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ABSTRACT “The friction ridge pattern is a 3D structure which, in its natural state, is not deformed by
contact with a surface”. Building upon this rather trivial observation, the present work constitutes a first
solid step towards a paradigm shift in fingerprint recognition from its very foundations. We explore and
evaluate the feasibility to move from current technology operating on 2D images of elastically deformed
impressions of the ridge pattern, to a new generation of systems based on full-3D models of the natural non-
deformed ridge pattern itself. There are already a small number of previous studies that have already started
scratching the surface of 3D fingerprint recognition and that should not go overlooked. However, the vast
majority of these few successful approaches published so far, are based on the reconstruction of fingerprints
from multiple 2D images acquired with different lighting conditions (photometric stereo 3D reconstruction)
or acquired from different angles (stereo vision 3D reconstruction). Such reconstruction methods lead in
general to 2D fingerprints wrapped over the overall volume of the finger. These volumetric fingerprints have
shown some promising performance, but still miss the real depth information of the ridge pattern, which,
in the best case scenario, is coarsely estimated during the error-prone reconstruction process. In the present
work we take one step further, directly acquiring for the first time in a consistent and repeatable manner, full-
3D fingerprint models stored as point-clouds, where each point is defined by its [x, y, z] coordinates. This
way, the 3D data is directly measured by the sensor, with no post-processing reconstruction stage required.
The complete recognition system developed represents as well an alternative to traditional technology based
on minutiae detection. It shows that image-based processing algorithms and descriptors can be successfully
applied to the new full-3D data, reaching very competitive results and confirming the high distinctiveness

of the models.

INDEX TERMS 3D data processing, fingerprint recognition, laser sensing.

I. INTRODUCTION
“All natural objects are unique if examined in
enough detail” - Gottfried W. Leibniz

This quote by the famous mathematician and philosopher
Gottfried W. Leibniz, was used by Simon Cole in his article
“The Myth of Fingerprints™ to question the amount of usable
distinctive information available in a fingerprint [1].

While it is difficult to argue against Leibniz’s statement,
when we speak about automatic computerised recognition of
fingerprints, it is Cole that hits the mark [2]. The question is
not anymore whether or not natural fingerprints are unique,
but rather, if the digital representation that is used for their
recognition is able to capture that uniqueness in an automatic,
measurable, consistent and repeatable way (i.e., usable).
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In the wake of the previous discussion, it can be argued
that the key to reach high accuracy in biometrics lies, to a
large extent, at the very beginning of the recognition chain:
the acquisition process. Following Leibniz’s quote, we need
to develop acquisition technology that is able to exam-
ine (and capture) in enough detail, the natural biometric
characteristics.

This need for detailed and reliable digital models of the
natural world, is summarised in computer science as the well-
known GIGO principle: “Garbage In, Garbage Out”. Or,
in other words, the results of a computerised system can only
be as accurate and reliable as the information entered into
it. In the biometric field in particular, such principle bears
a direct relation with the concept of data quality as reflected
by the fidelity definition given in the ISO/IEC 29794-1 stan-
dard [3]: if the acquired biometric sample (i.e., digital rep-
resentation of the natural biometric characteristic) does not
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reliably render its original counterpart (garbage in), only high
error rates can be expected (garbage out).

The argumentation above leads to a foregone conclusion:
the more reliable and detailed the digital representation of the
object being automatically recognised, the higher its unique-
ness, the easier to be differentiated from other similar objects,
and the better the system accuracy. In the case of fingerprint
recognition, two features stand out in order to acquire a high

fidelity digital representation of the ridge structure:
« Human fingerprints are 3D anatomical structures.

This rather obvious statement is, however, one of the
key factors behind the accuracy ceiling fingerprint-based
systems are running into. Present fingerprint recognition
technology relies on 2D images of the fingerprints. Such
a downgrading from the 3D space to the 2D pixel-
based plane implies that some valuable, and potentially
distinctive information, is lost.

o In their natural state, fingerprints are not deformed
by contact with an object. Such a second trivial remark
is also one of the main parameters that explains the level
of intrinsic failure of fingerprint recognition. The major-
ity of current fingerprint acquisition sensors require the
finger to be in contact with a surface in order to cap-
ture the final 2D fingerprint image. Such a touch-based
acquisition procedure introduces additional variability
among samples as a result of: 1) the elastic deforma-
tion that affects the finger when it is pressed against a
surface; 2) imprecise imaging due to changes in the skin
condition (e.g., dry or moisturised skin). This variability
is not present in the fingerprints natural non-deformed
state (or at least to a much lesser degree), but is generated
as a direct result of the acquisition process. Furthermore,
these changes are very difficult to predict or correct at
the time of acquisition as they depend on uncontrol-
lable factors such as: the pressure applied on the sensor,
the amount of rotation after contact, or the condition of
the fingerprint.

Substantiated on the previous two factual observations,
it is reasonable to hypothesise that: a high quality 3D model
acquired in a touchless way, should in principle be a more reli-
able representation of a natural fingerprint than a high quality
2D image acquired with touch-based technology, since the 3D
model is closer to the actual physical reality of the fingerprint.
This way, the 3D model would have the potential to lead to
higher recognition accuracy.

As further reinforcement of the previous hypothesis, let’s
assume that the acquisition of a perfect 3D model of the fin-
gertip were possible. In that case, it would be fairly straight-
forward to project it onto a perfect, non-deformed 2D rolled
fingerprint image. That is, all the information contained in
a given 2D image is also present in the perfect 3D model.
However, the inverse process, that is, going from a perfect 2D
image to a perfect 3D model, would be impossible, given that
part of the original spatial information would be lost during
the 2D acquisition and would have to be estimated in the
reconstruction process.
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For the above-mentioned reasons, it seems reasonable to
expect that the previous hypothesis holds: on paper, full-
3D touchless acquisition has the potential to produce better
recognition accuracy results than 2D touch-based sensing.
If that is the case, the question that immediately follows is:
Why does theory fail to be put in practice? Why is current fin-
gerprint acquisition technology based on touch-sensors that
capture 2D images? Why aren’t there any known commercial
or standard solutions to capture full-3D fingerprint models
in a touchless manner? The answer to these questions lies
in a fundamental concept “hidden” in one of the previous
paragraphs: a high quality representation of the fingerprint is
required.

It may be true that, assuming both representations of the
fingerprint (i.e., full-3D touchless model and 2D touch-based
image) of the same quality, the 3D model should lead, in prin-
ciple, to better recognition accuracy. However, it is also true
that a high quality 2D touch-based image is preferable to a
medium-to-low quality 3D fingerprint model.

The fact of the matter is that capturing a high qual-
ity 3D model of a fingerprint is a very challenging task.
Up to date, in spite of some recent valuable initiatives (see
Sect. II), there is not yet any sensor capable of accomplish-
ing the feat with sufficient degree of detail (as required
by Leibniz), in a fast, consistent and repeatable way. As a
result, full-3D fingerprint recognition still remains today, to a
very large extent, uncharted territory [4]. In the meanwhile,
2D touch-based sensors keep to produce more reliable fin-
gerprint representations and, in consequence, higher accuracy
recognition results.

