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ABSTRACT Smartphone wound image analysis has recently emerged as a viable way to assess heal-
ing progress and provide actionable feedback to patients and caregivers between hospital appointments.
Segmentation is a key image analysis step, after which attributes of the wound segment (e.g. wound area
and tissue composition) can be analyzed. The Associated Hierarchical Random Field (AHRF) formulates
the image segmentation problem as a graph optimization problem. Handcrafted features are extracted,
which are then classified using machine learning classifiers. More recently deep learning approaches have
emerged and demonstrated superior performance for a wide range of image analysis tasks. FCN, U-Net
and DeepLabV3 are Convolutional Neural Networks used for semantic segmentation. While in separate
experiments each of these methods have shown promising results, no prior work has comprehensively and
systematically compared the approaches on the same largewound image dataset, or more generally compared
deep learning vs non-deep learning wound image segmentation approaches. In this paper, we compare
the segmentation performance of AHRF and CNN approaches (FCN, U-Net, DeepLabV3) using various
metrics including segmentation accuracy (dice score), inference time, amount of training data required and
performance on diverse wound sizes and tissue types. Improvements possible using various image pre- and
post-processing techniques are also explored. As access to adequate medical images/data is a common
constraint, we explore the sensitivity of the approaches to the size of the wound dataset. We found that
for small datasets (<300 images), AHRF is more accurate than U-Net but not as accurate as FCN and
DeepLabV3. AHRF is also over 1000x slower. For larger datasets (>300 images), AHRF saturates quickly,
and all CNN approaches (FCN, U-Net and DeepLabV3) are significantly more accurate than AHRF.

INDEX TERMS Wound image analysis, semantic segmentation, chronic wounds, U-Net, FCN, DeepLabV3,
associative hierarchical random fields, convolutional neural network, contrast limited adaptive histogram
equalization.

I. INTRODUCTION
Diabetes Mellitus is a serious medical condition that affected
30.3 million people in 2017 [1]. About 15% of diabetes
patients have chronic wounds in the US, which has a

The associate editor coordinating the review of this manuscript and
approving it for publication was Ruqiang Yan.

treatment cost of about $25 billion annually [2]. The majority
of diabetic wounds are located in the lower extremities, may
take years to heal, can re-occur and can adversely affect the
physical and mental health of the patient if not treated by
experts regularly.

Chronic wound care requires regular checkups by wound
nurses who debride the wound, inspect its healing progress
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and recommend visits to wound experts when necessary.
Accurate and timely care decisions are crucial for proper
wound healing and delays in visiting a wound specialist could
result in limb amputation. To reduce delays in care decisions,
wound nurses often send remote wound images to experts
for decisions on the best treatment options. Since 2011, our
group has been researching and developing the Smartphone
Wound Analysis and Decision-Support (SmartWAnDS)
system, which can intelligently recommend wound care deci-
sions by analyzing images of a patient’s wound and infor-
mation in their Electronic Health Records (EHR), providing
a second opinion for nurses working in remote locations.
We envision that SmartWAnDS will standardize the quality
of wound care even when the care is provided by nurses
without wound expertise and reduce the workload of wound
experts. We envision that SmartWAnDS could recommend
when patients need visits to wound experts, provide healing
scores or suggest minor changes in treatment. The Smart-
WAnDS systemwill be available as a smartphone app that can
analyze wound images captured using the phone’s camera,
and the patient’s EHR.

The visual characteristics of a wound that are useful in
evaluating its health include its size, infection level, granula-
tion tissue amount, necrotic tissue amount, slough and wound
depth [3]–[5]. However, prior clinical studies have found a
wound size to be the most important measure of its health [6].
For instance, the change in the size of a chronic wound in a
4-week period is an accurate predictor of whether the wound
will heal or not [6]. Consequently, the segmentation step is an
important step in most wound image analysis pipelines. The
goal of our wound segmentation task is to label each pixel of
a wound image into one of three semantic categories - wound,
skin and background (also called semantic segmentation).
Image segmentation has traditionally been performed using
methods such as the Conditional Random Fields (CRF) and
its variants such as the Associative Hierarchical Random
Fields (AHRF). However, following the unprecedented suc-
cess of Convolutional Neural Networks (CNNs) for image
classification in 2012 (AlexNet) [7], CNNs have been found
to outperform traditional methods for several computer vision
tasks such as image classification [7], segmentation [8] and
object detection [9].

Fully Connected Networks (FCN) [10], U-Net [11] and
DeepLabV3 [8] are deep learning-based segmentation net-
works that have outperformed traditional image segmentation
methods when given enough data. Wound image analysis has
also recently started using deep learning for wound image
classification and segmentation as seen in DeepWound [12]
and DFUNet [13]. However, to the best of our knowledge,
no systematic comparison between a deep learning approach
and traditional (non-deep learning-based, graphical or CRF-
based) techniques for wound image segmentation has been
performed.

