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ABSTRACT A holonic multi-agent system combines the concept of a holon with a multi-agent system;
this combination has been proven to be an effective way to build a complex system. Great progress has
been made in this area, but previous studies are fragmented and lack of a task-based perspective to model
different systems in the real world. Therefore, this article proposes a formalistic model for HMAS from
a task-based perspective. Not only the static organizational structure is designed, but also the dynamic
running mechanism, including the self-adaptive mechanism and the task assignment mechanism based on
the proposed holonic structure, are also discussed. Finally, a case study is provided to verify the self-adaptive
mechanism. The experimental results show that our proposedDHMAShas the ability to adapt to the changing
environment, and performs better in terms of the success rate and the response time when the system is
heavily loaded.

INDEX TERMS Holonic multi-agent system, multi-agent system, organizational structure, self-adaptive
mechanism, task-based perspective.

I. INTRODUCTION
The open and heterogeneous network environment makes the
scale of software larger and larger, and the distribution of soft-
ware more and more extensive, which leads to an increase in
the complexity of software systems [1], [2]. Next-generation
software systems have exhibited some typical character-
istics, for instance, a large number of functional compo-
nents, distributed control and storage, nonlinear processes,
dynamic and open operating environments, and unpredictable
unit interactions [3]–[6], which highlight the needs for
new approaches of software system development [7]–[11].
A multi-agent system is a computerized system composed
of multiple interacting intelligent agents within an envi-
ronment. A Holonic Multi-agent System (HMAS) refers to
a multi-agent system in which the agent is assigned to a
self-similar nesting called a holon. It has been proved that
HMAS is a promising approach for complex system design,
because of the characteristics of flexibility, intelligence and
scalability it offers [12]–[14]. Nevertheless, due to the rela-
tively young age of the researches in HMAS, the approaches
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for designing the software systems based on HMASs are still
immature [15], [16]. The previous studies are fragmented and
lack systematic. To achieve system goals, HMAS must per-
form different tasks from the environment. However, the per-
spective of task-based model is ignored when the existing
studies discuss HMAS. Therefore, this article studies HMAS
from a task-based view, the research problems we want to
discuss are given below:

¬. Organizational Structure: How to design a flexible
holonic structure? How to manage a holon? How to model
the required information for a holon? For instance, how to
define the cost, and how to represent a task?

­. Self-adaptive mechanism: For complex software sys-
tems, the changes of environment and user demands that may
occur during the runtime. Therefore, how can HMAS based
on a specific organizational structure provide a self-adaptive
mechanism to adapt to the new requirements in a constantly
changing environment? When to trigger the self-adaptive
mechanism, and which adjustments should HMAS make?

®. Task assignment mechanism: Dynamic task assignment
is a problem that HMAS must solve. The change of envi-
ronments outside the system requires the system to allocate
new tasks that occur dynamically, and the changes in the
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computing resources of members within the system will also
affect the allocation of new tasks. Reasonable task assignment
mechanism is significant for HMAS, helping save system
cost and improving resource utilization. However, there is
less study on the task assignment mechanism for HMAS.
A task environment has a direct impact on the management
of the organization. Therefore, for a specific organizational
structure, how to reasonably assign new tasks to improve the
resource utilization rate of the system?

This article makes an attempt to explore the above issues
by proposing a formalistic model for building complex and
dynamic software systems based on HMAS. Our contribution
is that, from a task-based perspective, we discuss the static
organizational model and dynamic running mechanism of
HMAS. The static organizational structure is designed. The
dynamic self-adaptive mechanismwhich ensures the success-
ful execution of the tasks, and the task assignment mecha-
nism based on the proposed organizational structure, are also
presented. The HMAS based on our proposed static organi-
zational structure and dynamic running mechanism is called
Dynamic Holonic Multi-agent System (DHMAS). We also
provide a case study, that is, a metasearch engine based on
DHMAS. The experimental results show that DHMAS has
the ability to trigger the self-adaptive mechanism to adapt
to the new requirements. Compared to the baseline, the pro-
posed DHMAS guarantees the success rate and the response
time of the system.

The rest of this article is organized as follows.
Section 2 introduces the related work. Section 3 describes
the details of DHMAS, including the organizational structure,
self-adaptive mechanism and task assignment mechanism.
Based on the proposed DHMAS, Section 4 provides a case
study and the experimental results. Finally, conclusions and
future work are presented in Section 5.

II. RELATED WORK
HolonicMulti-Agent Systems evolved fromMulti-agent Sys-
tems which based on hierarchy structure [17]. HMAS has
attracted the attention of scholars in many fields, such as
intelligent transportation systems [18], distributed sensor
network management [19], supply chain management [20],
urban traffic control [21], et al. A lot of researches focus
on how to use HMAS to solve problems in a specific appli-
cation. Reference [22] has analyzed the holonic paradigm
in biological network simulation to employ their abilities,
such as self-organization, autonomy, distribution and so on.
An internal holon architecture is designed. Each holon has
all of the agent abilities in its agent part. Moreover, it has
a rule engine and a knowledge base. The decision center of
the holon makes use of its rule engine to decide in different
situations. This knowledge base helps the holon to distinguish
between its upper- and lower-level holons. [21] has used a
holonic multi-agent system to model a large traffic network
to reduce the complexity of the system. A traffic network
containing fifty intersections is partitioned into a number
of regions, and holons are assigned to control each region.

The holons are hierarchically arranged in two levels, intersec-
tion controller holons in the first level and region controller
holons in the second level. [23] has focused on the notion of
the role of a Holonic MAS (HoloMAS) and its contribution
to the adaptive control of manufacturing systems. A holonic
multi-agent system (HoloMAS) using roles to provide an
adaptive control system for manufacturing systems is pro-
posed, and the HoloMAS proposal is also validated using
simulations and through a real implementation on a flexible
assembly cell. Reference [24] has presented the application
of holonic organization to reduce multi-agent system com-
plexity in the modeling of a large SIP network. Holonic
organization is a hierarchical structure in which each holon
covers a geographical area of the SIP network at the first level.
At the second level, upper-level holons control the first-level
holons, and so on. Overload control is achieved by communi-
cation and the exchange of knowledge between the intelligent
holons. Experimental results show that the proposed method
prevents overload in the SIP network. Reference [25] has
presented a goal-based holonic multi-agent system (HMAS)
for the operation of power distribution systems and discussed
various operating modes and associated goals. Then, the role
of HMAS is demonstrated for two applications in distribution
systems, one associatedwith control of reactive power at solar
photovoltaic installations in individual homes for optimal
operation of the system and the other dealing with state
estimation of a system leveraging different measurements
available from smart meters in homes. Reference [20] has
proposed a preliminary framework of a holonic multi-agent
model for supply chain management in the oil industry,
synthesized the basic concepts, and analyzed a case study.
Reference [19] has utilized a holonic multi-agent system to
study control architectures and control methods that are appli-
cable to the management of sensors for tactical surveillance.
The hierarchical and recursive structure of a holonic architec-
ture provides the required flexibility and robustness without
deviating significantly from the current military command
structure.

Some researchers studied the self-organization mechanism
for HMAS. Reference [26] has introduced a holonic frame-
work to model and engineer complex systems., the concept
of capacity is prposed as the description of agents know-how.
The role specification is based on the description of required
know-hows, described using capacities. To play a role,
a holon has to possess an implementation (that would be
specific according to its architecture) for each required capac-
ity. In the proposed approach, the super-holon has the abil-
ity to obtain new capacities from the collaboration of its
members by instantiating specific organizations. Finally, self-
organization mechanisms allowing a holon to dynamically
change its set of capacities and so achieve its new goals.
[27] has proposed a self-organizing algorithm for holonic
multi-agent systems, which is based on the local information
of the agents about others agents they can communicate
with. The proposed method assumes an interaction networks
among the agents of a multi-agent system and constructs
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the holonic structure in a bottom-up approach, which used
common social concepts. There is no central unit for building
and controlling the holarchy in this model, and the whole
process is controlled by themember agents, according to their
local information about themselves and their neighbors in a
multi-agent network. Reference [28] has proposed an evolu-
tion to the ADACOR holonic control architecture inspired by
biological and evolutionary theories. A two-dimensional self-
organization mechanism is designed taking the behavioural
and structural vectors into consideration. The behavioural
self-organization, found at micro-level, which allows the sys-
tem to respond smoothly to perturbations, and the structural
self-organization, displayed at macro-level, which lets the
system react more drastically. Reference [29] has introduced
a suggestive model for holonic systems, callled Holonic
Social Systems (HOSSs). A class of Petri nets is developed
to control and manage physical resources and information
data. To design the holons, all aspects of the system should
be analyzed using the Petri nets. By using fuzzy set and
uncertainty theoretical concepts, [30] has constructed a math-
ematical foundation for modeling MAS, where appropriate
holonic structures are identified. This approach opens new
possibilities for the design of any distributed system that
needs self-organization as an intrinsic property.