The current paper builds upon the lessons learned in
the preliminary work presented in [5], to become a first
robust step towards setting the foundations to consolidate
a new biometric mode: full-3D fingerprint recognition. The
contributions of the work can be summarised as follows:
1) Development of the first fingerprint scanner based on
laser sensing technology able to acquire accurate full-3D
fingerprint models in a touchless manner; 2) Development of
the first complete recognition system of full-3D fingerprints;
3) Analysis of the discriminative potential of image based
descriptors to model the new 3D data, as an alternative to
traditional minutiae detection methods; 4) Acquisition of the
first multi-resolution database of full-3D fingerprints, com-
prising 200 different fingers and 3,000 samples; 5) Evaluation
of the whole methodology showing the high discriminative
power of the novel biometric mode.

A. SHORT NOTE ON TERMINOLOGY

By definition, a fingerprint is the impression left on a surface
by the friction ridges of a subject’s fingertip. Where the
fingertip is the part of the finger corresponding, in length,
to the last phalange (3rd phalange).

A friction ridge (also referred to as papillary ridges or
epidermal ridges in the specialised anatomy literature), is a
raised portion of the epidermis on the digits (fingers, thumbs
and toes), the palm of the hands and the sole of the feet.
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Each friction ridge of the epidermis (outer skin) is anchored
to the dermis (inner skin) by a double row of peglike protu-
berances, or papillae.

The key concept in the fingerprint definition is that a
fingerprint is formed on an external surface, as a result of
the contact between the friction ridges of the fingertip and
the surface. Traditional fingerprint recognition systems focus
on the analysis and recognition of these impressions, either
produced with ink on a paper, or on the platen of a 2D touch-
based live scanner.

Contactless technology, such as the one presented in this
work, does not operate on the impressions produced by the
friction ridges, since there is no contact between these and
a surface, but it recognises the friction ridges themselves.
The 3D sensor described in the present work creates a model
of the friction ridges which is later processed to perform
the recognition process. Therefore, strictly speaking, this is
not a “fingerprint” recognition system, but rather a “friction
ridge” recognition system.

However, with the generalised use of fingerprints for per-
sonal identification since the early years of the 20th century,
the term fingerprint has lost part of its original meaning and
is now used indifferently to refer to the impressions on a
surface and to the anatomical friction ridges of the human
body. Following this widespread trend in the literature, in the
current article we will use the term ““fingerprints” to actually
refer to the “friction ridges” found in the fingertips.

Il. RELATED WORKS
From the origin of automated fingerprint recognition technol-
ogy in the early 1960s [6], there has been a huge economic
and scientific investment in the development of live-scan 2D
touch-based fingerprint sensors. This concentration of effort
on 2D over 3D technology, was not so much a conscious
decision, but the natural consequence of two determinants:
1) On the one hand, there was a pure technical reason. During
the big boom of computer-based biometric recognition in the
1980s and 90s, 3D sensing technology was still in its infancy.
It was not mature enough to acquire reliable models of such
fine and detailed structures as friction ridges. 2) On the
other hand, there was also a practical motivation to foster 2D
contact-based sensors. This technology produces images that
are compatible with the traditional ink-and-paper acquisition
method applied from the beginning of the dactyloscopic sci-
ence back in the 19th century [7]. Therefore, 2D touch-based
technology was the natural way to move forward, without
producing an undesirable compatibility gap between the old
off-line procedures and the new live-scan technology.
However, in the present decade, massive progress has been
achieved in the accuracy of 3D sensing and also in the com-
putational capacity for the digital analysis of 3D models.
This new reality has resulted in the development of a large
variety of applications, graphical tools and algorithms for 3D
data processing. We could rightfully say that we are currently
witnessing the real blossoming of the 3D era. As a result, the
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technical limitations for the emergence of a new generation
of 3D fingerprint sensors have been largely surmounted.

As an effect of this technical evolution, in the current
state of the art in fingerprint recognition, we can find some
research works as well as industrial applications that have
advanced, to some extent, in the direction proposed by the
present work.

Over the last few years, contactless technology is rapidly
gaining ground over traditional touch-based sensors, sup-
ported by two appealing features [8]: 1) it eliminates the
variability introduced among fingerprint samples due to dif-
ferences in applied pressure and skin condition; 2) it also
avoids cleanliness issues such as ““ghost-fingerprints” on the
sensor platen, and even potential health problems derived
from multiple individuals touching the same surface (a risk
which has been made even more evident with the COVID-
19 pandemic). As a result, today we can find a fairly wide
range of finalised commercial touchless fingerprint 2D scan-
ners from some of the top companies in the biometric industry
such as IDEMIA, GEMALTO, NEC or TBS. In fact, already
a few years back, the FBI (Federal Bureau of Investigation)
certified the first two commercial contactless scanners for
their use in the PIV program (Personal Identity Verification
of Federal Employees).!?

In addition to industry, there are also a number of on-
going research initiatives to further improve the contactless
technology. One of this novel lines that stands out due to the
level of effort dedicated to it, is the development of specific
algorithms for a new generation of finger-photo recognition
systems designed to be seamlessly integrated in smartphones
[9], [10]. Fingerprint 2D contactless recognition is even being
considered at the moment for its future deployment at border
crossings [11].

All previous efforts have led to the active involvement of
the US NIST (National Institute for Standards and Technol-
ogy) in the development of fingerprint contactless sensors
through the CRADAs technology transfer program (Cooper-
ative Research and Development Agreements). As a result,
NIST has published a series of technical reports address-
ing: 1) the usability of contactless fingerprint sensors [12];
2) guidance for the evaluation of contactless readers [13];
and 3) the current level of accuracy difference and interop-
erability among contactless and contact-based systems [14].
In a similar line, two reports promoted by the US Department
of Justice were conducted to compare the accuracy reached
using samples acquired in a contact-based versus a contact-
less manner [15], [16]. Following the somewhat suboptimal
results reported in these evaluations with regard to the level
of compatibility of samples acquired with contactless and
contact-based sensors, nowadays, one of the most active
areas of research in the context of 2D contactless fingerprint

1 https://www.secureidnews.com/news-item/contactless-fingerprint-
system-fbi-certified/

2https://www.biometricupdate.com/ZO1601/fbi—certification—for—
morphos-desktop-contactless-fingerprint-scanner-morphowave
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recognition, is the development of algorithms to improve this
interoperability issue [17], [18].

These initiatives show the growing interest that fingerprint
touchless acquisition is gaining in the biometric community.
It can be inferred from the strong institutional and private
investment showed above, that in the not so distant future,
a significant part of fingerprint applications will go touchless.

Some of the on-going touchless projects claim the acqui-
sition of 3D fingerprints. While at some point of the recog-
nition process there is, indeed, a volumetric representation
of the fingertip, the vast majority of these works are based
on acquiring multiple 2D pixel-based images of the finger,
and then generating a 3D reconstruction from them. Very
few of these works consider the direct acquisition of a full-
3D fingerprint model consisting of vertices defined by their
[x, y, z] spatial coordinates. In fact, the existing literature
on 3D fingerprint recognition may be classified in three
main strategies, according to the method applied to arrive
at the 3D representation of the fingertip: 1) fingerprint 3D
reconstruction from 2D images of the finger surface; 2) fin-
gerprint 3D reconstruction from 2D images of the finger
surface and inner layers; 3) direct fingerprint full-3D acqui-
sition. Each of these strategies are discussed in the next
paragraphs.