In this paper, we present a systematic and comprehen-
sive comparison between Associative Hierarchical Random
Fields (AHRF) and three deep learning based models (Fully

Convolutional Networks (FCN), U-Net and DeepLabV3) for
the task of wound image segmentation. We compare these
approaches using a diverse set of performancemetrics includ-
ing segmentation accuracy (dice coefficient), sensitivity to
the amount of training data utilized andmodel inference time.
As real-world images and data of actual patients are often dif-
ficult to obtain in many medical applications, it is important
to compare the performance of these methods with respect
to the size of the training datasets. Deep learning methods
are well known to be data intensive. We found that when the
number of training images is small (<300), AHRF (tradi-
tional) has a higher accuracy (dice coefficient) than U-Net
but is still not as accurate as FCN and DeepLabV3 which
were pre-trained on a subset of the COCO [14] dataset.
As the number of training images increases, AHRF begins
to saturate and the accuracy gap between AHRF and U-Net
shrinks with U-Net eventually becoming more accurate than
AHRF. FCN andDeepLabV3 consistently outperformed both
U-Net andAHRF for all training set sizes. Aswe envision that
our SmartWAnDS wound assessment system will eventually
be deployed on a smartphone, we also examined the compu-
tational requirements of each method, inference time, and the
need to communicate with a remote server.

The rest of this paper is organized as follows. Section II
provides a brief background on the techniques used in this
paper followed by the related work in image segmentation
in Section III. The methodology used in this paper and a
description of the wound image dataset utilized for training is
located in Section IV. Sections V and VI present our results
and a discussion of our major experiments and analyses of
our findings. Finally, in Section VII, we conclude and suggest
some directions for future work.

II. BACKGROUND
We compared semantic segmentation of wound images using
Associative Hierarchical Random Fields (AHRFs) and Con-
volutional Neural Networks (CNNs) for assigning a label of
skin, wound or background to each pixel of an input image.
Some background on both approaches are now presented.

A. ASSOCIATIVE HIERARCHICAL RANDOM FIELDS
(AHRFs)
Conditional Random Fields (CRFs) model data probalisti-
cally and have been found to be effective for various machine
learning prediction tasks. AHRFs [15], a variant of CRFs
leverage contextual data by considering other pixels in the
neighbourhood of the target pixel to be classified, which
works better than considering each pixel’s label in isolation.
AHRFs model the conditional probability that a given pixel
should be assigned a certain label, by considering the pixel
itself as well as other pixels in its neighbourhood. An energy
function consisting of unary, pairwise and higher order poten-
tials is minimized to find the most optimal semantic labels for
a given image. The unary potential takes features extracted
from the target pixel as input and outputs a probability
score for each target class. Pairwise potential ensures that
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nearby pixels that have similar features are assigned the same
label. Higher order potentials are constructed such that pixels
belonging to the same superpixels or cliques have the same
label. Graph solving techniques are then used to minimise the
energy and determine optimal labeling. Details about AHRF
including the energy function minimized are presented in the
Methodology section as Equation 1.

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNNs have been found quite effective for many computer
vision tasks in recent years. They act as trainable image filters
which can be used to convolve over images sequentially to
measure responses or activations of the input image, creating
feature maps. These feature maps are then stacked together,
passed through non-linear functions, and further convolved
with more filters. This convolution process has been found
to be effective at extracting visual features or patterns in
images that can be useful for tasks such as classification,
segmentation, and super resolution. In this paper, we compare
three CNN-based architectures for semantic segmentation:
FCNs, DeeplabV3 and U-Net, which we now review briefly.

1) FULLY CONVOLUTIONAL NETWORK (FCN)
As they have generally performed well for per-pixel tasks,
Long et al first proposed using FCNs trained end-to-end for
semantic segmentation. FCN utilizes a skip architecture that
combines semantic information from a deep, coarse layer
with appearance information from a shallow, fine layer to
produce accurate and detailed segmentations. FCNs have
only locally connected layers, such as convolutions, pooling
and upsampling, avoiding any densely connected layer. It also
uses skip connections from it’s pooling layers to fully recover
fine-grained spatial information which is lost during down-
sampling.

2) U-NET
U-Net [11] is an encoder-decoder architecture that uses
CNNs. Encoder-decoder networks, as the name suggests
have two parts - an encoder and a decoder. The encoder is
responsible for projecting the input feature vectors into a low
dimensional space in which similar features lie close together.
The decoder network takes features from this low dimen-
sional space as input and attempts to recreate the original
input features. Thus, the output of the encoder or conversely
input of the decoder is called the bottleneck region where a
low dimensional representation is present. Encoder-decoder
networks have been found to be effective for various tasks
such as image denoising, language translation and image
segmentation.

3) DeepLabV3
DeepLabV3 [8] utilizes atrous convolutions along with spa-
tial pyramid pooling which enlarges the field of view of filters
to incorporate larger context and controls the resolution of
features extracted. Employing atrous convolutions in either
cascade or in parallel captures multi-scale context due to the

FIGURE 1. Wound image (left), pixel-wise segmentation mask for wound,
skin and background (right).

use of multiple atrous rates. DeepLabV3 uses a backbone
network such as a ResNet [16] as its main feature extractor
except that the last block is modified to use atrous convolu-
tions with different dilation rates.

III. RELATED WORK
A. PROBABILISTIC TECHNIQUES FOR WOUND IMAGE
ANALYSIS
Prior to the rise in the popularity of deep learning, wound
analysis mostly utilized probabilistic techniques such as color
space manipulation [17], [18], machine learning classifiers
using hand-crafted features [19], clustering techniques [20]
and edge detection [21]. These probabilistic approaches gen-
erally have the advantage of not being very data inten-
sive as they use hand-crafted features and shallow machine
learning models. However, they fail to generalize well to
new images captured in varied lighting conditions, skin and
wound types. For the purpose of comparison with deep learn-
ing, in this paper, we use Associative Hierarchical Random
Fields (AHRF) [15] as a probabilistic solution for image seg-
mentation. AHRF uses region growing for connecting pixels
that have similar visual features and also uses a combination
of handcrafted and learned features for semantic segmenta-
tion of an image.

