any frequency accumulates to C ′, the equip-
ment precision is out of tolerance. The precision retention
time corresponding to the load energy Ei at frequency ωi is:

lgTi = −
m
2
lgEi + lgC ′ (20)

The equipment precision is out of tolerance when the accu-
mulated energy at any frequency exceeds the threshold. Then
the precision retention time T considering the precision
index n is:

T = min{Ti} (21)

The prediction method of the precision retention time
based on F-E-T surface is described by the above two
formulas. The F-E-T surface can be fitted by using the preci-
sion retention time data and running signal data of the same
type of equipment under the historical task. According to the
fitting result, the value of parameterm andC ′ can be obtained.
When the above parameters are known, the operation infor-
mation of the equipment under a certain task can be collected,
and the precision retention time under the current task can be
calculated. The framework for the PRT prediction model is
shown in Figure 13.

V. METHOD VALIDATION AND APPLICATION
A. CUTTING TEST AND DATA COLLECTION
In order to verify the availability and effectiveness of the
proposed method, the operation information is obtained by
cutting test. The prediction model of PRT under different
working conditions is established. A 5-axis CNC machine
tool DMG CTX gamma 395 2000TC was used for the
test. The tool was carbide turning tool. In the experiments,
the vibration signals in three directions (X , Y and Z ) during
cutting process were collected by a PCB 356A32 triaxial
acceleration sensor. The outer diameter of the workpiece
after cutting is measured by caliper. Based on the machining
requirements, when the diameter deviation of the outer circle
exceeds 10% of the specified diameter, the precision of the
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machine tool is out of tolerance. In this case, 10% of the
diameter is equal to 0.16mm. The acquisition and installation
of cutting vibration and experimental environment are shown
in Figure 4.

FIGURE 4. The experimental environment.

In this test, the processing task is designed based on the
actual processing condition of a solid cylindrical workpiece.
A total of six different tasks are included. Variables include
feed and spindle speed. Task Numbers are a, b, c, d, e and f ,
as shown in Table 1. During the test, the cutting tools were cut
in six task modes. In each task mode, the same lathe tool was
used to continuously cut the surface of the workpiece. The
outer diameter of the workpiece and vibration signals were
collected in this process. The outer diameter was measured
every two minutes for the task. When the diameter deviation
of the outer circle reaches 0.16mm, the current processing
task should be stopped and the next task should be carried out
with a new cutter of the same type. This process is repeated
until all six tasks are completed. The experimental data set
contains six groups of cutting test data. Each group of data
includes the vibration signals of X , Y and Z dimensions and
the corresponding cutting time when the precision is out of
tolerance. In this case, four groups of data were selected as the
training set to establish the F-E-T surface and the other two
groups were used as the test set to evaluate the effectiveness
of the prediction method of PRT.

TABLE 1. Task parameters.

B. VERIFICATION OF F-E-T SURFACE
EMD algorithm and correlation analysis were used to select
the frequency sensitive to the diameter deviation of the outer
circle. The Figure 5 shows the frequency domain analysis of
the first IMF at different stages for Task c. (a) is the vibration

in the x-direction at the initial stage. (b) is the vibration in the
x-direction of the intermediate stage. (c) is the vibration in the
x-direction in the later stage. It can be seen that the amplitude
of three frequency bands has obvious changes.

FIGURE 5. The frequency domain analysis at different stages for Task c.

According to the test design, three groups of frequency
peak variables corresponding to three frequency bands and
a group of variables with diameter deviation of outer circle
can be obtained in the process of precision degradation. Based
on (11), The correlation coefficients between the three groups
of frequency peak variables and the diameter deviation vari-
ables of outer circle were calculated respectively. The results
are shown in Table 2. According to the results, the frequency
range of vibration signals sensitive to diameter deviation
in this case is 11.2-11.4KHz. So, the frequency ωn that is
most sensitive to diameter deviation in this case is considered
as 11.3KHz.

TABLE 2. Correlation coefficients for vibration with diameter deviation.

Next, the frequency distribution of vibration signals under
four kinds of tasks was obtained by PSD analysis. For each
task, ten groups of vibration data were selected as samples.
The mean points of PSD at each frequency were taken to
obtain the power spectral lines of the four loads, as shown
in Figure 6. The black dashed line in the Figure is the
load power spectrum of the cutting task. (a) (b) (c) (d) is
the task number that representing four cutting tasks. The
energy spectrum of four kinds of task loads were calculated
by (13) and (14), as shown in Figure 7.

The failure threshold of diameter deviation under cur-
rent machining requirements is 0.16mm, so the cutting time
corresponding to 0.16mm is selected as the PRT of the
machine tool. According to test data, a three-dimensional
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FIGURE 6. The load power spectrum of the cutting tasks.

FIGURE 7. The energy spectrum of the cutting tasks.

surface (F-E-T diagram) reflecting the relationship among
load frequency F , vibration energy E and precision retention
time T can be obtained, as shown in Figure 8.

According to the analysis in part IV, the energy and PRT of
each frequency obeys the sameE-T curve. Therefore, the PRT
under each task is determined by the maximum point of each
energy spectrum line and the calculated results are shown
in Table 3. It can be seen from the calculation results that the
actual PRT of the machining tool decreases with the increase
of vibration energy, which is consistent with the conclusion of
qualitative analysis. The relationship between the maximum
load energy E and precision retention time at any frequency
ωi is shown as Figure 9.