By far, the most followed strategy to obtain 3D fingerprint
representations of fingerprints, is the estimation of the surface
depth data from multiple 2D images. These works follow one

of two types of acquisition-reconstruction techniques:
o Photometric stereo 3D reconstruction. Such methods

estimate the shape of the fingerprint using multiple 2D
images taken with variable lighting conditions, from a
fixed viewpoint. This reconstruction technique assumes
that the object (i.e., fingerprint) is illuminated only
directly by the sensor light source [19]-[22]

o Stereo vision 3D reconstruction. This is currently the
most extended approach in 3D fingerprint recognition
studies. In this case, multiple 2D images of the finger-
print are acquired simultaneously with two or more cam-
eras. Corresponding points are later detected in the 2D
images and used to estimate the 3D depth information,
according to the triangulation principle [23]-[31].

Although this formula relying on “‘reconstructed-3D data
from multiple 2D samples” has had some success, it only
partially addresses the issue of the information loss derived
from the initial acquisition of 2D images to generate the final
volumetric model. Another challenge created by this type
of approaches is the reconstruction process itself, which is
usually computationally expensive and adds an extra error-
prone stage to the recognition chain.

The second strategy that can be found in the literature
to obtain 3D fingerprint models follows a somewhat differ-
ent principle: taking 2D images not only of the fingerprint
surface, but also from internal skin layers. This approach
was first followed using ultrasonic sensors in two works by
different teams that were published simultaneously in 2008
[32], [33], and then, more recently, using the medical imaging
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technology known as Full-Field Optical Coherence Tomog-
raphy (FF-OCT) [34]. In both cases, the raw scanner output
are 2D images of the transversal section of the skin, so that
the spatial z dimension may be extracted from the successive
finger “slices”. As in the works mentioned previously, the
final fingerprint model is reconstructed from the set of 2D
images and not directly acquired by the scanner. The ultra-
sounds approach was restricted to the very preliminary works
cited above where two respective proofs-of-concept were
presented [32], [33]. In spite of no further public research
activity in this line, currently, a company focused on mobile
communications, advertises the commercialisation of touch-
based 3D fingerprint sensors utilising ultrasound technology,
that have been integrated in existing smartphones [35]. As far
as we know, the FF-OCT approach has had some further
research visibility [36], [37], but is still in its experimental
phase, without having produced yet a stable and reliable
recognition system.

Finally, the third type of methods capable of producing
3D fingerprints, include those based on sensors that directly
acquire 3D data. The system developed in the present work
belongs to this category. To date, all the works in this group
are based on scanners using Structured Light Illumination
(SLI). The pioneering work that first suggested the possi-
bility to obtain a 3D model of a fingerprint following this
technique was published in 2005 [38]. The same team fur-
ther developed the acquisition method in subsequent works
[39], [40]. Structured-light 3D scanners such as the one built
in the works above, project successive light patterns of dif-
ferent frequencies on the target. A fixed camera looks at
the shape of each single pattern and computes the distance
of every point in the field of view according to its defor-
mation with respect to the original pattern. The three main
challenges of SLI technology for 3D fingerprint scanning
are: 1) SLI-based scanners very often encounter difficulties
handling translucent materials, such as skin and human tissue,
because of the phenomenon of subsurface scattering; 2) the
spatial resolution achieved by current SLI-based technology
is significantly lower than that of laser triangulation-based
scanners like the one used in the present work (see Sect. IV);
3) the object is analysed as a whole for each different pat-
tern projected, therefore, a perfect motionless acquisition is
required to avoid misalignments in the data modeled by each
pattern. Insufficient spatial accuracy combined with small
movements of the finger can result in noisy samples for very
detailed structures like the friction ridge. The researchers
leading the first works in this field presented initial recog-
nition results in 2010 using their SLI scanner, on a database
of 11 users and 441 3D fingerprint samples [41]-[43]. Two
other smaller case-studies following the SLI acquisition tech-
nique were presented by different research teams in more
recent dates [44], [45].

All the valuable initiatives mentioned in this section, show
the willingness of the biometric community to search for
alternatives that can advance traditional 2D touch-based
acquisition. However, according to the reports presented so
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far, although 2D contactless fingerprint technology is rapidly
gaining ground, it has not yet reached the reliability and
accuracy standards of state of the art 2D touch-based sys-
tems [14]-[16]. Furthermore, as already mentioned, most
existing methods do not consider the direct acquisition of full-
3D fingerprint models, but the reconstruction of volumetric
fingerprints from 2D images. The current work represents an
ambitious step forward in the field of fingerprint recognition,
moving not only to a touchless acquisition scenario, but also
to the real non-reconstructed three-dimensional space.

At the end of the article, in Sect. X-B, the reader can find a
comparison of the most relevant works in the state of the art
dealing with the recognition of 3D fingerprints (see Table 3).

Ill. 3D-FLARE: FULL-3D FINGERPRINT LASER
RECOGNITION SYSTEM

“The primary challenge in a biometric recognition system is
to design a suitable sensor, feature representation scheme,
and similarity measure to minimise the recognition errors.”
This quote by Anil K. Jain et al., appears in a recent review
article where the authors summarised, in their expert view,
the “core research challenges in biometrics” [46]. No other
statement could condense in a more precise manner the task
undertaken in the present work: The design of a complete new
biometric system almost from scratch.

The 3D fingerprint recognition system described in this
article has been triggered by a new ground-breaking pro-
totype sensor capable of acquiring highly accurate full-3D
finger models in a touchless, fast, reliable and repeatable
fashion.

Finger 3D models acquired by this sensor are intrinsi-
cally different in nature to the 2D images used by existing
fingerprint recognition technology. Consequently, previous
processing and feature extraction methods devised for 2D
fingerprint systems are, for the most part, not applicable to
the new data. The novel scanner is, therefore, the catalyst in a
domino effect which has lead to the development of a number
of new algorithms to process the 3D data, in order to reliably
extract and compare its most salient features.

The full system is depicted in Fig. 1, from the acquisition
stage to the computation of the final similarity score. From an
overall perspective, the system follows, to a large extent, the
phases of classical fingerprint recognition systems. However,
the individual methods used in each of the stages substantially
differ from those considered in traditional 2D technology. For
instance, no minutiae detection is involved in the comparison
process. Each of the stages highlighted in Fig. 1 are described
over the next sections.