B. CNN-BASED IMAGE SEGMENTATION TECHNIQUES
Researchers have applied CNNs to biomedical appli-
cations such as wound segmentation using transfer
learning [22], using lightweight mobile deep learning archi-
tectures (MobileNet) for wound segmentation [23], region
proposal-based Faster R-CNN model for wound localiza-
tion [24], and the inception module based CNN for classifica-
tion of skin into healthy and abnormal [13]. These methods
all try to segment wound pixels but do not distinguish the
skin region from the background in the image. Li et al. [25]
proposed a method to segment out skin pixels using heuristics
for thresholding and region growing as a first step, and then
passed forward the cropped image with detected skin to the
MobileNet CNN architecture for wound segmentation.

The downside to using neural networks is that they require
large datasets to train from scratch which is not always
available in applications that use medical or clinical data.
This problem can be alleviated by using techniques such
as data augmentation to increase variations in the existing
data and transfer learning, which uses models that have been
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TABLE 1. Statistics of dataset.

previously trained for similar vision tasks. The deep learning
segmentation methods utilized in this paper were organized
in two different ways. U-Net had separate classifiers for
wound and skin while FCN and DeepLabV3 had just one
classifier for both skin and wound. This enabled us compare
whether the arrangement of classifiers affected the models
performance.

IV. METHODOLOGY
A. DATASETS OF WOUND IMAGES
We gathered 3 different datasets as described below, which
include diabetic foot ulcers, arterial, venous, pressure ulcers
and surgical wounds. Many of the images exhibit typical
wound attributes such as granulation, necrosis and slough.
A wound annotation app (shown in Fig-2) was specifically
created to expedite pixel-level annotations of wound and
skin segments within the given images. The wound annota-
tion app implemented the deep extreme cut algorithm [26],
providing consistent wound annotation. Specifically, we did
not rely on human labelers, which obviated the need for
evaluating inter-rater reliability.

• Dataset 1 consists of 114 wound images captured with
controlled lighting conditions. A wound imaging box
was created [27] that simulated a consistent, homoge-
neous lighting environment. The segmentation masks
consist of pixel-level labels where the red color cor-
responds to the wound segment, yellow corresponds
to the skin segment and background is indicated by a
green-colored mask 1.

• Dataset 2 was gathered by scraping publicly avail-
able wound images from the internet. It consists
of 202 images collected by scraping and 114 images
from dataset 1, which yields a total of 316 images.
This dataset has images with varying lighting conditions
but the wounds were mostly captured from a relatively
perpendicular angle.

• Dataset 3 is the largest dataset with 1442 images in
total, which was acquired from the vascular surgery
department of the University of Massachusetts Medical
Center. This dataset has images with large variations in
lighting, viewing angles, wound types and skin texture.

Table-1 shows the mean and standard deviation of the nor-
malized values in the R,G,B channels. It can be observed that
the standard deviation of the RGB values is less in dataset 1 as
the images were captured using a wound box with controlled
lighting and imaging distance, and increases for dataset 3.
Table-2 shows the image statistics of only wound and only

TABLE 2. Statistics of dataset.

FIGURE 2. Annotation app with wound image view (left), pre-view of the
mask after annotating the wound image (right).

skin pixels, obtained by cropping the image with the ground
truth mask. The standard deviations are quite high for both
wound and skin showing significant variations in our datasets.
Table-2 also shows the average percentage of wound and
skin pixels within a wound image and their corresponding
standard deviation. It can be seen that the average wound
percentage is less than 10%whereas skin covers almost 50%
creating class imbalance.

B. WOUND IMAGE PRE-PROCESSING
In order to make our algorithms more robust to lighting vari-
ations and noisy imaging conditions, several pre-processing
techniques were explored. Most of these techniques involved
manipulating the images’ histograms in some form. The
histogram is the probability distribution of pixel intensity
values within an image, ranging from 0 to 255. After exper-
imenting with the impact of many techniques on semantic
segmentation accuracy such as image sharpening, histogram
normalization, contrast enhancement, vignetting, gamma
correction, reflectance, histogram matching and Con-
trast Limited Adaptive Histogram Equalisation (CLAHE),
we found that CLAHE was consistently the most effective
pre-processing technique.
Contrast Limited Adaptive Histogram Equalization

(CLAHE): CLAHE [28] is an image pre-processing tech-
nique based on adaptive histogram equalisation [29] which
contextually equalizes the histogram of local image regions.
Thus, the pixel’s intensity is transformed proportional to its
rank of intensity among its neighbours defined by a kernel
size. This technique was found to significantly enhance both
the signal and noise components of an imag, which was not
desired. CLAHE ensures that noise enhancement is reduced
by using a contrast limiting factor called clip limit. This user
defined limit is used as a maximum allowable local contrast
enhancement factor. A grid search over the kernel size and
clip limit was performed to obtain a kernel size of (24, 24)
and clip limit of 3.0 as the most optimal hyperparameters for
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FIGURE 3. An example image (left) with the Contrast Limited Adaptive
Histogram Equalization Image (right).

our dataset. An example of CLAHE pre-processing with our
hyperparameters is shown in Fig-3.