Holonic multi-agent systems exhibit flexibility, intelli-
gence, and hierarchy, and they are significant for the building
of complex systems. However, most previous studies focus
on how to use HMAS to model specific systems in various
application areas. Although some researches pay attention
to the self-organization mechanism for HMAS, the existing
studies are still fragmented to model different systems in the
real world and lack of task-based perspectives. The research
contents of these related works are analyzed, as shown in
TABLE 1. It can be seen, except [27], other studies have
not fully discussed the organizational structure, self-adaptive
mechanism, and task assignment mechanism for HMAS.
Although [27] studies these three aspects in a task envi-
ronment, it does not consider how to adapt to the environ-
ment when task failed. Therefore, this article proposes a
formalistic model for HMAS from a task-based perspective.
Our contribution is that, not only the static organizational
structure is designed, but also the dynamic running mech-
anism is discussed, including the self-adaptive mechanism
which ensures the successful execution of the tasks, and the
task assignment mechanism based on the proposed holonic
structure.

TABLE 1. Research contents of the previous studies.

III. PROPOSED MODEL
A complex system implements various tasks to achieve the
system’s global goal, and the success rate of task execution
has an important impact on the performance of a system. Due
to changes in the external or internal environment, new tasks
may continue to be generated in the system, or the tasks that
have been assigned cannot be completed, etc. Therefore, it is
significant to study a system from a task-based perspective.
However the previous studies about HMAS seldom describe
the system by a task-based model. Therefore, this article pro-
poses a novel Holonic Multi-agent System for complex and
dynamic systems in a task-based perspective. In this section,
the organizational structure of DHMAS is introduced. Fur-
thermore, the task assignment strategy and the self-adaptive
adjustment mechanism are designed as well.

A. ORGANIZATIONAL STRUCTURE
The holon is the core of DHMAS. The well-designed
holonic structure effectively combines the holons and MAS.
In HMAS, a holon often provides a specific function. The
structure of a holon consists of three parts, as shown in
FIGURE 1.

FIGURE 1. Model of a holon.

¬. a Decision Module, as the intelligent control center of
a holon, it is responsible for recognizing and decomposing
tasks, monitoring states, adjusting the competitiveness and
structure adaptively, and assigning the tasks to execution units
(holons or agents) according to the function and compet-
itiveness of each execution unit in the Execution Module.
The Decision Module has the global information of a
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holon, to ensure the successful execution of task. Moreover,
the Decision Module includes: a). a Center Agent, receives
the environmental requirements, and decomposes the task
into several subtasks. The Center Agent also plays the role of
the head of the holon, providing the means for communica-
tion with the external holons and function agents. The Center
Agent is responsible for assigning tasks to the execution
units according to the task assignment strategy generated by
the Task Assignment Module as well; b). a Function Map,
which is the functional yellow page, recording the function
of the current holon and providing the ability to communi-
cate with the execution units that perform the subfunctional
task. Moreover, the Decision Module monitors the change
of the competitiveness of each execution unit based on the
record of the Function Map. When the structure of the holon
changes, the Function Map must be modified at the first time.
Therefore, the Function Map corresponds to the structure of
the holon in real-time. Based on such constraints, the Task
Assignment Module can find an execution unit efficiently;
c). a Task Assignment Module, which is the task assignment
center of the holon. A task is composed of a set of subtasks
with a specific collaboration order at first. Then, according to
the task assignment algorithm, the Task Assignment Module
generates a task assignment strategy to find the appropriate
execution units to perform the subtasks; d). a Self-adaptive
Adjustment Module, which is the center for monitoring and
adjusting the state of the holon. It monitors theWaitingQueue
and Execution Queue in the task queue, dynamically adjusts
the competitiveness of the holon in real-time during the run-
ning of the system, and feeds back the change of self-states to
its parent holon through the Center Agent. Meanwhile, when
some tasks failed to execute or the waiting tasks have been
polarized, the Self-adaptive Adjustment Module will trigger
the structure adjustment of the holon to achieve the purpose of
adapting to the environment of the current task by scheduling
the computing resources from other execution units.

­. an Execution Module, is composed of several indivisi-
ble Function Agents or Holons at low levels. It is responsi-
ble for completing a specific functional task. As shown in
FIGURE 1, to complete a task, these Agents and Holons
might interact with each other by sending messages. Each
Function Agent still retains its own perception, and auton-
omy. When the assigned tasks conflict with the current local
environment, the Function Agent can refuse to perform the
tasks according to the actual situation and return the results of
task failed to the parent Holon. At this time, the parent Holon
will adjust its structure to ensure the task could be executed
successfully.

®. a Task Queue, consists of a Waiting Queue and an
Execution Queue, reflecting the current load state and task
execution progress, respectively. A holon obtains changes of
the competitiveness according to the status of the TaskQueue.

The organizational structure of DHAMS is shown in
FIGURE 2, which is an example of a three-level hierarchical
structure. Holons in level 2 receive the system requirements
from the environment. The Decision Module which includes

FIGURE 2. An example of a three-level hierarchical structure of DHMAS.

a Center Agent, a Task Assignment Module, a Function Map,
and a Self-Adaptive Adjustment Module, is responsible for
decomposing the tasks and assigning the subtasks to the
Function Agents and the sub-holons which in the Execution
Module. The sub-holon in level 2 also includes a Decision
Module, an Execution Module, and a Task Queue. When
the subholon receives the tasks, the Decision Modules in
the subholon will determine whether the tasks need to be
decomposed further, and assign the subtasks to the Function
Agents and the subholons in level 1. After receiving the
tasks, the subholons in level 1 will first analyze the tasks,
and their Decision Modules will decompose the tasks, and
assign the tasks to the Function Agents in Level 0. Because
the DecisionsModule of the subholons found that all the tasks
could be performed by the Function Agents in Level 0. The
tasks which received by Level 0 will no longer decomposed,
and a three-level hierarchical structure is built. It is worth
noting that a Function Agent and a subholon could belong
to different parent holons, as shown in Level 0 in FIGURE 2.

1) THE DEFINITION OF FUNCTION AND COMPETITIVENESS
Function and competitiveness are the important attributes for
a Holon.

Each execution unit provides a function based on its skill.
The description of a function at least contains a name. For
example, a Holon has the skill of analyzing a user’s interested
webpages, then the function of this Holon can be named as
UserInterestsObtaining.

The function provided by a holon in DHMAS is uniquely
determined by the structure, and a function may be com-
posed of some subfunctions from subholons or Function
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Agents. For example, holon H0 provides function X, writ-
ten as Func_X . Moreover, function X is composed of func-
tion Y provided by holon H1 and function Z provided by
holon H2. Therefore, the function of H0 can be expressed
as (1):

Func_X = {Func_Y ,Func_Z } (1)

The functions in DHMAS can be divided into two
categories. One is a composite function, represented as
‘‘Func’’; such functions are composite functions that can be
further divided. The functions of most holons are compos-
ite functions. The other type is an atomic function, repre-
sented as ‘‘func’’; such functions cannot be further divided.
In DHMAS, only a Function Agent performs the indivisible
function task.

An important attribute of the function is ‘‘cost.’’ The cost
describes the resources or time that a holon needs to consume
when completing a function. When the available resources of
the holon are greater than the cost of a function, the holon
can schedule its resources to perform the function. In con-
trast, if the available resources do not meet the requirements,
the holon will not execute the function at first but will execute
it after resources are released by other holons. For atomic
functions, the resources or time that must be consumed are
determined by a specific system. For composite functions, the
cost is the sum of the costs of all subfunctions.

The competitiveness describes the computing resources
owned by an execution unit. For example, a Holon H0, its
competitiveness of function Func_X is 5r , where r refers to
the average resource per unit. It means when H0 implements
function Func_X, the maximum number of resources that can
be consumed is 5r.
The more available resources the execution unit has,

the stronger its competitiveness is. In general, the compet-
itiveness is directly related to the structure and function it
provides. For a Function Agent, the function it provides is
indivisible. Therefore, its competitiveness is equal to the cost
of executing a specific function task. The number of functions
that an Agent or a Holon can implement is related to its
competitiveness. Execution units complete specific tasks to
implement specific functions, and each task has its own cost.
An execution unit can only implement the functions that the
required costs are less than its competitiveness. The larger
the competitiveness of an execution unit, the more complex
functions can be complemented.

A composite function is a complex function provided by
multiple subholons or function agents through a specific
collaboration. Therefore, when evaluating the competitive-
ness of a holon, it is necessary to consider its subfunctions.
For example, the function of a holon, written as Func_X,
is composed of subfunctions Func_Y and Func_Z. Inside,
the number of subholons that can currently provide function
Func_Y is n, and the number of subholons that can currently
provide function Func_Z is m. Then, the competitiveness
of function Func_X provided by the holon is calculated

by (2).

Competitiveness_HolonX

=

∑n

i=1
Competitiveness_HolonYi

+

∑m

j=1
Competitiveness_HolonZi (2)

Meanwhile, the competitiveness of the holon regarding
functionHolonY , represented asCompetitiveness_Holony∈X ’,
is calculated by (3).