One of the biggest challenges posed by the new 3D data
is that, in addition to a possible displacement (translation)
of the finger in the three x, y and z axes, the finger can
also be rotated according to any of the three angles roll,
pitch and yaw, as shown in Fig. 2. This spatial variability of
the models needs to be corrected prior to their comparison,
so that the final similarity score is produced using aligned
samples. The system has been designed to be robust to this
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REAL FINGER

STAGE 1:

ACQUISITION

Restriction of translation
and rotation

SAMPLE: Finger 3D model

STAGE 2:
SEGMENTATION

Compensation of yaw angle

Fingertip 3D model

STAGE 3:

DETACHMENT
FINGERTIP + FINGERPRINT

Compensation translation

Probe TEMPLATE:
Fingerprint 3D model
A,

Reference
TEMPLATE:

STAGE 4:
»|| ALIGNMENT + CROPPING

Compensation of
pitch and roll angles

Fingerprint
3D model

ROI Fingerprint 3D model(s)
v

STAGE 5:

FEATURE EXTRACTION
HOG + LBP

HOG feature vector(s)
LBP feature vector(s)

STAGE 6:
COMPARATOR +
NORMALIZATION +
FUSION

Similarity score: s

FIGURE 1. Complete 3D fingerprint recognition system developed in this
work. Each of the six stages in the diagram are described in Sects. IV
through IX.

FIGURE 2. Diagram showing the naming convention that will be used in
the article for the possible rotation directions of the finger.

variability through: 1) hardware measures integrated in the
acquisition sensor that limit the spatial freedom of the subject
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to place the finger and 2) the development of processing
algorithms capable of compensating small differences in the
finger positioning (as specified in the system stages shown
in Fig. 1).

IV. STAGE 1: TOUCHLESS FULL-3D FINGERPRINT
ACQUISITION BASED ON LASER TRIANGULATION

“To overcome some of the constraints currently affecting
biometric systems, the design of novel sensors is required” .
This quote has been extracted from a 2019 paper by Ross
et al., reflecting upon some of the fundamental issues that
still need to be addressed in biometrics [47]. The statement
reinforces the idea already expressed by Jain et al. in their
2016 paper that reviewed 50 years of automated biometric
systems [46]. In that article, the authors gave their vision of
the future in biometrics and expressed their conviction that
“the improvement in sensors will mitigate the intra-subject
variations caused by sensor limitations to a large extent. [... |
The development of novel sensors can be expected to further
push the limits on quality, usability, and cost.”

These two claims, by some of the most authorised voices
in biometrics, perfectly summarise the motivation behind this
first stage of the system, which main objective is to: develop
the first fingerprint sensor capable of directly acquiring high
resolution full-3D models of the finger in a touchless man-
ner, avoiding this way any reconstruction process from 2D
images.

The advantages of such an unprecedented scanner may be
summarised as follows: 1) the resulting 3D finger models
do not exhibit the level of elastic deformation present in 2D
fingerprint images produced by standard touch-based scan-
ners; 2) they also do not present the level of noise caused by
touch-based technology due to changes in the skin condition
(moisture/dryness); 3) they are neither affected by changes in
the illumination conditions, contrary to images captured by
2D contactless sensors relying on traditional imaging tech-
nology, since the final result is not a pixel matrix representing
light intensity levels, but a point cloud of spatial coordinates
[x, v, z]; 4) the same as other 2D contactless sensors, it avoids
the cleanliness and potential health problems derived from
touch-based readers (clearly highlighted by the COVID-19
pandemic), eliminating as well the issue of the so-called
“ghost-fingerprints™.

The key factor to be taken into account for the devel-
opment of such a sensor is that fingerprint ridges are very
fine physical structures with a width/depth in the range of
0.1-0.3 millimeters [48]. The acquisition of an accurate full-
3D model of this small dimension constitutes a challenging
engineering problem. The task becomes even more difficult
considering that a finger is a living object that cannot be kept
fully still.

Among the different 3D scanning technologies available
in the market, contactless 3D active sensors based on laser
triangulation present the highest spatial accuracy, down to
the range of a few microns, making them a perfect fit for
the acquisition of fingerprints. The main drawback of these
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scanners is their restricted range of operation (i.e., distance
between the target and the sensor), limited to only several
centimeters if very high resolution is required. However, this
is not a significant constraint in the specific case of 3D
fingerprint scanning, as the finger can be placed as close to
the sensor as needed.

In light of the discussion above, the prototype 3D fin-
gerprint acquisition device assembled for the present work
(shown in Fig. 3) is a contactless active scanner based on
the triangulation principle. The scanner uses a line projection
laser diode to illuminate the target (i.e., finger). A fast CMOS
camera captures, from an angle, the light reflected on the
finger. This way, using triangulation, the shape of the line
imaged on the sensor can be directly related to the shape of
the finger along the laser line.

The scanning process is fairly simple. The camera and
the laser diode form a triangle (as shown in panel (e) of
Fig. 3). The length L between the camera and the laser diode
is known. The laser is perpendicular to the ground. The angle
of the camera with respect to the ground is also known, in this
case 45°. These three pieces of information (i.e., length L,
angle of the laser diode and angle of the camera) determine
the shape and size of the triangle and give the location of the
points in the finger segment illuminated by the laser line.

As shown in the three pictures of the top row in Fig. 3,
the laser 3D fingerprint scanning prototype built for this
research is composed of the elements described in the
following paragraphs.

Laser diode. The optical properties of human skin change
with light wavelength. For longer wavelengths in the visual
spectra, i.e. red to deep red colors (650nm and over), the skin
presents a non negligible absorption coefficient. This means
that an illuminated spot is observed not just by the light
directly reflected on the surface, but also presents a glowing
area around the specific point. This is caused by the light
transmitted into the inner tissue which is reflected back after
being internally refracted in deeper layers (i.e., subsurface
scattering phenomenon). Such effect translates into inaccu-
rate readings of the skin surface. For shorter wavelengths, i.e.
green-blue (450nm-550nm), the light absorption coefficient
of the skin decreases to almost zero. With this in mind, an
active light with shorter wavelength is better suited for the
acquisition of the friction ridge, located in the epidermis. As
aresult, we selected a 10mW StingRay Laser Diode emitting
green light at a wavelength of 514nm.

Camera. The fingerprint scanning prototype uses a
3D-enabled camera manufactured by PhotonFocus. The
CMOS sensor in the camera presents a resolution of
2048 x 1088 pixels and is connected internally with high-
speed electronics which compute the position of the line
projected by the laser through the triangulation process
described previously. The camera is capable of acquiring
up to 1000 frames/sec, however, the higher the acquisition
speed, the more reflected light required in order to obtain a
high precision model of the finger. In essence, the higher the
acquisition speed, the higher the power of the illumination
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STAGE 1: ACQUISITION

(touchless, full 3D, laser-based)

____________________
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finger 3D model
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Scan range = 5cm

FIGURE 3. Diagram of STAGE 1 (i.e., acquisition), of the 3D fingerprint recognition system developed in this work. The pictures show the new 3D

touchless sensor based on laser triangulation.

source (i.e., laser diode). Given that, for safety reasons, a very
low power laser of just 10mW was selected, the camera
sampling frequency was set to 600 frames/sec.

Even with the selection of a short wavelength green-light
laser, a very restricted amount of subsurface scattering can
still be present in the finger readings. To minimise the pos-
sible distortion caused by this phenomenon, the sensor only
considers the average peak from all the reflected light, which
corresponds to a hypothetically perfect line illuminating the
finger.

Optics. The optical system coupled to the camera consists
of a high quality lens with a focal length of 12mm and a
band-pass filter matching the active 514nm wavelength of
the laser, in order to optimise the signal-to-noise ratio. The
filter eliminates illumination sources (i.e., noise) outside the
wavelengths covered by its band of operation, that could
potentially affect the reading of the camera.