C. ASSOCIATIVE HIERARCHICAL RANDOM FIELD (AHRF)
Image segmentation using AHRF, a variant of CRF, con-
sists of two parts: 1) calculating the energy value for an
image given its pixel-wise labels, which considers both local
features and similar neighboring pixels, 2) a graph solving
approach, which tries to determine the optimal assignment of
labels to an image such that its energy function is minimized.
The mathematical formulation of AHRF is explained below.
A high-level workflow of AHRF is also shown in Fig-4

FORMULATION
Let us first define the following variables -
X = {X1,X2, . . .Xn} are the variables to be labelled
L = set of labels from which Xi are labeled
yi = individual label given to Xi such that yi ∈ L
M = number of paired training instances of the form
{x(i), y(i)}Mi=1
V = {1, 2, . . . n} set of valid vertices or indices of X
N = defined by sets Ni∀i ∈ V where Ni denotes the set of

all neighbors of Xi
C = set of all cliques c where a clique Xc is a set of

variables X that are similar and codependent such as super-
pixels yc = labelling given to each clique c

Using the variables defined above, an AHRF formulation
consists of an energy function E which is written as the
sum of unary, pairwise and clique-wise potential as shown
in equation 1 below.

E(y) =
∑
i∈V

φi(yi, θu)︸ ︷︷ ︸
Unary Potential

+

∑
i∈V ,j∈Ni

φ
p
ij(yi, yj, θp)︸ ︷︷ ︸

Pairwise potential

+

∑
c∈C

φhc (yc)︸ ︷︷ ︸
Higher order potential

(1)

In the above formulation, θu and θp are a set of parameters
that are learned from the training paired samples {x(i), y(i)}Mi=1
with the objective of maximizing the conditional distribution
P(y|X ). The higher order potential is described in equation 2
below.

φhc (yc) = mini∈L(γmax
c , γ lc +

∑
i∈c

wik lc1(yi 6= l)) (2)

FIGURE 4. AHRF implementation and workflow.

wherewi is the weight of the variable xi and each variable of a
clique is penalized with a costwik lc if it has not taken the value
of the dominant label of that clique. The value of penalty
is truncated at γmax

c . This formulation also supports higher
order super-pixel based potentials across multiple scales of
the image since it allows for cliques to take a free label in
the case of multiple dominant labels and also considers rela-
tionships between cliques to increase contextual awareness.
We have used mean shift segmentation to generate super-
pixels. Several different features have been used to calculate
the AHRF potentials including textonBoost features on RGB
and LAB colorspace, local binary patterns, Histogram of
Oriented Gradients (HOG), SIFT features and color distri-
bution features. Given the potential terms and parameters,
the optimal labeling can be found by minimizing the overall
energy using graph-cut based move making algorithms such
as alpha expansion or alpha-beta-swap algorithm.

D. SEMANTIC SEGMENTATION ARCHITECTURES USING
CNNs
1) FULLY CONVOLUTIONAL NETWORKS (FCNS)
FCNs differ from the classic CNNs used for image classifica-
tion tasks. The CNN pipeline for image classification usually
has a structure with several convolution layers followed by
fully connected layers and outputs one predicted label per
image. On the other hand, Long et al describe a Fully Con-
nected Network (FCN) as one that uses only convolutions,
pooling and activation functions and computes a nonlin-
ear filter [10]. It achieved state-of-the-art segmentation on
PASCAL VOC 2012 [30], NYUDv2 and SIFT Flow in 2015.

Classification networks can be converted into FCNs by
eliminating the final classifier layers and appending a 1 × 1
convolution layer with a channel dimension equal to the num-
ber of classes to be predicted. This also allows the network
to accept arbitrary sized images as input. This modification
performs well on segmentation tasks but the output is coarse,
which is remedied by adding skips that combine outputs
from the lower layers with finer strides to generate the final
prediction. This refines the output as local information from
the lower layers makes the model pay attention to the global
structure. Upsampling is required to fuse these outputs, which
is done by deconvolution layers.
Network Structure: We utilized ResNet101 [16] as the

backbone of this network. The model consists of four layers
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FIGURE 5. Architecture of FCN.

followed by a classifier that segments the pixels into their
respective classes. The four layers contain 3, 4, 23 and 3 bot-
tleneck units respectively where each bottleneck consists of
four convolution layers that are followed by a batch normal-
ization step. The ReLU activation function is used after each
bottleneck.

The third convolution layer in the bottleneck is a 3 × 3
convolutional operation while the rest are 1×1 convolutions.
After the second layer, the bottleneck layers have an added
dilation factor in the 3×3 convolutions for improving perfor-
mance. The classifier consists of a 3×3 convolution followed
by batch normalization and ReLU with dropout steps, ending
with a 1 × 1 convolution with a channel dimension equal to
the number of output classes.

2) U-NET
U-Net is a Convolutional Neural Network (CNN) encoder-
decoder segmentation architecture proposed by Ronneberger
et al. [11]. It won the ISBI cell tracking challenge in 2015 and
has since been found to perform well on diverse applications
of segmentation to medical images. U-Net moves and ana-
lyzes a sliding window over a large image, which enables
the network to learn contextual information about the image.
In our wound segmentation task, this is useful as the network
needs to learn the context of skin and discover wound seg-
ments inside it. Based on fully convolutional neural networks,
U-Net takes advantage of high resolution features from the
convolution layers to learn the optimal up-sampling of the
image.
Network Structure: The contracting path consists of 5

down convolution blocks. Each block consists of 3 × 3
convolution operation with ReLU activation and a 2 × 2
maxpooling. The U-Net architecture was slightlymodified by
adding batch-normalization layer after the convolution layer
in order to normalize the activations. A dropout layer was also
added at the end of each block to prevent over-fitting.