Competitiveness_Holony∈X

=

∑n

i=1
Competitiveness_HolonYi (3)

The function and competitiveness determine the state of a
holon from qualitative and quantitative perspectives, respec-
tively. HMAS assigns tasks based on the changes of the states
of holons when a system is running.

2) REPRESENTATION OF THE TASK FOR A HOLON
A task is an abstract entity that the system needs to perform,
as defined by (4).

Task ::=< Task_ID,Req_Func,Expect_time,

State,Next_Task > (4)

where Task_ID is a unique identifier for a task. The system
utilizes Task_ID to determine the affiliation before and after
the task is decomposed. For example, the Task_ID of a task is
‘‘1’’, and after decomposition, three subtasks can be obtained.
The Task_IDs of the subtasks are ‘‘1.1’’, ‘‘1.2’’, and ‘‘1.3’’.
Moreover, subtask ‘‘1.1’’ can be further decomposed into two
subtasks, whose Task_IDs are ‘‘1.1.1’’ and ‘‘1.1.2’’, respec-
tively. In this manner, all tasks will be numbered. When the
task is completed, the task will be synthesized according to
the numbering sequence.
Req_Func refers to the functions that a holon needs to

implement to perform the task. These functions correspond
to the functions of other holons, that is, each task can find
one or more corresponding holons to ensure that the task
executes smoothly. At the same time, the execution of each
task comes at a cost, which is the sum of all costs of the
required functions.
Expect_time is the expected time required to complete

a task, that is, the maximum time spent on the task. The
Expect_time of a task is related to the type of a task and
user requirements, and it specifies the deadline to finish the
task. For complex tasks that need to be decomposed into
subtasks, the expected time of the subtasks are calculated
by (5), where Waiting_time indicates the waiting time of the
task. The holon records the time of accepting the complex
task, written as Accept_time, and the task is decomposed
and assigned at Current_time. Then the Waiting_time can
be defined as the difference between the Current _time and
Accept_time. If there is a dependency between some subtasks,
the Expect_time of theses subtasks will be also affected. For
example, a task T can be composed of T1->T2, and T2
is waiting for T1. If the Expect_time of T is 10s, and the
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Expect_time of T1 is 2s, then the Expect_time of T2 cannot
exceed 8 seconds.

Expect_timesub
= Expect_time−Waiting_time

= Expect_time− (Current_time− Accept_time) (5)

State is the current state of the task, which is divided into
three types, Completed, Waiting, and In Progress, indicating
that the current task is completed, waiting, and executing,
respectively.
Next_Task is a variable indicating the relationship between

different tasks. If there is a sequence between some tasks,
for example, the output of task A is the input of task B,
the variable of Next_Task for task A will be filled with the
Task_ID of task B. If the task is the last step of a task sequence
or an independent task, Next_Task should be filled with ∅.

3) HOLONFICATION
The process of holonfication is based on system require-
ments. A system processes the input data from the environ-
ment and outputs the related data to meet the environmental
requirements. Therefore, by analyzing the data flow of a
system, the holonic structure will be easy to construct. Agents
are the smallest units of a system. Each agent completes
a specific function to meet a specific requirement. Agents
cooperate with each other to process the data, to achieve
some higher-level functions. Therefore, before holonfication,
the data flow between different agents should be discussed.
In our proposed model, if the data flow is processed by an
agent, and flows to multiple other agents or Holons, then the
agent will be defined as a diving line. It is considered that
the diving line provides input data flow for other agents or
Holons, then the diving line and the agents or Holons who
provide data flows to the diving line will form a new Holon.
The process of the holonfication includes three steps:

1. Starting from the input data of the system, according to
the data flow, find the first dividing line, and form the relevant
Holons, then update the data flow diagram;

2. Find all the dividing lines, form the related Holons, and
update the data flow graphs;

3. According to the updated data flow graph, find the end
agent, that is, the agent at the end of the data flow. Then,
the end agent and the other agents or Holons in each data flow
form the related Holon, respectively. Finally these related
Holon forms the Holon in the top level of the system.

For example, to meet the requirements from environments,
the system S must contain 6 types of roles. Each role must
be played by an Agent at least, and these agents are writ-
ten as Agent1, Agent2, Agent3, Agent4, Agent5 and Agent6,
respectively. The data flow between these 6 agents is shown
in FIGURE 3(a). Agent2 and Agent3 are the diving lines.
The process of updating the data flow graph is shown in
FIGURE 3(b) and FIGURE 3(c). We can see, Agent1 and
Agent2 form Holon H1 when the data flow graph is updated
for the first time. H1 and Agent3 form H2 when the data

FIGURE 3. Process of updating data flow graph.

flow graph is updated for the second time. FIGURE 3(c)
is the final data flow graph, it can be seen that there are
three input stream for the end agent Agent6, H1->Agent5-
>Agent6, H2->Agent6, and H2->Agent4->Agent6. There-
fore, H1, Agent5, and Agent6 form a new Holon H3. H2 and
Agent6 form a new Holon H4, and H2, Agent4, and Agent6
form a new Holon H5. At last, H4, H5 and H6 form the
top-level Holon of system S. The organizational structure of
S is shown in FIGURE 4.

FIGURE 4. Organizational structure of system S.

B. SELF-ADAPTIVE MECHANISM
The Self-adaptive Mechanism gives the system the ability to
autonomously modify its behavior at run-time in response
to changes in its environment. The Self-adaptive Adjust-
ment Module is designed to implement the self-adaptive
adjustment mechanism. First, the module monitors the Task
Queue to obtain the current working state of the holon. Then,
according to the current working state, the module adjusts the
competitiveness of the holon or even changes the structure of
the execution module when necessary, and it returns the result
to its parent holon through the Center Agent.
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FIGURE 5. State Transition Diagram for a holon.

1) STATE MONITOR
Each holon switches back and forth between four different
states starting from the system: idle, working, high load,
and overload. The State Transition Diagram is shown in
FIGURE 5.

• Idle: The holon has not accepted any tasks, or the
accepted tasks have been completed.

• Working: The holon is performing tasks normally,
and the required competitiveness of the waiting tasks
account for less than 80% of the total competitiveness
of the holon;

• High Load: The holon is performing tasks, and the
required competitiveness of thewaiting tasks account for
more than 80% of the total competitiveness of the holon;

• Overload: The accepted tasks are beyond the current
competitiveness of a holon, it means that the holon is
unavailable.

The Self-adaptive Adjustment Module obtains the state of
the holon by observing the Task Queue. The Task Queue
contains two specific queues, the Waiting Queue and the
Execution Queue. As the names imply, these two queues
maintain the tasks in the ‘‘Waiting’’ and ‘‘In Progress’’ states,
respectively.

The structure of theWaiting Queue is shown in FIGURE 6.
Task maintains the basic information of each task that has
been accepted by a holon. Accept_time records the time of
acceptance of the task by the holon, while Waiting_time
indicates the waiting time of the task.

FIGURE 6. Structure of Waiting Queue.

The Execution Queue records the decomposition of a task
and the current state of the subtasks for a holon. For example,
when Task 1.1 begins to execute, the Execution Queue is as
shown in FIGURE 7.

FIGURE 7. Structure of the Execution Queue.

Taskmaintains the basic information of each task. Sub_task
records all of the decomposed subtasks. Because there may
be a sequence between subtasks, when the subtasks are in the
Execution Queue, they may still be temporarily waiting for
the completion of the predecessor subtasks. State is used to
record the current state of each subtask, and Complete_time
indicates the completion time of each subtask. When the last
subtask is completed, the current task is considered complete,
and the completion time of the subtask is also the completion
time of the entire task. After the task is completed, the holon
returns the execution result to its parent holon.

It can be seen that the Self-adaptive Adjustment Module
judges the current working state of the holon by observing
the information of the Task Queue, and it further adjusts the
competitiveness or structure of the holon for different runtime
environments and internal states.

2) COMPETITIVENESS ADJUSTMENT
The competitiveness adjustment refers to adjusting the com-
petitiveness value for execution units. It is a normalized
self-adaptive adjustment mechanism. The idea is mainly to
monitor the Task Queue through the Self-adaptive Adjust-
ment Module and update the competitiveness of the holon
according to the Execution Queue. The competitiveness
adjustment is designed to adjust the overall competitiveness
as well as the subfunction competitiveness for execution
units, reflecting the holon’s overall load and subfunction
loads.

To evaluate the current workload, it is necessary to com-
prehensively consider the three factors of the length of the
Waiting Queue, the waiting time of each waiting task, and
the required functions of each waiting task. The waiting time
reflects the current load state of the function unit, that is,
the longer the waiting time of the task, the higher the work-
load of the execution unit, and the lower the competitiveness
to perform tasks. The Self-adaptive Adjustment Module will
determine the urgency of the task by considering the waiting
time of the task and the expected time of completing the task.
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The urgency is recorded as β, calculated by (6).

β =
Waiting_time
Expect_time

(6)

If theWaiting_time is less than or equal to the Expect_time,
then β ∈ [0, 1], indicating that the execution of the task is still
within the controllable range. However, as the Waiting_time
grows, when β ∈ (1,+∞), the task becomes urgent, and the
Waiting_time is greater than the Expect_time, which indicates
that the task is beyond the controllable range and needs to be
adjusted urgently.