Fixing support. Both the camera and the laser diode are
mounted to a blue plastic arm designed and 3D-printed in
our lab (see pictures (a) and (b) in Fig. 3). The function of
this fixing support is to ensure that the laser and the camera
are held at a constant distance L, forming an angle of 45°
between the scanning illumination axis and the optical axis
(see pictures (d) and (e) in Fig. 3).

The key parameter of the prototype scanner is its spa-
tial accuracy. In order to optimise it, the complete struc-
ture, including the camera and the laser mounted to the
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fixing support, is calibrated so that each pixel in the CMOS
sensor represents an absolute position [x, y, z] along the laser-
projected plane.

As a minor note, please bear in mind that, for simplic-
ity of the prototyping process, the fixing support has been
produced in plastic. Therefore it can undergo minimal geo-
metrical transformations due to changes in the room tem-
perature causing the expansion/contraction of the material.
However, considering that the sensor is kept in a laboratory
with a variation of £5° Celsius, the potential impact of
the thermal expansion coefficient on the final readings is
negligible.

Translation stage 4+ motor controller. The translation
stage moves the fixing support, holding the laser diode and
the camera, at a constant speed in order to scan the full length
of the finger. The movement is handled by a motor controller
that receives commands from the acquisition software.

The translation stage presents a maximum scanning range
of Scm from the starting to the finishing position (as shown
in picture (e) of Fig. 3). This way, in order to acquire the full
fingerprint, from the tip to the joint of the 3rd phalange, the
finger has to be inserted less than Scm. Typically, in order
to avoid acquisition errors, only the 2nd and 3rd phalanges
should be introduced in the scanner through the hole in the
protection box.

The stage can vary its speed up to 50mm/sec, covering its
complete acquisition range in just one second.
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FIGURE 4. Diagram showing the structure of the database acquired for this work. We show one example of each of the four fingers acquired: left
middle, left index, right index and right middle. Each sample is represented from a different view point in order to better illustrate the 3D nature of the

models.

Protection box. The external orange box that can be seen
in the bottom row of Fig. 3, was designed and built specifi-
cally for the project in our lab and it fulfils two main goals.
1) Firstly, it serves as safety measure for the laser diode. The
box is made of plexiglass panels that absorb (i.e., filter out)
the light emitted by the laser (same operation principle as
laser protection goggles). It should be noted that the 10mW
laser belongs to the very low range of laser class IIIB, which
comprises the power range [SmW-499mW]. Lasers below
SmW are considered eye-safe to be used as pointers. For
class IIIB, protection goggles are only suggested (neither
recommended nor mandatory). 2) Secondly, the box also
serves as a guide for the correct positioning of the finger both
in height and direction (see pictures (e) and (f) in Fig. 3).
In order to obtain an accurate 3D reconstruction, it is critical
that the finger is placed approximately at the height where
the laser and camera axis intersect, so that if falls roughly
in the center of the field of view of the camera (please see
the central picture of the bottom row in Fig. 3). To this aim,
a finger-guide built above the insertion hole, aids the user to
correctly place the finger in the scanner so that a high quality
model is produced.

The finger-guide built as part of the protection box is essen-
tial to restrict the spatial displacement and rotation among
finger samples. As explained in Sect. III, this is one of the
biggest challenges that has been addressed in the develop-
ment of the 3D fingerprint recognition system. The finger-
guide does not eliminate completely the spatial variability,
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but it restricts it to a level that can later be compensated by the
processing algorithms in the remaining phases of the system.
Roughly, all fingers are captured at the same height, facing
down, perpendicular to the laser, along the scanning direction
of the translation stage.

Acquisition software. A specific software application was
developed in order to: 1) select and regulate the scanning
speed of the translation stage; 2) minimise acquisition mis-
takes by automatically controlling the finger sequence fol-
lowed for the generation of the 3D-FLARE DB (please see
Sect. IV-A for further details on the DB); 3) automatically
store the captured files with the correct naming convention.

The sensor produces files in PLY format, which is a stan-
dard representation of point cloud objects. In these files,
the finger is modeled by a N x 3 matrix, where each of the N
rows is a point defined by its spatial coordinates [x, y, z]. The
points are uniformly distributed over a rectilinear grid in the
x and y axes with an almost constant resolution (negligible
variations may exist in the size of the grid step due to the
scanner precision).

The resolution in the x dimension (transversal to the fin-
ger) according to our scanner configuration is approximately
0.03mm. The depth resolution in the z direction is up to
0.008mm. The sensor moves longitudinally to the finger-
print along the y dimension. As such, this spatial resolution
depends on the scanning speed (i.e., speed of the translation
stage) and the sampling rate of the camera (600 frames/sec).
Samples were acquired at three different speeds of the
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translation stage 10mm/sec, 30mm/sec and SOmm/sec, which
in turn resulted in three different resolutions in the y dimen-
sion: 0.017mm, 0.05mm and 0.08mm. This will enable us,
in the experimental evaluation, to analyse the effect of the
acquisition resolution on the accuracy of the new recognition
system.

Just as reference, a typical FBI-certified optical touch-
based sensor producing 2D images operates at 500ppi reso-
lution, which translates into a spatial accuracy of 0.05mm in
the x and y axes (no information available in the z dimension).
This resolution would be similar to the 3D sensor operating
between 30mm/sec and S0mm/sec. For the slowest scanning
speed, that is, 10mm/sec, the 3D sensor would present an
equivalent 2D resolution of approximately 1500ppi.

Depending on the acquisition speed and the size of the
finger, the resulting raw PLY files weigh approximately
18-24 Mbytes at 10mm/sec acquisition speed, 7-9 Mbytes at
30mm/sec, and 3-5 Mbytes at S0mm/sec.

The previous resolution in each of the x, y and z axes, are
theoretical optimal values that can be obtained when scanning
perfectly still objects. However, it is not possible to maintain
a finger completely motionless. Therefore, in order to cope
with this motion factor, the computation of the spatial values
of the final point cloud, assumes that the finger presents
a smooth surface with no discontinuities. Whether or not
the sensor is capable of suppressing the finger movement,
in order to produce 3D models that are accurate enough
to be used reliably for personal authentication, can only be
determined through experimental evaluation. The protocol
and results of such assessment are described in Sect. X.

A. 3D FINGERPRINT LASER REcognition DATABASE:
3D-FLARE DB

Using the prototype contactless 3D sensor described in the
previous section, we have acquired a new 3D fingerprint
database in order to: 1) test the reliability and consistency
of the sensor; 2) devise specific processing methods for 3D
fingerprints; and 3) evaluate the accuracy of the complete 3D
fingerprint recognition system developed in this work.

The 3D Fingerprint LAser Recognition DB (3D-FLARE
DB) contains the index and middle fingers of both hands from
50 subjects, that is, 200 different fingers. All subjects are
caucasian adults between 28 and 55 years of age, computer
based workers, with a sex ratio of 40 men and 10 women. The
acquisition was conducted in a standard office-like environ-
ment with no specific control over illumination. Volunteers
were given the option to be sitting on a revolving chair in front
of the sensor or standing up, depending on what position felt
more comfortable for them.