In the expanding path, the transpose convolution operation
is utilized for upsampling. The convolution operation is the
sum of the dot product of all the values in the kernel and
the patch of the image. Transpose convolution does exactly
the opposite by taking in single values from the feature map

FIGURE 6. Architecture of U-Net.

and multiplying them by all values of the learned kernel.
This helps in fine-grained up-sampling of the feature map.
To facilitate the up-sampling operation, features from the con-
volution layers are concatenated to the feature map obtained
from the last layer. As the contracting and expanding paths
are symmetric, a U-shape is formed (as seen in Fig-6), from
which the architecture gets its name.

3) DeepLabV3
DeepLabV3 is a convolutional neural network, which uses
atrous convolutions in either a cascaded or parallel fash-
ion along with atrous spatial pyramid pooling, enabling the
network to capture multi-scale context by using different
atrous rates. The performance of DeepLabV3 matched that
of other state-of-art models on the PASCAL VOC 2012 seg-
mentation benchmark in 2017. In an ordinary convolutional
neural network, pooling and striding cause a reduction in
the resolution of the feature maps. Usually, deconvolutional
layers are used to upsample and recover spatial resolution.
Instead, DeepLabV3 uses atrous convolutions [31] that are
essentially convolutions with holes, to effectively enlarge the
field of view of filters to improve context assimilationwithout
increasing the number of operations and filter parameters.

Atrous Spatial Pyramid Pooling (ASPP) is the main rea-
son for DeepLabV3’s impressive performance. It consists of
four parallel atrous convolutions with different rates that are
then applied to the feature map. The atrous convolutions in
the pyramid are all followed by batch normalization. Global
context is also incorporated into the model by applying global
average pooling on the final feature map of the network
followed by 1×1 convolution and batch normalization steps.
This output is then upsampled bi-linearly to the desired spa-
tial dimension.
Network Structure: This network also uses ResNet101 as

its backbone. The first few layers of this model have a struc-
ture similar to the FCN with four layers that have 3, 4, 23 and
3 bottleneck units respectively. The classifier that follows
starts off with a 1 × 1 convolution with batch normaliza-
tion and a ReLU activation function and this output is fed
into the ASPP. The convolution operations in the pyramid
are 3 × 3 with different dilation rates. This is followed by
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FIGURE 7. Architecture of DeepLabV3.

adaptive average pooling for global context and four convolu-
tion operations with batch normalization andReLU activation
steps. All convolutions are 1 × 1 except for the penultimate
convolution which is a 3× 3 operation.

LOSS FUNCTION
All the networks described above were trained using Binary
Cross Entropy (BCE) as the Loss function.

BCE =
∑
i∈N

(−gi ∗ log pi) (3)

where pi is the softmax output given by the network, N is
image size, g is the ground truth labels g ∈ {0, 1}, p is the
predicted label after applying the softmax operation to the
output generated by the output layer of the network.
Dice Coefficient Score: is a common metric for determin-

ing the performance of image segmentation methods [32].
It quantifies the overlap of a segmented image with ground
truth segmentation labels. In this paper, we use the Dice
Coefficient as our evaluation metric to compare segmentation
results as it incorporates both precision and accuracy. The
Dice Coefficient is defined as follows -

dicecoeff =
2∗ | pbin ∩ g |
| pbin | + | g |

(4)

where pbin is the binary value of the predicted mask after
performing a binary threshold on pi at 0.5. pbin ∈ {0, 1}.

The final loss function is a weighed sum of BCE and
dicecoeff where k is a manually tuned parameter. The BCE
loss helps in increasing the confidence of the network to
detect true positives whereas the dice loss penalizes the net-
work for wrong positions of the predicted wound. As both are
log losses, they are additive.

Loss = BCE − k ∗ log dicecoeff (5)

POST-PROCESSING
The segmentation maps predicted by the networks are
sometimes discontinuous and often require post-processing.
Hence, the outputs are usually post-processed using a Con-
ditional Random Field (CRF) with Gaussian edge potentials

for improving segmentation accuracy [33]. A CRF is charac-
terized by a Gibbs distribution and the Gibbs energy of the
graph G = (V ,E) is defined in 1 without the higher order
term.

For our implementation, the unary potential is defined as
the negative log of the softmax output of the network. Thus
when the output of the network for a given pixel is close to 1,
the unary potential for the corresponding graph node is 0,
whereas if the output is close to 0, the unary potential goes to
infinity. As the unary and pairwise potentials are calculated
independently, the labels predicted by the unary potential
alone are significantly affected by noise. A pair-wise potential
is devised to incorporate the association between neighboring
pixels. The pairwise kernel is defined as in equation 6.

φ
p
i,j(xi, xj) = µp(xi, xj)

K∑
m=1

wmkm(fi, fj) (6)

where µ is the Potts model and K (fi, fj) are Gaussian kernels.

km(fi, fj) = w1 exp (−
| pi − pj |2

2θ2α
−
| Ii − Ij |2

2θ2β
)︸ ︷︷ ︸

appearance kernel

+ w2 exp (−
| pi − pj |2

2θ2γ
)︸ ︷︷ ︸

smoothness kernel

(7)

The appearance kernel associates pixels with similar color
and penalizes pixels with large differences in color. It consid-
ers both pixel intensities in individual image channels I and
their positions p. In our case, the image vector I has [R,G,B]
pixel values from the input image, and is parameterized by
θα and θβ . The smoothness kernel penalizes only based on
the nearness of the pixels and is parameterized by θγ .