Because different tasks require different functions and dif-
ferent functions take different costs, in addition to urgency,
the required functions for a task also have a direct impact on
the workload state. Therefore, the workload of an execution
unit for task i is represented as LoadTask i , as calculated by (7):

LoadTask i = β × Task i.Req_Func.Cost

=
Waiting_time
Expect_time

× Task i.Req_Func.Cost (7)

Thus, the current competitiveness of a holon is determined
by (8):

Competitiveness_HolonXcurrent

= Competitiveness_HolonX −
n∑
i=1

LoadTask i

= Competitiveness_HolonX −
∑n

i=1
(
Task i.Waiting_time
Task i.Expect_time

×Task i.Req_Func.Cost) (8)

whereCompetitiveness_HolonX is the initial competitiveness
of the holon, and LoadTask i is the workload of the holon for
waiting task i. The competitiveness of the holon changes with
the number of tasks in theWaitingQueue and thewaiting time
of each task. It reflects the current workload of a holon.

The Self-adaptive AdjustmentModule should also monitor
the competitiveness regarding each subfunction for a holon.
When a new task is added to the Execution Queue, the Self-
adaptive Adjustment Module updates the current competi-
tiveness regarding each subfunction of the Holon based on
the cost of the specific task. The current competitiveness
regarding a subfunction for a holon is obtained by (9):

Competitiveness_Holony∈Xcurrent

= Competitiveness_Holony∈X

−

∑m

i=1

Task i.Waiting_time
Task i.Expect_time

× Task i.Req_Funcy.Cost

(9)

where Competitiveness_Holony∈Xcurrent is the current competi-
tiveness regarding subfunction y of a holon.Competitiveness_
Holony∈X refers to the initial competitiveness regard-
ing subfunction y. m is the number of tasks, and
Task i.Req_Funcy.Cost is the cost regarding function y for
Task i.

The algorithm of competitiveness adjustment mechanism
is shown in ALGORITHM 1. The time complexity of com-
petitiveness adjustment is algorithm is O(1).

When the competitiveness of a holon changes, its parent
holon monitors the change and records its current compet-
itiveness to update the function map. The current competi-
tiveness of a holon is significant when its parent holon finds
the appropriate execution units for new tasks.

3) STRUCTURE ADJUSTMENT
Structure Adjustment refers to the increase or decrease of
the number of some specific execution units in the execu-
tion module of a holon based on the current workload and
environment to meet the requirements of a task and real-
ize rational allocation of computing resources. Compared to
competitiveness adjustment, structure adjustment produces
a greater impact on a system. It will not only change the
competitiveness of the holon, but also adjust the structure of
the execution module that is not suitable for performing the
current task. Because structure adjustment will bring about
obvious changes of functions of the system, overly sensitive
trigger conditions will cause frequent structure adjustment
for the holon, resulting in the vibration of the system and
affecting the work of other modules. Therefore, the trigger
condition of structure adjustment has a higher threshold.

Structure adjustment of a holon occurs in only two cases:
(1). The waiting tasks have been polarized. Under ideal

conditions, the subfunctions provided by the execution mod-
ule of the holon are proportional to the required functions
of the current task; that is, the competitiveness allocation
for the sub functions of the holon is reasonable and ensures
the rational use of computing resources. However, in fact,
too many tasks sometimes pile up for some execution units
while other execution units are idle, indicating that the current
structure of the execution module of the holon is not suitable
for the current environment. Therefore, structure adjustment
will be triggered, decreasing the number of idle execution
units, and these released resources will be used to support
execution units who will be in state of high-load. Above all,
in this case, the holon adjusts its inner structure to adapt
to the environment. An example of structure adjustment is
shown in FIGURE 8. FIGURE 8 (a) shows theWaiting Queue
of a holon, and we can see that the tasks in the Waiting
Queue require the functions Func_X, Func_Y, Func_Z and
Func_W. Moreover, Func_Z requires 16.67% of the comput-
ing resources, as does Func_Y. Func_W needs 58.33% of the
computing resources, while Func_X needs 8.33%. However,
based on the current structure, the holon can only provide
25.67% of its computing resources for Func_Z, 25.67% for
Func_Y, and 24.33% for Func_W and Func_X, as shown in
FIGURE 8 (b). The difference between supply and demand
causes a large accumulation of tasks for Func_W, while
the computing resources for Func_X are idle enough. To
cope with this change, the system triggers structure adjust-
ments, as shown in FIGURE 8 (c). The holon decreases the
number of subholons for Func_X and increases the number
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Algorithm 1 Competitiveness Adjustment Algorithm
Input: the current competitiveness of a Holon
CompetitivenessXcurrent ; the waiting time Task i.Waiting_time,
the expect time Task i.Expect_time, and the cost
Task i.ReqFunc.Cost of Task Task i; the current competitive-
ness regarding subfunction y Competitiveness_Holony∈Xcurrent
Output: the current competitiveness of a Holon
CompetitivenessXcurrent , the current competitiveness regarding
subfunction y Competitiveness_Holony∈Xcurrent
If(a new task Task i is added to the Execution Queue)
then

update the current competitiveness of the Holon, and the
current competitiveness regarding subfunction y of the
Holon

Competitiveness_HolonXcurrent
= Competitiveness_HolonXcurrent

−
Task i.Waiting_time
Task i.Expect_time

× Task i.ReqFunc.Cost.

Competitiveness_Holony∈Xcurrent

= Competitiveness_Holony∈Xcurrent

−
Task i.Waiting_time
Task i.Expect_time

× Task i.Req_Funcy.Cost

If (Task i is deleted from the Execution Queue)
then

update the current competitiveness of the Holon,and the
current competitiveness regarding subfunction y of the
Holon

Competitiveness_HolonXcurrent
= Competitiveness_HolonXcurrent

+
Task i.Waiting_time
Task i.Expect_time

× Task i.ReqFunc.Cost.

Competitiveness_Holony∈Xcurrent

= Competitiveness_Holony∈Xcurrent

+
Task i.Waiting_time
Task i.Expect_time

× Task i.Req_Funcy.Cost

If Task i has been added to the Execution Queue, and is
performing by subholon H, but Ti is not completed within the
Expect_time, and nomessage about the task failure is received
then

Set the current competitiveness of subHolon H to 0
update the current competitiveness of the Holon, and the
current competitiveness regarding subfunction y of the
Holon

Competitiveness_HolonXcurrent
= Competitiveness_HolonXcurrent
−Competitiveness_HX

Competitiveness_Holony∈Xcurrent

= Competitiveness_Holony∈Xcurrent

−Competitiveness_H y∈X

FIGURE 8. An example of structure adjustment when the waiting tasks
have polarized.

of subholons for Func_W to adapt to the current environ-
ment. Finally, the proportion of subholons in the holon is
Func_W=49.00%, Func_X=11.50%, Func_Y=20.50%, and
Func_Z=19.00%; this proportion is basically consistent with
the requirements of the Waiting Queue, realizing rational
allocation of computing resources.

(2) Task failed. This situation can be further divided into
two cases: 1) an execution unit failed to execute a task, but
some of other execution units who are idle or working has
enough competitiveness to execute the failed task. At this
time, perhaps the current external environment is changes,
results to the current execution unavailable. Then the inner
self-adaptive mechanism is triggered. The Self-adaptive
Adjustment Module will find some idle or working exe-
cution units to perform the task, the process is shown in
FIGURE 9; 2) an execution unit failed to execute a task, and
others execution units are in state of high-load or overload.
In this case, computing resources of the current holon have
reached the upper limit of utilization and cannot meet any
task requirements. Therefore, inner structure adjustment for
the current single holon is useless. To guarantee the normal

FIGURE 9. Process of inner structure adjustment of a Holon.
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running of the system, other holons must assist the current
holon. The Self-adaptive Adjustment Module in the holon
finds that there is no computing resources to performed the
failed task, therefore, it will request assistance from its parent,
and then the self-adaptive mechanism of its parent holon
will be triggered. At this time, the parent holon will find
execution units who are idle or working in other subholons
to perform the task. If there are no idle or working execution
units in other subholons, then the self-adaptive mechanism of
the ancestor will be triggered. The process of this feedback
structure adjustment is shown in FIGURE 10.

FIGURE 10. Process of outside structure adjustment of a Holon.

The algorithm of Self-Adaptive Mechanism is shown in
ALGORITHM 2, the time complexity of this algorithm
is O(mn). If the inner self-adaptive mechanism is trigged,
the membership of the execution units will not change, their
parent Holon is the same. But if the outside self-adaptive
mechanism is trigged, the membership of the execution
units who provides assistance will get a new parent. When
self-adaptive mechanism is triggered, the function map will
be revised by the Self-Adaptive Adjustment Module, and
the Task Assignment Module will reassign the tasks in the
Waiting Queue of the execution units who need assistance,
and then delete these tasks from the previous Waiting Queue.
It is worth noting that if an execution unit is the overlap of
different Holons, only the idle computing resources of the
execution unit will be scheduled to provide assistance. For
the high-load or overload execution units, the Holon marks
them as ‘‘unavailable’’, and will not allow the execution
units to participate task execution in a short time. However,
after a certain period of time, the Holon will try to assign
tasks to these ‘‘unavailable’’ execution units. Only if the
execution units successfully execute the tasks 3 times in a
row, the Holon will cancel their ‘‘unavailable’’ marks, and
consider them as normal execution units.