Each finger was acquired 15 times: five samples at a speed
of 50mm/sec (fastest speed allowed by the translation stage),
five samples at 30mm/sec and five samples at 10mm/sec.
In order to simulate a more realistic acquisition scenario, sam-
ples of the same finger were not captured consecutively. The
scanning protocol followed by each subject was: left middle,
left index, right index and right middle at 50mm/sec, same
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sequence at 30mm/sec, same sequence at 10mm/sec; repeat
all five times. This way, after each single sample acquisition,
the subject had to remove the finger and introduce the next
one in the sequence. This process was defined to ensure suffi-
cient spatial variability among samples from the same finger.
The acquisition of all 60 samples (4 fingers x 5 samples x
3 speeds) of the same subject took around 10 minutes. In order
to minimise mistakes in the acquisition protocol, the specific
software described in Sect. IV automatically controlled the
finger sequence, the scanning speed and the file storage.

As aresult of the previous process, the database comprises
a total 3,000 full-3D finger models (i.e., point clouds). The
structure of the database is represented in Fig. 4 where four
examples of typical raw 3D finger models are shown. All four
fingers correspond to the same subject. Different view points
have been used to depict each of the samples in order to better
illustrate the three dimensional nature of the models.

Due to data protection legislation, at the time of publication
of the present paper, we are not able to release the database
to the public for research purposes. The distribution of the
database may be achieved in the mid-term future. For the time
being, as part of the article submission, the interested reader
can have access to the next additional multimedia material:
1) a video showing the database acquisition protocol, the sen-
sor in operation and some sample 3D fingerprints; 2) the data
corresponding to two subjects in the database. These sample
data includes both the raw samples in PLY format acquired at
all three scanning speeds, and the processed datain MATLAB
format used for recognition as described in the next sections
of the article.

V. STAGE 2: 3D FINGERTIP SEGMENTATION BASED ON
THE FINGER CURVATURE

The raw data captured by the 3D sensor corresponds to the
whole length of the finger inserted within the scanning range.
This raw model typically includes not only the fingertip, but
also part of the second phalange, as shown on the left of
Fig. 5. Therefore, the objective of this first processing stage
is to segment the part of the acquired model corresponding
exclusively to the fingertip (i.e., third phalange).

The novel segmentation method takes advantage of the
depth information contained in 3D models. In particular, it is
based on the curvature of the finger, a feature that cannot be
extracted from the flat images of fingerprints used by tradi-
tional 2D systems. The curvature has already been considered
for recognition purposes [28], showing limited discriminative
capacity, with a best Equal Error Rate (EER) of around 15%.
However, in the present work it has proven to be a very
valuable characteristic for the segmentation task at hand.

The 3D finger model captured by the prototype scanner is
a smooth continuous surface defined by z over a rectilinear
grid in the x and y coordinates. The fingertip is contained
in a rectangle limited by [Xpin, Xmax] and [Ymin, Yimax] that
comprises the z info corresponding only to the 3rd phalange
of the finger. The objective of the segmentation process is to
find those four limits.
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STAGE 2: SEGMENTATION

(based on the finger curvature)
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FIGURE 5. Fingertip segmentation method based on the curvature of the finger, described in Sect. V.

Limits in the y axis (i.e., longitudinal to the finger). The
key task of the whole segmentation process is to locate the
limit y,,q,. This parameter will be referred to as the “End-
of-Fingerprint” point (EoF), and is defined by the joint of the
2nd and 3rd phalanges. Once the EoF is determined, the other
three limits (i.e., Yin, Xmin and X4, ) Will be derived from it.

In order to retrieve the EoF, a two-step method has been
developed (depicted inside the dashed square in Fig. 5).

o Step 1: Location of the central longitudinal axis of the
fingertip x,,. This step is plotted in the top left panel of
Fig. 5. Nine equidistant transversal sections (i.e., in the
direction of the x axis) of the finger are taken along the y
axis, that is, z(x, y,) withn = 1, ..., 9 (plotted in red in
the bottom panel of Fig. 5 and also in Fig. 6). All sections
are smoothed using a 30 point moving average filter.
The minimum of the smoothed sections (shown with red
circles in Fig.5 left panel and also in Fig. 6) is selected as
the center of the finger for that particular “slice” y,,. The
final value of the central longitudinal section (in blue in
the bottom panel of Fig. 5 and also in Fig. 6) is computed
as the line of best fit of the nine middle points of the
transversal sections and will be noted as x;,,.

o Step 2: Location of the “End-of-Fingerprint” point. This
step is depicted in the top right panel of Fig. 5. Once the
central longitudinal section z(x;,, y) has been located in
Step 1, it is smoothed using a 40 point moving average
filter. The resulting smoothed section is downsampled
in order to take only 30 equidistant points including
the first and last. This smoothed, downsampled section
will be referred to as zy(x,y). In order to obtain
its curvature, the second derivative with respect to the
y dimension is computed, that is, curvature(x,,y) =
d*(zsqa(xm, ¥))/d(y)*. The “End-of-Fingerprint” point
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FIGURE 6. Diagram of the segmentation process described in Sect.V. The
zenithal perspective helps to visualise how the yaw angle between the
scanning direction and the finger orientation is compensated.

2(Xm, YEoF ), plotted in blue in the top right panel of Fig. 5
and also in Fig. 6, coincides with the minimum of this
curvature function.

Once the limit y;,.y, i.€., EOF, has been set, the limit y,,;, is
defined as y,;i, = 0.1L, where L is the length of the fingertip
between the first scanned point in the longitudinal axis and
EoF. The very first scanned point is not taken as the initial
point of the fingertip because, towards the edges, the laser
illuminates the finger with an angle that diverges significantly
from the perpendicular, losing accuracy.

Limits in the x axis (i.e., transversal to the finger). The
Xmin and Xx,q; limits will be close to the sides of the fin-
gertip. As before, the absolute maximum and minimum val-
ues in x are not taken as limits given that the sensor loses
accuracy towards the edges of the finger. For that reason,
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STAGE 3: DETACHMENT

(low-pass filtering)

Fingerprint 3D model

View from an angle (top)
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FIGURE 7. Diagram showing the method designed to detach the fingerprint from the fingertip, described in Sect. VI. To better illustrate its 3D nature, the
resulting fingerprint model is shown from two different view points: from a side-angle (top) and directly from the zenithal view point (bottom).

we define: x,,;, = 0.05W, while x4y = 0.95W, where W
is the minimum width of the scanned finger within the limits
[Vmin, EoF], measuring the width perpendicular to the central
finger axis xy,.

The resulting 3D data of this segmentation process is a rect-
angular section of the fingertip, of dimension [0.9L x 0.95W1].
This section is taken along the central longitudinal axis of the
finger and therefore compensates small yaw angles between
the finger orientation and the scanning direction, as depicted
in Fig. 6.

VI. STAGE 3: DETACHMENT OF THE FINGERPRINT FROM
THE FINGERTIP

In this stage, the goal is to make the system robust to:
1) possible variations in the height of the finger with respect
to the laser diode during the acquisition process; 2) small
rotations according to the pitch and roll angles (see Fig. 2).
For this purpose, we separate the friction ridges, comprising
the distinctive identity information of the subject, from the
rest of the finger volume which has already proven to be
ineffective for recognition purposes [28].