E. TRAINING THE AHRF MODEL
AHRF uses gradient boosting techniques to optimize the
unary potential and graph-cut algorithm to optimize the CRF
graph. The Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [29] pre-processing technique was found to
increase the dice score of wound segmentation. Optimal
parameters of the CLAHE technique were found using grid
search on Dataset 1. The parameters for CLAHE imple-
mentation of openCV used in our results are kernel size
of 24, 24 and clip limit of 3.0. AHRF was trained on a
multi-threaded high performance cluster with 20 CPUs and
100 GB memory.The framework parallelizes feature extrac-
tion and utilized up to 40 threads.

F. TRAINING THE SEMANTIC SEGMENTATION NETWORKS
All the networks utilize high resolution features from the
convolution layers in learning the optimal up-sampling of
the image. In our experiments, all images were resized to
a standard dimension of 512 x 384 before being input to to
the network. As all the images in the dataset were of varying
dimensions and aspect ratios, we averaged the dimensions of
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FIGURE 8. Sample image augmentations done online during training.

all images and approximated them to the closest even value
required to maintain an aspect ratio of 4:3.

As the number of image samples in our datasets were
inadequate for neural networks, a probabilistic data aug-
mentation pipeline was implemented to generate synthetic
augmentations using the albumentations library [34]. The
augmentations used were geometric in nature including ver-
tical flip, horizontal flip, random rotate, scale and translation.
To compensate for various lighting conditions augmentations
such as CLAHE, random contrast and blurring were also
added to the pipeline. At run time, every augmentation was
chosen with a probability p. Only one augmentation from
the set CLAHE, random contrast, median blur and random
brightness was chosen with a probability p = 0.5 and
the rest of the augmentations were chosen with p = 0.5
each. This ensured that CLAHE and blurring, or contrast
and blurring were not performed on the same image. Refer:
Fig-8.

The FCN and DeepLabV3 models we utilized were
pre-trained on a subset of the COCO train2017 dataset, while
U-Net was initialized with weights from the Carvana Image
Classification Challenge. The networks were then fine-tuned
using images from wound datasets using Stochastic Gra-
dient Descent (SGD). FCN and DeepLabV3 were trained
for only 50 epochs as their superior initial weights made
them converge quickly. U-Net was trained for more epochs
[500-600 epochs] with early stopping. Six-fold valida-
tion was used to evaluate the generalization of the net-
works. The models were implemented in PyTorch [35]
and its built-in optimizers were used for the training
process.

FCN and DeepLabV3 were trained on a High Perfor-
mance Cluster (HPC) with a Tesla K40 and 2 Intel Xeons
and took one day to train all folds. On the other hand,
U-Net was trained on an i7 CPU with 32GB memory and
a GTX1080Ti GPU and took 5 days to train. Two separate

TABLE 3. Results for Dataset 1 (95 Train, 19 Validation).

networks were trained for U-Net - one for classifying between
wound vs non-wound pixels, and the other for classifying
skin vs non-skin pixels. The masks of these two networks are
combined at the end to generate a final segmentation mask.
All inferences were run on the GTX1080Ti. As the Gaus-
sian edge-based CRF model used for post-processing could
not be optimized during back propagation of the network,
the θα, θβ , θγ parameters were optimized separately using
grid search.

G. EVALUATION
All semantic segmentation methods were evaluated using
k-fold cross validation over the entire dataset with k = 6.
Performance of the model on test set is measured by using
the Dice Coefficient Score.

V. RESULTS AND DISCUSSIONS
1) COMPARING SEGMENTATION INFERENCE TIME
AHRF is a graph optimization method and takes about
3-5 minutes to infer segmentation masks for a single image
of size 512 × 384 on all three datasets (see column 4 of
Tables - 3 to 5). Although the graph optimization step is
faster, the feature extraction and evaluation steps makes infer-
ence in AHRF significantly slow. Consequently, it would be
challenging to implement AHRF on mobile devices. CNNs
on the other hand utilize a series of matrix multiplica-
tions and additions amenable for implementation on GPUs,
which most smartphones are equipped with. FCN, U-Net and
DeepLabV3 had an average inference time of approximately
41, 50 and 56 milliseconds on all three datasets.

2) COMPARING SEGMENTATION ACCURACY
Dataset 1: As observed in Table-3, AHRF is significantly
more accurate than U-Net by a difference of 0.159 dice score
on the wound segments in dataset 1. Both Pre-processing
(CLAHE) and Post-processing (CRF) improve the per-
formance of the segmentation of U-Net. However, even
with these pre- and post- processing techniques, U-Net is
not as accurate as AHRF. On the other hand, FCN and
DeepLabV3 both outperform AHRF even with less data,
which can be attributed to the models being trained on
a subset of COCO train2017 and then fine-tuned to our
dataset. FCN outperforms DeepLabV3 by 0.0197 in dice
score which is because FCN is a lighter model and hence,
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FIGURE 9. Performance of AHRF, U-Net, FCN and DeepLabV3 trained on Dataset 3 for segmenting a variety of images
with different colors, textures and lighting conditions of skin, wound and background.