C. TASK ASSIGNMENT MECHANISM
In this section, the task assignment mechanism for DHMAS
is discussed. A heuristic search method based on competi-
tiveness is proposed for the situation of a non-atomic parent
holon assigning tasks for its sub-execution units, while the
competitiveness -based contract net method is used for the
situation of an atomic holon assigning tasks for its Function
Agents.

Algorithm 2 Structure Adjustment Algorithm
If receives assistance request to assist H from the parent
Holon

prepare for structure adjustment // structure adjustment is
triggered

read the idle subholons set I and the working subholons set
W ;
if(I 6= ∅)
for (m = 1;m <= I.size;m++)
{
Im is added to list L;
If((SUM(Competitiveness_Li) > Task.cost)
Break;

else
if(W 6= ∅)
for (n = 1;n <=W.size;n++)

{
If Competitiveness_Wmcurrent > 0.5∗

Competitiveness_Wm)
Wn is added to list L;
If((SUM(Competitiveness _Li)> Task.cost)
Break;

else
L.clear();

}
else

L.clear();
}

else{
if( I= ∅&&W 6= ∅)
for (n=1;n<=W.size;n++)

{
If( Competitiveness_Wmcurrent > 0.5∗

Competitiveness_Wm)
Wn is added to list L;
If((SUM(Competitiveness _Li)> Task.cost)

break;
else

L.clear();
}
else{ L.clear();}

}
If(L.isEmpty())

feedback to the parent that assistance failed
else

all execution units in L will be scheduled to assist
the execution units;

L.clear();
}
If a task executed failed

prepare for structure adjustment//structure adjustment is
triggered

read the idle Execution Units set E and the working
Execution Units set U ;

if(E 6= ∅)
then
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Algorithm 2 (Continued.) Structure Adjustment Algorithm
for (m = 1;m <= E.size;m++)

{
Em is added to list L;
If((SUM(Competitiveness _Li)> Task.cost)
break;

else{
if(U 6= ∅)

for (n = 1;n <= U.size;n++)
{
If(Competitiveness_Wmcurrent > 0.5∗

Competitiveness_Wm)
Un is added to list L;
If((SUM(Competitiveness _Li)>

Task.cost) break;
else

L.clear();
}

else
L.clear();

}
}

else{if(E = ∅&&U 6= ∅)
for (n = 1;n <= U.size;n++)
{If(Competitiveness_Wmcurrent > 0.5∗

Competitiveness_Wm)
Un is added to list L;
If((SUM(Competitiveness_Li)> Task.cost)
break;

else
L.clear();

}
else{L.clear();}

}
If(L.isEmpty())
feedback to the parent that assistance failed
else
all execution units in L will be scheduled to assist the

execution units;
L.clear();

}
If f ∈ Task.Req_Fuc && f .Cost

Task.Cost > 0.5 &&
(Competitiveness_Holonfcurrent 6= Max

i∈Task.Req_Fuc

Competitivenessicurrent )
prepare for structure adjustment//structure adjustment

is triggered
read the low-cost execution units set P;
if(P 6= ∅)

for(q = 1;q <= P.size;q++)
{
Pi is added to list L;
If(Competitiveness_Li+Competitiveness_

Holonfcurrent ) > 0.5 ∗ Competitiveness_Holoncurrent )

Algorithm 2 (Continued.) Structure Adjustment Algorithm
break;

else
L.clear()

}
else{

L.clear();
}
If(L.isEmpty())
feedback to the parent that assistance failed
else

all execution units in L will be scheduled to assist the
execution units who provides f

L.clear();
}

1) HEURISTIC SEARCH METHOD BASED ON
COMPETITIVENESS
The heuristic search method based on competitiveness takes
a top-down perspective. There is a hierarchical relationship
between the task assigner and the task performer, that is,
the task assigner at the higher level commands the task per-
former at the lower level to complete the task. Because the
selection of a suitable task performer is not a simple problem,
the task assignment module needs to use a reasonable search
strategy to find an appropriate task performer to speed up the
search process. A reasonable search strategy will improve the
system efficiency.

In the proposed model, the Center Agent plays the role
of task assigner, while the execution units (subholons) in
the Execution Module are the task performers. But the task
assignment strategy is generated by the task assignment
module. After receiving tasks allocated by the parent holon,
the Center Agent decomposes the tasks into several subtasks
that can be executed by the subholons at the lower layer,
and the Task Assigner Module generates a reasonable task
assignment strategy based on the related competitiveness of
execution units. Because the arriving task could be divided
into several different types of subtasks, and a type of subtask
will be performed by a specific type of subholon, each type
of subtask needs to find some suitable execution units to do.
What’s more, for a certain type of task, there will be multiple
subholons that can be completed, for each type of sub-task
assignment, there should be an assignment strategy.

As a random searching algorithm, the simulated anneal-
ing algorithm is suitable for solving large-scale combina-
torial optimization problems, and its calculation process
is relatively simple. What’s more, the simulated annealing
algorithm has the ability to find a global optimal solution.
However, this algorithm is sensitive to the selection of param-
eters. This article utilizes an improved simulated annealing
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algorithm to generate a task assignment strategy when the
parent Holon assigns tasks to its subHolons. Three factors
determine the adaptability of a subholon, which is the objec-
tive function of the search process:

1). The total competitiveness of the subholon, written as
Competitiveness_HolonX ;

2). The current competitiveness of the subholon, written as
Competitiveness_HolonXcurrent ;

3). The current competitiveness of the subholon for func-
tion y (yεX), written as Competitiveness_HolonyεXcurrent.

The heuristic search method based on competitiveness
searches for a sub-holon that will achieve maximum adapt-
ability as the task performer. The adaptability is calculated
by (10).

AdaptabilityX =
Competitiveness_HolonXcurrent
Competitiveness_HolonX

×Competitiveness_HolonyεXcurrent (10)

If there are p subtasks waiting to be executed, and q sun-
holons could perform this type of subtasks (p<q), then the
size of search space is Cq−1

p−1 , then the space complexity of

the algorithm is O(Cq−1
p−1 ).

To improve the quality of the solution, when we initialize
the temperature of the simulated annealing algorithm, some
steps of heating are added. The procedure of the simulated
annealing algorithm is as follows:

Step 1: Determine the objective function f (x) and the
search space, randomly generate an initial solution x0 from
the solution space;

Step 2: Set the initial temperature t0 = 0, and, choose a new
solution x1 from the neighborhoods of x0, if the value of the
objective function increases, set x0 = x1, and set T0 = h(t0),
h(t0) is an increasing function.

Step 3: If the number of heating has reached n, then go to
step4, else, go to step 2;

Step 4: determine the function of decreasing temperature
f (t);

Step 5: Take T0 and x0 as the initial temperature of anneal-
ing and initial solution. If the inner loop has been executed
k times, go to step 6; else, randomly select a new solution
xj from the neighborhoods N (xi) and calculate the value of
the objective function. If the value increases, then x will be
accepted, repeat step5;

Step 6: Repeat step 5 until the number of inner loops
reached t , record themaximumvalue of the objective function
and the corresponding solution

Step 7: Set tn+1 = f (tn) , n = n + 1; if the loop time has
reached l, then the search process ends, then else go to step 5.
Then the time complexity of the improved simulated

annealing algorithm is O(tl).

2) COMPETITIVENESS-BASED CONTRACT NET METHOD
The Contract Net Protocol, proposed by Davis and
Smith [31], imitates the biddingmechanism in human society.
When an agent receives a task that cannot be completed

independently, it will broadcast the task demands to other
agents and start a bidding process. After receiving the broad-
cast, other agents determine whether to participate in the
bidding according to the task requirements and their own
competitiveness. By analyzing each bidder, the biddee selects
the appropriate bidder according to the current status of all
bidders and establishes cooperation with the selected bidder.

An atomic holon (that is, the holon is indivisible) is com-
posed of a Center Agent and several Function Agents.There
are no subholons in the Execution Module of an atomic
holon. The function of a Function Agent is relatively simple,
the allocation and handover of tasks are frequent. Moreover,
there is a large number of Function Agents, and these agents
are loosely distributed. Therefore, the contract net protocol is
adopted in an atomic holon. It is beneficial to make full use
of the characteristic of intelligence of an agent to improve the
efficiency of task assignment.