As explained in Sect. I-A, the fingerprint (or friction
ridges) is the outermost part of the fingertip. It is formed
in the epidermis skin layer that could potentially be “peeled
off” from the rest of the fingertip, keeping the discriminative
information contained in the finger. Making an analogy with
communication theory, this case would be similar to an AC
signal with a DC level that carries the information in its
amplitude. By filtering out the DC level (finger volume) and
considering only the AC signal (fingerprint), none of that
information is lost.

The overall underlying shape of the finger (DC level)
is determined for each point in the fingertip using a low-
pass mean filter of size 50 x 50. Then, the fingerprint is
“detached” simply by substracting this mean value from the
original full fingertip. This detachment process is depicted in
Fig. 7. The resulting fingerprint is shown on the right from
two different perspectives: (top) from an angle that allows to
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distinguish the depth information of the 3D model; (bottom)
from the zenithal perspective, that helps to discern the ridge
pattern the way we are accustomed to in 2D images.

As a result of the previous process, all fingerprints are
normalised in the z axis. Also, small rotations of the finger
in the pitch and roll angles during acquisition are roughly
converted into simple translations in the final detached fin-
gerprint (these translations are later compensated in stage 4 of
the system, as will be described in Sect. VII).

All detached fingerprints of one subject in the 3D-FLARE
DB, acquired at 10mm/sec, are shown in Fig. 8 from the
zenithal viewpoint. The visual similarity among samples of
the same fingers is a first positive indication of the con-
sistency of the first three stages of the recognition system
described to this point (i.e., acquisition, fingertip segmenta-
tion and fingerprint detachment).

The fingerprints produced as output in this stage, consti-
tute the system templates. In a real system, these templates
would be stored as reference for future comparison with
the probe samples. Their size is around 1000Kb for acqui-
sition speed 10mm/sec, 350Kb for 30mm/sec and 150Kb
for 50mm/sec.

VII. STAGE 4: ALIGNMENT AND CROPPING

The input to this stage 4 are two ““detached” 3D fingerprints
as produced after stage 3, which correspond to: 1) the probe
fingerprint 3D model (i.e., probe template); and 2) the ref-
erence fingerprint 3D model stored in the database of the
recognition system (i.e., reference template). The two models
are represented by the vertical solid arrow and the dashed
horizontal arrow entering stage 4 in Fig. 1.

Prior to their comparison, these two fingerprints need to
be aligned, in order to determine the overlapping surface
between the two. This shared surface will be referred to as
Region of Interest (ROI). It contains the shared information
of both fingerprints, that will be extracted in stage 5 of the
system (see Sect. VIII) and will later be utilised to generate
the final similarity score in stage 6 (see Sect. IX).
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FIGURE 8. All fingerprints present in 3D-FLARE DB for one subject acquired at 10mm/sec: five samples for each of the four fingers. This is the typical
output produced after the detachment stage described in Sect. VI. Samples are shown from the zenithal viepoint. LM, LI, RI, RM, stand respectively for

Left Middle, Left Index, Right Index and Right Middle.

The alignment and cropping method is shown in Fig. 9,
with all the 3D models involved in the process depicted from
the zenithal perspective.

Given that the sampling resolution of the acquisition sys-
tem in the x and y coordinates is monotonically increasing and
almost constant, the detached fingerprints can be considered
as structured 3D data following a rectangular mesh (i.e., they
are represented by a depth matrix). As such, they can be
treated as 2.5D “images” where each equidistant point may
be regarded in an analogue way to a pixel in a 2D image.
However, the “2.5D-pixel” values are not integer numbers
representing an illumination intensity level, but real values
showing the depth in the z axis in that specific point. Given
that the nature of the acquisition technology is intrinsically
different to that of traditional 2D imaging (see Sect. IV),
the “2.5D-pixel” depth values are robust to external illumina-
tion conditions, contrary to what occurs for pixels in standard
2D images.

In light of the previous discussion, it is justified to antici-
pate that existing methods for image registration can be effi-
cient tools for the alignment of the detached fingerprints [49].
Historically, the so called area-based methods, sometimes
called correlation-like methods or template matching, were
the first image registration approaches to be systemati-
cally analysed and still remain among the most efficient
algorithms for this purpose, given that certain conditions
are met [50].
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Area-based methods deal with images without attempting
to detect salient objects/features. Windows of predefined size
or even entire images are used for the correspondence estima-
tion. These methods have shown very good performance for
problems that meet the three conditions described in the next
paragraphs.

First, images should be acquired under controlled illumi-
nation and sensing conditions. Classical area-based methods
like cross-correlation exploit for registration directly image
intensities, without any structural analysis or singular local
points detection. Consequently, they are sensitive to the inten-
sity changes, introduced for instance by noise, varying illumi-
nation, and/or by using different sensor types.

Each ““pixel” value in the detached fingerprints does not
represent an illumination intensity, but the real depth in the
z axis. Furthermore, all samples have been acquired with the
same sensor. Therefore, we can safely consider that this first
requirement is met, since there should not be any signifi-
cant variability among samples due to illumination or sensor
changes.

Second, images to be registered should differ solely by a
translation. The rectangular window, which is most often
used in area-based methods, is not able to cover the same
parts of the scene in the reference and probe images if they
are noticeably deformed by more complex transformations
than simple translations (e.g., elastic deformation of the
object).

VOLUME 8, 2020



J. Galbally et al.: 3D-FLARE: Touchless Full-3D Fingerprint Recognition System

IEEE Access

Reference TEMPLATE:

Fingerprint 3D model

STAGE 4: ALIGNMENT AND CROPPING
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FIGURE 9. Diagram showing the alignment and cropping method, described in Sect. VII. All 3D models involved in the process are shown from the

zenithal view point for easiness of visualisation.

As mentioned before, the system is significantly robust to
small rotations in any of the three angles shown in Fig. 2,
due to the combination of: 1) the finger placement restriction
enforced by the finger guide during the acquisition process;
2) the fingertip segmentation process performed in stage 2
(see Sect. V); and 3) the fingerprint detachment process
followed in stage 3 (see Sect. VI). As a result of the joint
effect of the three processes, small finger rotations can be
safely approximated by translations in the detached finger-
prints. It should also be recalled that the fouchless acquisition
sensor developed in stage 1, avoids the introduction of elastic
deformation in the 3D finger models, such as the one that
affects 2D images captured using traditional live-scan touch-
based technology.

Third, images should not present large areas with low
distinctiveness. Correlation-like methods present a non-
negligible probability that a window in the probe image con-
taining a smooth area without any prominent details, will be
matched incorrectly to a different smooth area in the reference
image, as a result of their mutual non-saliency.

Given the type of data considered in the present problem,
i.e., 3D fingerprint models, it is highly unlikely that such
smooth patches can be found in the samples, unless some
acquisition error has occurred. By definition, the 3D models
represent the ridge structure of the fingerprint, which is a
succession of ridges and valleys with no plateaus or flat areas.