fits the data distribution slightly better than DeepLabV3.
FCN and DeepLabV3 outperforms AHRF by dice scores
of 0.0322 and 0.0125 respectively.
Dataset 2: As the dataset size increases, the networks

generalize to the distinct features and textures that define
a wound. As seen in Table-4, U-Net has a slightly higher
dice score than AHRF (more accurate). Pre-processing
U-Net using CLAHE improved its accuracy but the improve-
ment observed is less than that obtained for Dataset 1 but it
underperforms FCN and DeepLabV3 again, with a difference
of 0.124 and 0.122 in dice score respectively. Ultimately,
as the size of the training data increases, U-Net’s dependence
on pre- and post- processing decreases as it learns better
features. The performance of FCN and DeepLabV3 is not
affected by pre- and post- processing due to their pre-trained
weights and model architectures (DeepLabV3). FCN and
DeepLabV3 outperformed AHRF by dice scores of 0.135 and
0.133 respectively.
Dataset 3: The third dataset containing 1442 images is

roughly four times the size of dataset 2. Even though it has
more variance (see Table -1, Table-2), the CNNs generalize
to all types of wounds and generate segmentation masks
close to the ground truth, whereas the performance of AHRF

TABLE 4. Results for Dataset 2 (263 Train, 53 Validation).

decreases slightly. As observed in Fig-13 - sample 1, AHRF
tends to get confused for the same image as the variations in
the dataset increases, making it less robust. The CNNs also
generate better segmentation masks for smaller wounds as
seen in Fig-9-sample 4. U-Net has a significantly higher dice
score than AHRFwith a margin of 0.106 dice co-efficient and
does not require any pre/post-processing. AHRF is observed
to over-segment and often performs poorly on edges and
wounds with difficult textures. FCN and DeepLabV3 still
outperform U-Net by a dice score of 0.117 and 0.121 respec-
tively, which highlights the impact of using pre-trained
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TABLE 5. Results for Dataset 3 (1201 Train, 241 Validation).

TABLE 6. Common Validation Set - WOUND.

FIGURE 10. Box plots of wound percentage of wound pixels vs dice
coefficient for dataset 1.

models. DeepLabV3, a deeper model, outperforms FCN as
dataset 3 has significantly more data for it to work with.

a: COMMON VALIDATION DATASET
In order to get a final conclusion on the accuracy of all
the segmentation methods, we compared their segmentation
accuracy on a common validation set after being trained
on datasets 1, 2 and 3 respectively (see Table-6) It can be
concluded from this table that the accuracy of deep learning
models increases with increase in the data samples while the
performance remains same or sometimes worsens for AHRF,
a graph based segmentation architecture.

FIGURE 11. Box plots of wound percentage of wound pixels vs dice
coefficient for dataset 2.

FIGURE 12. Box plots of wound percentage of wound pixels vs dice
coefficient for dataset 3.

3) MODEL ROBUSTNESS TO WOUND COLORS IN
BACKGROUND
In many wound imaging situations, colors found in many
wounds such as red and yellowmay appear in the background
by accident. Thus, it is important to compare how robust (i.e.
does not detect those background colors as part of the wound)
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FIGURE 13. Comparison of AHRF, U-Net, FCN, DeepLabV3 and their accuracy trends on all 3 datasets.
Sample 1 shows how the accuracy of AHRF improves from Dataset 1 to Dataset 2 but then decreases when
more, noisier data is added in Dataset 3. The deep learning networks on the other hand shows consistent
improvement as more data is added. The samples demonstrate how skin pixels are segmented more
accurately than the wound segment because of the huge class imbalance in data.

181600 VOLUME 8, 2020



A. Wagh et al.: Semantic Segmentation of Smartphone Wound Images: Comparative Analysis of AHRF and CNN-Based Approaches

the segmentation methods are when such colors appear in the
background. Since the networks are pre-trained and are being
fine-tuned on the wound segmentation task, the network tries
to learn the most prominent features of the wound at first.
It can be clearly observed in Fig-13 - sample 3, dataset 1, that
U-Net initially (on smaller datasets) tends to classify any red
color in the wound image as belonging to the wound segment.
This can be justified from Table-2 which shows that the mean
value of the Red channel of the wound segment of dataset 1 is
higher than the Blue and Green channels. However, as U-Net
is trained on more data, it starts to learn and rely on texture
information as well. This can be seen in Fig-13 sample 3,
where U-Net does not confuse the red cloth in the top left
corner with the wound when trained on dataset 3. FCN and
DeepLabV3 do not face this issue as they utilize pre-trained
weights, alleviating their dependence on just color. AHRF on
the other hand uses hand-crafted features, is more robust to
wound colors in the background. It requires fewer images to
achieve its performance limits and thus does not confuse the
red cloth with the wound irrespective of which dataset it has
been trained on. This shows that handcrafted features help
AHRF understand textures better than U-Net when trained
on smaller datasets but due to information contained in their
initial weights, FCN and DeepLabV3 already take textures
into consideration.

4) EFFECT OF CLASS IMBALANCE
We compared the accuracy of the CNNs and AHRF for
wound images with varying sizes of wound and skin seg-
ments. It can be observed in Sample 4 of Fig-9 how detection
of skin pixels (larger segments) is better than that of the
wound segment (smaller) for the networks because of the
huge class imbalance in data. This trend is not observed
for AHRF because AHRF is trained jointly for all three
classes. Hence, the wound classifier can utilize the informa-
tion learned for skin. For example, areas not classified as skin
but surrounded by skin automatically get a higher probability
of belonging to the wound class.