There are two shortcomings in the traditional contract
network protocol: (1) The communication is carried out by
means of broadcasting, which increases communication over-
head of the system. (2) Only the static state of agents are
considered, and ignore the state of each agent will change
as the system running. Therefore, this article improves the
traditional contract net protocol, takes advantage of a black-
board instead of the method of broadcast communication, and
each agent bids for task based on its current competitiveness.
In the Task Assignment Module of an atomic holon, there
is a public blackboard that all Function Agents can access.
The blackboard is divided into different partitions to record
the different functional tasks. The Function Agents wait
for the tasks to be published in the corresponding partition
according to the functions they can provide and participate
the bidding according to their current states. Because each
task has its own Expect_time, the Center Agent does not wait
for all Function Agents to complete the bid, but collects the
bids before a certain time point, and analyzes the bidders to
find themost appropriate performers and then assigns the task
to the corresponding Function Agents. Our improved method
avoids some unnecessary communications, and considers the
real-time competitiveness of each agent. The process of task
assignment is shown in FIGURE 11.

From FIGURE 11, Step ¬ represents the Center Agent
inviting bids. The Center Agent selects a specific task from
theWaiting Queue, publishes the task to the specific partition
on the blackboard according to the required function of the
task, and then waits for bidders. Step­ represents the process
of bidding by the Function Agents. A Function Agent obtains
the bidding information on the corresponding partition of the
blackboard, bids according to its own load state, and waits for
feedback from the Center Agent. Meanwhile, the Function
Agent still performs the current tasks synchronously. Step ®
is the process by which the Center Agent acquires the bid
information of the Function Agents. After analysis, the Cen-
ter Agent selects the appropriate Function Agents and assigns
the task to the Function Agent with the winning bid, as shown
in Step ¯.
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FIGURE 11. Process of the Competitiveness -based contract net method.

The Function Agents participate in the bidding according
to their own competitiveness, which are related to the num-
bers of tasks in their Waiting Queues. The current competi-
tiveness of a Function Agent is calculated by (11):

Competitiveness_AgentXcurrent

= Competitiveness_AgentX −
n∑
i=1

LoadTask i

= Competitiveness_AgentX −
∑n

i=1
(
Task i.Waiting_time
Task i.Except_time

×Task i.Req_func.Cost) (11)

In addition, when a Function Agent fails to perform a cer-
tain task, it will no longer actively participate in the bidding to
avoid increasing its task load. After collecting the bids of all
Function Agents, the Center Agent assigns the task according
to the current competitiveness of the Function Agents.

IV. CASE STUDY AND EXPERIMENTAL RESULTS
Metasearch engine integrates search results from multiple
underlying search engines to improve recall ratio in the big
data environment. Because metasearch engine relies on the
results of component search engines, the states of component
search engines affect the system running, that is, metasearch
engine is more sensitive to the environment. Furthermore,
for a personalized metasearch engine, it must record user
behaviors and analyze user preferences when a large number
of users log in, and quickly return search results to users.
Therefore, personalized metasearch engine runs in a dynamic
environment, and must process a large number of complex
tasks. This section introduces a personalized metasearch
engine, named IM Search, which is based on our proposed
DHMAS. IMSearch is ametasearch engine that combines the
search engines ‘‘Youdao,’’ ‘‘Baidu,’’ ‘‘Bing,’’ ‘‘Yahoo,’’ and

‘‘Sogou.’’ By analyzing users’ click histories, IM Search has
the ability to obtain user preferences and provide personalized
services, including personalized ranking and information rec-
ommendation.

A. ORGANIZATIONAL STRUCTURE FOR IM SEARCH
To achieve environmental requirements, IM Search must
implemented 15 atomic functions as followings:

(1) Schedule search engine Baidu to get search results;
(2) Schedule search engine Youdao to get search results;
(3) Schedule search engine Bing to get search results;
(4) Schedule search engine Yahoo to get search results;
(5) Schedule search engine Sogou to get search results;
(6) Record user click histories;
(7) Remove the duplicate results returned by component

search engines;
(8) Analyze all the topics of the webpage;
(9) Analyze user interests based on user click histories;

(10) Rank all the returned webpages into a single list;
(11) Cluster users into different groups based on the clicked

results;
(12) Analyze user intention based on the group relation-

ship;
(13) Recommend webpages based on user intention;
(14) Recommend querywords based on user intention;
(15) Display the search results, the recommended query-

words and webpages to user.

Corresponding to the above functions, IM Search must
contain 15 roles, Baidu Role, Youdao Role, Bing Role, Yahoo
Role, Sogou Role, Record Role, Deduplication Role, Topic
Role, Analysis Role, Sort Role, Group Role, Intention Role,
Webpage Role, Queryword Role, and Display Role. In the
initial state of the system, each role is performed by an agent
at least. During the running time of the system, roles and
agents are dynamic binding. As the environment changes,
an agent will play different roles to meet the environmental
requirements, which caused the changes of the structure of
the system. The holonfication is based on the data flow
graph. Therefore, we analyzed the data flow between differ-
ent agents, as shown in FIGURE 12.

FIGURE 12. Data flow of IM Search.
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There are two input data received by IM Search. After
processing these input data, IM Search generates three output
data. From FIGURE 12, we can see that the Topic Agent,
Analysis Agent, Intention Agent, and Display Agent are
the diving lines. The reason is that, after processed by
these agents, the data will flow to multiple other agents.
For example, when the data are processed by Topic Agent,
the processed data will further flow to the Analysis Agent
or the Sort Agent. The Topic Agent could be regarded as a
diving line. Then according to the diving line and the data
flow, the Baidu Agent, Bing Agent, Yahoo Agent, Sogou
Agent, Youdao Agent, Deduplication Agent and the Topic
Agent form a Holon, named ResultsPreprocess Holon, which
provides function of preprocessing the search results. Sim-
ilarly, the initial structure of IM Search will be organized,
as shown in FIGURE 13.

FIGURE 13. Organizational structure of IM Search based on DHMAS.

IM Search consists of 5 levels:
(1) Level 4: This level is the top level, consists of a

Center Agent, a Waiting Queue, an Execution Queue,
a Function Map, a Self-Adaptive Adjustment Mod-
ule, a Task Assignment Module, some Search Holons,
some Webpage Holons, and some Queryword Holons.
The Center Agent analyzes the tasks requirements,
decomposes the tasks further into subtasks, and assigns

the subtasks to the Search Holon, Webpage Holon or
Queryword Holon according to the task assignment
strategy generated by the Task Assignment Module.
The Search Holon performs the task of returning the
personalized search results to a user. The Webpage
Holon and the Queryword Holon perform the tasks of
providing the recommended webpages and the recom-
mended querywords to a user, respectively.

(2) Level 3: This level demonstrates the structures of the
SearchHolon, theWebpageHolon, and theQueryword
Holon. The Search Holon contains a Center Agent,
a Waiting Queue, an Execution Queue, a Function
Map, a Self-Adaptive Adjustment Module, a Task
Assignment Module, some ResultMerge Holons, and
some Display Agents. The Center Agent of the Search
Holon analyzes the tasks requirements, decomposes
the tasks further into subtasks, and assigns the subtasks
to the ResultMerge Holons and the Display Agents,
according to the task assignment strategy generated
by the Task Assignment Module. The ResultMerge
Holon performs the task of merging the returned
search results based on use interests. The Display
Agent performs the task of displaying the result
list to a user. The Webpage Holon contains a Cen-
ter Agent, a Waiting Queue, an Execution Queue,
a Function Map, a Self-Adaptive Adjustment Module,
a Task Assignment Module, some Group Holons,
some Display Agents, and some Webpage Agents.
The Center Agent of the Webpage Holon analyzes
the tasks requirements, decomposes the tasks further
into subtasks, and assigns the subtasks to the Group
Holons, the Webpage Agents, and the Display Agent,
according to the task assignment strategy generated
by the Task Assignment Module. The Group Holon
performs the task of obtaining user intention based
on group members. The Webpage Agent performs
the task of recommending webpages based on user
intention, while the Display Agent performs the task
of displaying the recommended webpages to a user.
The structure of Queryword Holon is similar to that of
webpage Holon. Therefore, we will not go into details.