FIGURE 8. The relationship among load frequency, vibration energy and
PRT.

TABLE 3. The calculated results of each task.

The curve in Figure 9(a) is obtained by fitting the data.
When the PRT reaches 107, the vibration energy tends to
zero. It is consistent with the expected result of theoretical
derivation. However, as the E-T curve is an exponential rela-
tion curve, the accuracy cannot be verified. So, the double
logarithmic curve is drawn, as shown in Figure 9(b). It can be
seen that the double logarithmic E-T curve is basically linear.
The model fitting results are shown in Table 4. According
to the fitting parameters, it is reasonable to use F-E-T curve
to describe the relationship among load frequency, vibration
energy and PRT.

TABLE 4. Linear fitting parameters and results.

C. PREDICTION OF PRT AND METHOD VERIFICATION
In order to verify the feasibility of the PRT prediction method
based on F-E-T surface, this paper uses the same training data
to train the prediction model proposed by Wang et al. [17].
The relative errors of the two methods are calculated and
compared.

According to the fitting results, the parameter
a = −0.3732 and b = 3.259 in the double logarithmic
E-T curve. So, the specific expression of the E-T curve is:

lg(Ei) = 3.259− 0.3732 lg(Ti) (22)
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FIGURE 9. The relationship between the maximum load energy and PRT.

FIGURE 10. The energy spectrum of Task e and Task f.

From the above equation, it can be deduced that under a single
frequency ωi, the expression of precision retention time Ti
changing with load energy Ei is (23).

lg(Ti) = 8.7326− 2.6795 lg(Ei) (23)

The energy spectrum of Task e and Task f are calculated
by (13) and (14), as shown in Figure 10. According to the
F-E-T surface parameters, the predicted PRT under Task e
and Task f can be obtained. The predicted PRT value was
compared with the actual value obtained from the experiment
and the results are shown in Table 5.

TABLE 5. Comparison of predicted and actual PRT obtained by the
method in this paper.

The prediction model proposed by Wang can also be used
to obtain the time prediction value and relative error when
the diameter deviation of the outer circle reaches 0.16mm
under Task e and Task f . The calculation results are shown
in Table 6.

By analyzing the data in Figure 11 and Figure 12, it can
be seen that the method based on F-E-T surface in this paper

TABLE 6. Comparison of predicted and actual PRT obtained by the
method proposed by Wang.

FIGURE 11. The comparison between the predicted PRT and the actual
PRT.

has a great improvement in the accuracy of PRT prediction
compared with the method proposed by Wang. The method
proposed by Wang relies on the training data of the model.
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FIGURE 12. The comparison of relative error results.

FIGURE 13. The framework for PRT prediction model.

Therefore, the prediction results of PRT under processing
tasks without a large amount of data accumulation are not
ideal. The prediction method based on F-E-T surface has an
obvious effect on improving the prediction accuracy when the
processing task changes, which indicates that the prediction
method proposed in this paper can effectively solve the PRT
prediction problem under flexible processing task.

VI. CONCLUSION
In this paper, a prediction method of the PRT based on
operating vibration information of machining equipment was
studied, which could quantify the task load by monitoring
the sensor signals during operation. Firstly, according to the
principle of mechanical dynamics, the calculation method
of vibration energy with practical physical significance was
proposed for the simple load at a single frequency. It was
also proved that the vibration energy was a physical quantity
which can reflect the combined action of load amplitude and
frequency. Secondly, the complex loads were expressed by
energy spectrum in frequency domain, and the calculation
formula of load energy spectrum was derived. The EMD
algorithm, correlation analysis and PSD analysis were used
to process the operating information of the equipment. The
result was taken into the energy spectrum formula to calculate
the energy spectrum of the task load. Thirdly, according
to the characteristics of S-N curve and the historical test
data, the F-E-T surface reflecting the relationship among load
frequency, vibration energy and precision retention time was
obtained. This surface was used to predict the precision reten-
tion time of the equipment under a certain processing task.
Finally, the dimensional precision degradation of workpiece
during cutting is taken as an example to verify the feasibility
of the method. The logarithmic E-T curve of vibration energy
and precision retention time was basically linear, where the
RootMean Square Error (RMSE)was 0.0386, and the relative
error of prediction results was controlled within 8.58%.

In the future, this method will be improved to solve the
problem of equipment precision degradation under flexible
machining tasks. For the machining equipment, the research
of equipment precision degradation considering the change
of task loads is more practical and this paper provides a
methodology on the expression and calculation of complex
loads from the dimension of frequency analysis. According
to the expression of vibration energy spectrum, the effective
parameters affecting the task load are vibration amplitude
and vibration frequency. The larger the vibration amplitude,
the greater the vibration energy under the task. The closer
the vibration frequency is to the sensitive frequency of the
precision index, the greater the vibration energy is. The degra-
dation of precision index is accelerated by vibration energy.
In engineering, the degradation of equipment precision can
be delayed and the machining precision can be improved by
controlling the load amplitude and keeping the load frequency
far away from the sensitive frequency of the precision index.
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