5) SENSITIVITY TO THE RELATIVE PROPORTION OF THE
WOUND SEGMENT
The sensitivity of segmentation to changes in the propor-
tion of image covered by the wound is studied for all three
datasets. Figures 10, 11, and 12 show the accuracy of AHRF
and the CNNs as the wound size varies in the form of box
plots. We show box plots that includes information on both
the mean Dice score as well as its variation across various
folds. The width of the box plot shows how stable the reported
mean Dice score is across various folds. Dice score variance
is shown for percentage of wound pixels in the images. The
wound percentage is defined as the ratio of number of wound
pixels to the total number of pixels. Due to the connective
property of AHRF which results from its clique potential,
it fails to work well on images that have small wounds
because neighboring skin pixels cause a small wound to also
be classified as skin. The deep learning networks do not face
this problem and work well on wounds of a small size.

The box-plot in Fig-10 shows that AHRF performs better
than U-Net even with large variations in the wound size for
dataset 1 while FCN and DeepLabV3 match its performance.
The CNNs fail to detect wounds smaller than 10% of the
wound image whereas AHRF generates some slight segmen-
tations. The box-plot in Fig-11 and Fig-12 shows increased
accuracy with as wound size increases for datasets 2 and 3.
The height of the boxes shows variance in the performance
of all architectures. It can be observed that images with
more than 5% of wound pixels have better results for all the
architectures. This result can be used to create a guideline
for taking usable wound images or cropping the images in a
pre-processing phase by keeping the wound percentage more
than 5%. For instance, the photographer can be asked to
retake (or zoom in) images in which the wound percentage
is less than 5%.

6) SEGMENTATION ACCURACY FOR WOUNDS WITH
DIFFERENT WOUND ATTRIBUTES AND SKIN TYPES
As seen in Fig-9, bothAHRF and the CNNS have shown good
generalizability to various wound tissue types, skin colors
and lighting conditions. Granulation, slough and necrotic are
different types of wound tissue which occur in wounds, which
differ in their color and texture. However, both AHRF and the
networks have shown good segmentation results on wounds
containing a combination of these tissues. The networks gen-
eralize well to darker skin tones and bad lighting conditions
as well.

VI. DISCUSSIONS AND CONCLUSION
In this work, a comprehensive systematic analysis of seman-
tic segmentation of smartphone camera captured wound
images using AHRF, FCN, U-Net and DeepLabV3 has been
performed. All segmentation methods achieve good results
which generalize well in wound images with various skin and
wound tissue types, and background clutter. However, due to
differences in the two approaches (AHRF vs deep learning),
some trade-offs have to be considered before deciding on a
model for practical purposes.
AHRF had increased segmentation accuracy when

input images were pre-processed using CLAHE. CLAHE
pre-processing with U-Net showed improvements only for
smaller datasets. CRF post-processing also improved the
accuracy of U-Net on smaller datasets. Pre- and post- process-
ing did not change the performance of FCN and DeepLabV3.
AHRF is more accurate and generalizes better than U-Net

for small datasets (< 300 images) but is outperformed
by fine-tuned FCN and DeepLabV3 models pre-trained
on PASACL VOC: AHRF has more reliable predictions
because it depends on texture features and not just color. Its
hand-crafted visual features also enable it to learn wound fea-
tures with fewer images. U-Net on the other hand, performed
moderately well for segmenting skin but not wound pixels on
Dataset 1 (smallest dataset). FCN and DeepLabV3 performed
well in segmenting both skin and wound pixels across all
3 datasets.
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CNNs are more accurate for larger datasets
(> 300 images). As the size of dataset increases, the segmen-
tation accuracy of the deep learning networks increase while
that of AHRF saturates after a point and sometimes even
worsens with the addition of more training data. As FCN,
U-Net and DeepLabV3 have many more trainable hyperpa-
rameters than AHRF, they are able to absorb and utilize more
data and generalize better. They also show better performance
on smaller wound sizes as compared to AHRF. This is
because AHRF has a region growing property due to its
pairwise and clique potentials which causes smaller wounds
to sometimes become part of the surrounding skin clique
which are wrongly segmented as skin.
CNNs have a considerably faster inference time than

AHRF: mainly because AHRF uses many hand-crafted
features and clustering techniques, which take time to
be computed. In our experiments, AHRF took about
4-5 minutes for segmenting one image while FCN, U-Net and
DeepLabV3 could segment the same image in about 40, 50,
60milliseconds respectively. This makes the networks a more
viable option for implementation on mobile devices, where
resources are constrained, especially if real-time segmenta-
tion is required. The long inference time of AHRF makes it
difficult to use even in a client-server scenario, as a network
connection would probably timeout before segmentation is
complete.
Initial weights of deep learning approaches make a con-

siderable difference: U-Net generally outperforms FCNs,
but FCN outperforms U-Net in our experiments by a mar-
gin 0.075 for dataset 3 as seen in Table-6. FCN and
DeeplabV3 were initialized with pre-trained weights from
COCO train2017 while U-Net was initialized with weights
from the Carvana Image Classification Challenge. Using
these weights for U-Net was better than using random initial-
ization but are still no match for COCO train2017 weights.
DeepLabV3 outperformed FCN by a margin of 0.017 for
dataset 3 in Table-6.

VII. FUTURE WORK
One possible future direction for this research could be exper-
imenting more with lighting variations and performing an
error analysis of the various factors which affect the segmen-
tation performance of AHRF and the deep learning models.
Models can be made more robust by using Generative Adver-
sarial Networks (GANs) [36] for synthesizing more training
data. More effective ways of image pre-processing such as
auto-augmentation [37] can also be used which trains a neural
network to decide on the best possible pre-processing step
for a given input image. Finally, parallelizing AHRF to make
it faster, especially the feature extraction might be a fruitful
direction for further research.
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