(3) Level 2: This level shows the structures of the Result-
Merge Holon, and the Group Holon. The ResultMerge
Holon contains a Center Agent, a Waiting Queue,
an Execution Queue, a Function Map, a Self-Adaptive
Adjustment Module, a Task Assignment Module,
some Analysis Agents, and some ResultsPreprocess
Holons. The Center Agent of the ResultMerge Holon
analyzes the tasks requirements, decomposes the tasks
further into subtasks, and assigns the subtasks to the
Analysis Agents, the sort Agents, and the ResultPre-
process Holons, according to the task assignment strat-
egy generated by the Task Assignment Module. The
Analysis Agent performs the task of obtaining user
interests from the topics extracted from the webpages.
The ResultPreprocess Holon performs the task of
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preprocessing the returned results returned by the
component search engines. The Sort Agent performs
the task of ranking all the returned webpages into a
single list. The Group Holon contains a Center Agent,
a Waiting Queue, an Execution Queue, a Function
Map, a Self-Adaptive Adjustment Module, a Task
Assignment Module, some ResultAnalysis Holons,
some Group Agents, and some Intention Agents. The
Center Agent of the Group Holon analyzes the tasks
requirements, decomposes the tasks further into sub-
tasks, and assigns the subtasks to the ResultAnalysis
Holons, the Group Agents, and the Intention Agents,
according to the task assignment strategy generated
by the Task Assignment Module. The Group Agent
performs the task of clustering users into different
groups. The ResultAnalysis Holon performs the task
of analyzing the topics to which the webpage belongs.
The Intention Agent performs the tasks of analyzing
user intention based on the group relationship that the
Group Agents provides;

(4) Level 1: The structures of the ResultsPreprocess Holon
and the ResultAnalysis Holon are shown in this Level.
The ResultsPreprocess Holon contains a Center Agent,
a Waiting Queue, an Execution Queue, a Function
Map, a Self-Adaptive Adjustment Module, a Task
Assignment Module, some Baidu Agents, some Bing
Agents, some Sogou Agents, some Youdao Agents,
some Yahoo Agents, some Deduplication Agents, and
some Topic Agents. The Center Agent of the Result-
sPreprocess Holon analyzes the tasks requirements,
decomposes the tasks further into subtasks, and assigns
the subtasks to the Baidu Agents, the Bing Agents, the
Sogou Agents, the Youdao Agents, the Yahoo Agents,
the Deduplication Agents, and the Topic Agents,
according to the task assignment strategy generated
by the Task Assignment Module. As the execution
unit, the Baidu Agent performs the task of scheduling
search engine Baidu to get search results. Similarly,
the Youdao Agent, the Bing Agent, the Sogou Agent
and the Yahoo Agent perform the tasks of scheduling
search engine Youdao, Bing, Sougo and Yahoo to get
search results, respectively. The Deduplication Agent
performs the task of removing the duplicate results
returned by component search engines, while the Topic
Agent performs the task of analyzing all the topics
of the webpage. The ResultAnalysis Holon contains a
Center Agent, a Waiting Queue, an Execution Queue,
a Function Map, a Self-Adaptive Adjustment Module,
a Task Assignment Module, some Analysis Agents,
and some Extraction Holons. The Center Agent of the
ResultAnalysis Holon analyzes the tasks requirements,
decomposes the tasks further into subtasks, and assigns
the subtasks to the Analysis Agents and the Extraction
Holons, according to the task assignment strategy gen-
erated by the Task Assignment Module. The Analysis
Agent performs the task of analyzing the topics to

which the returned webpage belongs. The Extraction
Holon perform the task of extracting the topics from
the webpages.

(5) Level 0: This level shows the structures of the
Extraction Holon. The Extraction Holon contains a
Center Agent, a Waiting Queue, an Execution Queue,
a Function Map, a Self-Adaptive Adjustment Module,
a Task Assignment Module, some Record Agents, and
some Topic Holons. The Center Agent of the Extrac-
tion Holon analyzes the tasks requirements, decom-
poses the tasks further into subtasks, and assigns the
subtasks to the Record Agents and the Topic Agents,
according to the task assignment strategy generated
by the Task Assignment Module. The Record Agent
performs the task of recording the user click histories.
The Topic Agent performs the task of analyzing all the
topics of the webpage.

The holons which are located at Level 1 utilize the
Competitiveness-based contract net method to assign tasks to
the Function Agents in Level 0. The heuristic search method
based on competitiveness is utilized when other high-level
Holons assign tasks to low-level execution units, such as,
when the holons in Level 2 assign tasks to the holons or agents
in Level 1, and so on.

The homepage and the returned results page of IM Search
are shown in Figures 14 and 15. The methods for user interest
acquisition and result merging method are described in our
previous works [32]. The details of clustering users into dif-
ferent groups and generating recommendation can be found
in [33]. User intention analysis is discussed in [34], [35].

FIGURE 14. Homepage of IM Search.

B. DEFINITION OF FUNCTION AND COMPETITIVENESS
There are 8 types of Holons, and 16 types of Agents in IM
Search. The function, the cost and the Competitiveness of
each agent is shown in TABLE 2.

For a Holon, the competitiveness is directly related to its
structure and function it provides. The function of a Holon
is a composite function. Therefore, the function, the cost and
the competitiveness of each Holon is shown in TABLE 3.
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FIGURE 15. Returned results page of IM Search.

It is worth noting that the parameters (i.e.m, n, . . . ) change
dynamically during system running, because the structure
adjustment mechanism may be triggered to make the system
adapt to the environment, such as when different numbers of
users utilize IM Search to query or user requirements change,
and so on. Therefore, the self-adaptive mechanism of the
system makes the settings of parameters affect the efficiency
of task execution only in a small range.

C. REPRESENTATION OF TASK
The operations performed by users are generally divided
into five types: ¬. Users log in and request all component
search engines; ­ Users log in and request parts of compo-
nent search engines; ®. Users do not log in but request all
component search engines; ¯. Users modify their personal
information; °. Users do not log in but request parts of
component search engines.

Take the scenario where users log in and request all com-
ponent search engines for example:

IM Search receives requirement from the environment:
Requirement::=< Search_all, webpage_recommendation,

queryword_recommendation >;
The Center Agent at level 2 recognizes the task and decom-

poses the task into 3 subtasks based on this requirement:
Task:: =<1, Func_SE, 0.3, Waitting, ∅>
Task:: =<2, Func_WP, 0.3, Waitting, ∅>
Task:: =<3, Func_QW, 0.3, Waitting, ∅>
Task 1 is further decomposed into 4 subtasks:
Task:: =<1.1, Func_RM, 0.2, Waitting, 1.2>
Task:: =<1.2, func_DI, 0.1, Waitting, ∅>

Task 1.1 is further decomposed into 3 subtasks:
Task:: =<1.1.1, Func_RP, 0.1, Waitting, 1.1.2>
Task:: =<1.1.2, func_AA ,0.15, Waitting,1.1.3>
Task:: =<1.1.3, func_SO, 0.05, Waitting, ∅>

Task 1.1.1 is further decomposed into 7 subtasks:

TABLE 2. Function, cost and competitiveness of each agent (r refers to
the average resource per unit).

Task:: =<1.1.1.1, func_SO, 0.02, Waitting, 1.1.1.6>
Task:: =<1.1.1.2, func_BA, 0.02, Waitting, 1.1.1.6>
Task:: =<1.1.1.3, func_BI, 0.02, Waitting, 1.1.1.6>
Task:: =<1.1.1.4, func_YO, 0.02, Waitting, 1.1.1.6>
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TABLE 3. Function, cost and competitiveness of each Holon (r refers to
the average resource per unit).

Task:: =<1.1.1.5, func_YA, 0.02, Waitting, 1.1.1.6>
Task:: =<1.1.1.6, func_DE, 0.04, Waitting, 1.1.1.7>
Task:: =<1.1.1.7, func_TA, 0.04, Waitting, ∅>

Task 2 is further decomposed into 3 subtasks:
Task:: =<2.1, Func_GH, 0.12, Waitting, 2.1.2>

Task:: =<2.2, func_WP, 0.08, Waitting, 2.1.3>
Task:: =<2.3, func_DI, 0.1, Waitting, ∅>

Task 2.1 is further decomposed into3 subtasks:
Task:: =<2.2.1, Func_RA, 0.04, Waitting, 2.2.2>
Task:: =<2.2.2, func_GA, 0.04, Waitting, 2.2.3>
Task:: =<2.2.3, func_IN, 0.04, Waitting, ∅>

Task 2.2.1 is further decomposed into 2 subtasks:
Task:: =<2.2.1.1, Func_EX, 0.03, Waitting, 2.2.1.2>
Task:: =<2.2.1.2, func_AA, 0.01, Waitting, ∅ >

Task 2.2.1.1 is further decomposed into 2 subtasks:
Task::=<2.2.1.1.1, func_RA, 0.01,Waitting, 2.2.1.1.2>
Task:: =<2.2.1.1.2, func_ TA, 0.02, Waitting, ∅ >

Task 3 is further decomposed into 3 subtasks:
Task:: =<3.1, Func_GH, 0.12, Waitting, 3.1.2>
Task:: =<3.2, func_QW, 0.08, Waitting, 3.1.3>
Task:: =<3.3, func_DI, 0.1, Waitting, ∅>

Task 3.1 is further decomposed into 2 subtasks:
Task:: =<3.2.1, Func_RA, 0.04, Waitting, 3.2.2>
Task:: =<3.2.2, func_GA, 0.04, Waitting, 3.2.3>
Task:: =<3.2.3, func_IN, 0.04, Waitting, ∅>

Task 3.2.1 is further decomposed into 2 subtasks:
Task:: =<3.2.1.1, Func_EX, 0.03, Waitting, 3.2.1.2>
Task:: =<3.2.1.2, func_AA, 0.01, Waitting, ∅ >

Task 3.2.1.1 is further decomposed into 2 subtasks:
Task::=<3.2.1.1.1, func_RA, 0.01,Waitting, 3.2.1.1.2>
Task:: =<3.2.1.1.2, func_ TA, 0.02, Waitting, ∅ >

D. EXPERIMENTAL RESULTS OF SELF-ADAPTIVE
MECHANISM
The experiments are designed from two aspects to verify the
Self-adaptive Mechanism of IM Search.

1) EXPERIMENTAL RESULTS OF COMPETITIVENESS
ADJUSTMENT
To test whether IM Search can adjust the competitiveness
of each Holon when executing tasks, we invited 3 users to
request queries using IM Search. Then the competitiveness
of parts of Holons is recorded when 0 user, 1 user and 3 users
initiate queries. The results are shown in Table 4. It is obvious
that, as users initiate queries, the competitiveness of all listed

TABLE 4. Competitiveness of parts of Holons when different numbers of
users request queries.
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Holons are decreasing in general, because the execution of
tasks consumes the competitiveness of the related execution
units.

2) EXPERIMENTAL RESULTS OF STRUCTURE ADJUSTMENT
To test the structure adjustment of IM Search, the test tool
Jminer is utilized to generate a specific number of threads
to access IM Search to simulate multiple users requesting
queries.

When users log in IM Search, IM Search provides the
returned the search results, webpage recommendation, and
query words recommendation to users. While, users do not
log in IM Search, IM Search only provides the search results
to users. To test whether the system can trigger the structure
adjustment mechanism when the waiting tasks are polarized,
Jminer is utilized to simulate 5 login users utilize IM Search
to initiate queries. After a period of time, increase the number
of users to 10, and then increase the number of users to
100 again. The latest 90 users are asked to request queries
in non-login status. To analyze the structure of IM Search In
these three cases, the numbers of different execution units in
Level 3 are recorded, as shown in FIGURE 16. We can see
that, when the numbers of users are 5 and 10, the numbers
of different execution units has not changed. The reason is
that the competitiveness of each execution unit is enough
to ensure the successful completion of the tasks, and the
waiting tasks are not polarized. However, when the number
of users is 100, and 90 of these users do not log in IM Search,
the numbers of different execution units changed. This means
the structure adjustment mechanism is triggered. Because
when these 90 users request queries, IM Search only receives
a large number of tasks of merging result into a single list.
The waiting tasks have been polarized, and IM Search needs
more competitiveness to return the search results to a user.
Then the number of ResultMerge Holon increases, but the
numbers of Webpage Agent, Queryword Agent, and Group

FIGURE 16. Experimental results of structure adjustments when the
waiting tasks has been polarized.

Holon decrease. A part of computing resources of Webpage
Agent, Queryword Agent, and Group Holon are given to
ResultMerge Holon.

IM Search is composed of 5 component search engines,
users could selectively schedule parts of component search
engines to search. Jminer is utilized to simulate 300 users
request queries, and the component search engines are limited
to Baidu, Bing, and Sougo. After a period of time, only
100 users are asked to request queries, and the component
search engines are limited to Baidu, Bing, Sougo Youdao,
and Yahoo. Then the structure of ResultPreprocess Holons
in IM Search is analyzed, the experimental results are shown
in FIGURE 17. We can see that when 300 users schedule
Baidu, Bing and Sougo, there are no Yahoo Agents and
Youdao Agents. However, when 100 users select Baidu,
Bing, Sougo, Yahoo and Youdao to request queries, there
are Baidu Agents, Bing Agents, Sogou Agent, Yahoo Agents
and Youdao Agents in the ResultProcess Holon. This means,
the structure adjustment mechanism is triggered. When users
schedule Youdao search engine and Yahoo search engine,
but there are no Yahoo Agents and Youdao Agent. The
task of scheduling Yahoo and Youdao are performed failed.
Therefore, the structure adjustment mechanism reallocates
some computing resources to Yahoo Agents and Youdao
Agents to ensure that the tasks can be executed successfully.
Furthermore, it is obvious that the numbers of agents in
ResultMergeHolonwhen users schedule Baidu, Bing, Sougo,
Yahoo and Youdao is the same as that of when users sched-
ule Baidu, Bing, and Sougo. This indicates that the inner
structure adjustment mechanism of the ResultMerge Holon
is triggered.

FIGURE 17. Experimental results of inner structure adjustment.

To test whether the outside structure adjustment mecha-
nism can be triggered, Jminer is utilized to simulate 300 users
request queries in login status, and the component search
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FIGURE 18. Experimental results of outside structure adjustment.

engines are limited to Baidu, Bing, and Sougo. After a period
of time, we increase the number of users to 400, and 200 users
are asked to request queries in login status, while the other
200 user are invited to request in non-login status. Then the
number of ResultMerge Holon, Display Agents, Webpage
Agents, Webpage Agents, and Group Holons are recorded.
The experimental results are shown in FIGiURE 18. From the
figure, we can see that, although the Group Holon, the Web-
page Agent, the Queryword Agent, and the ResultMerge
Holon do not belong to the same parent Holon. But the Group
Holon, the Webpage Agent, and the Queryword Agent gives
some computing resources to the ResultMerge Holon, to cope
with the increasing search pressure which caused by the
increase in the number of users. It indicates that the outside
structure adjustment mechanism is triggered.

E. EXPERIMENTAL RESULTS OF SUCCESS RATE AND
RESPONSE TIME
Meanwhile, we also implemented a personalized meta-search
engine according to the component-based method, named
MetSearch, whose algorithms are the same with IM
Search. MetSearch also employs ‘‘Baidu’’, ‘‘Youdao’’,
‘‘Yahoo’’, ‘‘Sougo’’ and ‘‘Bing’’ as the component search
engines. However, MetSearch does not be built based on
DHMAS, it does not have the self-adaptive mechanism.

To verify the performance of the proposed model,
Success Rate (defined as (12)) and Mean Response Time
(defined as (13)) are calculated for MetSearach and IM
Search, respectively. The experimental results are shown in
FIGURES 19 and 20.

SR =
US
UT

(12)

FIGURE 19. Experimental results in terms of Success Rate.

FIGURE 20. Experimental results in terms of mean response time.

where SR is the Success Rate, US is the number of users
whose submitted queries are correctly responded, and UT
is the total number of users who submitted queries to
meta-search engine.

MRT =

∑N
i=1 (TRi−TS i)

N
(13)

whereMRT is theMean Response Time, N is the total number
of users who submitted queries, TS i is the time when user i
submitted the query request, and TRi is the time when user i
received the resulted results for the submitted query.

FIGURE 19 shows that, in the case of high concurrency,
IM Search performs better than MetSearch in terms of Suc-
cess Rate. In the ‘‘medium load’’ state,MetSearch has already
experienced a decrease in Success Rate, while IM Search
remains 100%. In the ‘‘high load’’ state, MetSearch has been
reduced to 72.30%, however, IM Search still reaches 97.56%.

FIGURE 20 shows that, in terms of Mean Response Time,
MetSearch performs slightly better than IM Search in the
‘‘low load’’ state. The reason is that the task assignment of
MetSearch is simpler and more direct. While, in the case of
high concurrency, IM Search has a better Mean Response
Time, because it has the ability to adjust its structure based
on the current load states.

Therefore, the experimental results indicate that IM Search
is significantly better than MetSearch when dealing with
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more complex tasks, that is, our proposed DHMAS is more
effective than the component-based method to model the
complex software systems.

V. CONCLUSION
In this article, we have presented an organizational
structure and dynamic self-adaptive mechanism for a Holonic
Multi-Agent System from a task-based perspective. Our
proposed structure of a holon consists of a Decision Mod-
ule, an Execution Module and a Task Queue. The Decision
Module has the global information of the holon, which makes
easier to manage the Holon. The Execution Module performs
the specific tasks to meet system goals. Based on the pro-
posed organizational structure, the self-adaptive mechanism
including competitiveness adjust mechanism and structure
adjust mechanism are also discussed, which guarantee the
HMAS to adapt to the continuously changing environments.
The self-adaptive adjustment mechanism will adjust the sys-
tem structure based on the current competitiveness of each
execution unit when the task environment changes, so that
the system can perform task successfully. This improves the
resource utilization. Moreover, two methods based on com-
petitiveness are presented for task assignment. The heuristic
search method based on competitiveness is proposed for
the situation of a non-atomic parent holon assigning tasks
for its sub-execution units, while the competitiveness -based
contract net method is used for the situation of an atomic
holon assigning tasks for Function Agents. The Task Assign-
ment Module assigns tasks according to the current compet-
itiveness of each execution unit, to ensure successful task
execution. Our proposed model is very suitable for solving
environmental anomalies when a small number of execution
units fail. DHMAS can promptly schedule the competitive
execution units to replace or assist the High-load or overload
execution units to perform tasks, ensuring the system meets
the environmental requirements. Finally, a metasearch engine
based on the proposed model is implemented, and it has been
proven that the proposed model has the ability to adapt to the
changing environment.

However, there are still open issues that must be addressed:
1. improving the speed of the task assignment mechanism

is a problem that must be solved;
2. identifying whether a Holon is in the state of High-load

or not, is still a question to be explored, which will affect the
performance of the self-adaptive mechanism.
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