In light of the explanations given in the previous para-
graphs, the three conditions for the efficient application of
area-based image registration methods, are met to a high
degree in the fingerprint alignment problem addressed in this
stage of the system. Therefore, as depicted in Fig. 9, the opti-
mal registration between the two input models is obtained
computing their cross-correlation and taking the alignment
that generates the maximum value. Then, the ROI is finally
cropped as the corresponding overlapping surface between
the two aligned input fingerprints.

This alignment compensates translations between fin-
gerprint samples, adding robustness to the system with
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respect to small finger rotations in the pitch and roll angles.
Please recall that such rotations had been roughly con-
verted into translations in the previous stage of the system
(see Sect. VI).

VIIl. STAGE 5: FEATURE EXTRACTION

Current live-scan sensors, following the traditional paper-
and-ink acquisition process, generate fingerprint images
which are essentially black and white impressions of the ridge
pattern. This ‘“‘close-to-binary” images limit the applica-
tion of many descriptors and algorithms developed for other
image processing problems where the input is typically a full-
scale grey picture (e.g., face recognition, object detection, or
scene interpretation). This is one of the reasons that explains
why, still to this date, the vast majority of 2D fingerprint
recognition systems are mainly based on the same principles
developed in the 19th century for the manual comparison
of fingerprints, that is, the detection and pairing of local
minutiae points [7]. This minutiae-based trend has carried
on to most works considering volumetric 3D fingerprints
reconstructed from multi-view 2D images [21], [22], [41].

It is true that different holistic approaches have also been
analysed in the literature as possible alternatives to minutiae
detection. These global methods compare fingerprint images
based on information such as orientation, frequency or ridge
texture [51]. However, in general, they have clearly shown
lower discriminative capacity, which has resulted in their
use being restricted mainly to: 1) complement comparison
scores obtained from minutiae-based algorithms; 2) extract
information from very low quality images where minutiae
detection is difficult or not reliable (e.g., latent fingerprints).

Please recall that the 3D fingerprint ROI extracted in the
previous stage of the system, is a rectangular matrix where
each point represents the depth information of the ridge pat-
tern. As already mentioned, in a way, this may be regarded
as a full grey-level 2D image composed of smooth contin-
uous real values. These samples differ significantly from
traditional black-and-white fingerprints, adding substantial
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STAGE 5: FEATURE EXTRACTION

(HOG + LBP)

ROI Fingerprint 3D model
zenithal view (top) and 3D perspective (bottom)

e HOG Features: Cell=50x50, Block=2x2, Bins=9

HOG feature matrix (Cx9)

LBP feature vector (1x59)

FIGURE 10. Diagram showing the feature extraction method, described in Sect. VIIl. HOG stands for Histogram of Oriented Gradients, while LBP are the
Linear Binary Patterns. The input ROI 3D model is shown from two different perspectives: (top) from the zenithal view point that allows to better
appreciate the ridge pattern and (bottom) from a perspective where it is possible to appreciate the 3D nature of the data.

new information that can be exploited by image processing
algorithms.

In contrast to previous fingerprint comparison approaches,
the new information available in 3D fingerprint models,
opens up the possibility of successfully applying general
descriptors that have already demonstrated their high discrim-
inative power in other problems related to image processing.
For the first time, such descriptors may be used on their
own, and not as additional features to complement minutiae.
This way, the challenging and not always reliable task of
minutiae detection and pairing can be avoided, unleashing the
full potential of modern image analysis techniques, including
deep-based technology.

The same way that registration methods for 2D images are
suitable for the alignment of 3D fingerprints (see Sect. VII),
existing algorithms for 2D image analysis may be used to
draw the discriminative information from the 3D ROI. In par-
ticular, as shown in Fig. 10, the feature extraction process
is based on two descriptors widely used in image process-
ing: Histograms of Oriented Gradients (HOG) and Local
Binary Patterns (LBP). Both descriptors have been studied
in 2D fingerprint recognition to enhance minutiae compari-
son strategies in order to improve the overall accuracy of the
system [52]. As will be explained in the next paragraphs, they
exploit two different sources of information from the ridge
structure: orientation (HOG) and depth (LBP). Consequently,
they are expected to complement well each other, allow-
ing this way to exploit their synergism through information
fusion strategies, as a mean to increase the accuracy of each
singular descriptor.

The principle behind the Histogram of Oriented
Gradients (HOG) descriptor is that the appearance and shape
of local patterns within an image can be described by the
distribution of intensity gradients or edge directions. It was
first proposed in 2005 as an effective tool for localizing
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pedestrians in complex images [53], and has reached increas-
ing popularity due to its good discriminative power for many
types of objects, and to its tolerance to different common
variability sources in images. The aim of this descriptor is
to represent an image by a set of local histograms which
count occurrences of gradient orientation in a local cell of
the image. The implementation of the HOG descriptor is
usually achieved by: 1) computing the gradient of the image;
2) dividing the image into small sub-regions called cells; for
each cell, 3) building a histogram of the gradient directions;
and finally 4) normalizing histograms within some groups of
cells, named blocks, to achieve higher robustness to possible
image variability.

In this work we divide each 3D fingerprint ROI into C
equal non-overlapping cells of size 50 x 50. For each cell,
the gradient orientation and magnitude of each point is calcu-
lated. The gradients are discretised over 9 equally sized bins
in the [—180°, 180°] range and the resulting 9-bin histogram
is calculated weighting each point by the magnitude of its
gradient, according to the histogram bin. The entire descriptor
is normalised to unit length within each cell, applying an
overall normalization in blocks of size 2 x 2 cells. This
process results in a feature matrix of size C x 9, where each
row represents the values of the 9-bin histogram of one cell.
Since cells are of fixed size, the number of rows C in the
matrix (i.e., cells) depends on the actual size of the ROL

The second descriptor used to exploit the information
comprised in 3D fingerprints are the Local Binary Patterns
(LBP). LBPs were introduced in 2002 by Ojala et al. [54] and,
since then, they have shown to be a very powerful grayscale
local texture descriptor with high discrimination capacity and
low computational complexity. Over the last two decades,
the number of variations of the original LBP algorithm that
have been developed are nothing short of overwhelming.
Even two editions of a specific international workshop were
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exclusively dedicated to this descriptor.> LBP variants have
been applied, with significant success, to a vast range of
problems in computer vision [55], including the description
of 3D surfaces [56]. In biometrics, LBPs have been especially
popular in both 2D and 3D face recognition tasks [57], where
for some years they set the bar for state of the art accuracy,
before the advent of the new generation of systems based on
deep learning.

The LBP operator is obtained from a point p and its sym-
metric neighbour set of P points placed on a circle of radius R.
It represents the difference between the intensity value of p
from the intensity values of its neighbourhood. Where the
value of the center point is greater than the neighbour’s value,
the LBP takes value 0, otherwise it takes value 1. This opera-
tion results in a P-digit binary number (the LBP). An LBP
code is defined “uniform™ if the number of transactions
between 0 and 1 of the sequence is less or equal to two.
Uniform patterns are particularly relevant since they represent
basic image structures such as spots and edges.

In the present work we have used the LBP-uniform con-
figuration with R = 5 and P = 8, usually noted in the
literature as LBP(u2,8,5). With this parameterisation, each
sample is represented by a feature vector (i.e., histogram) of
dimension 1 x 59. It measures the occurrence of each type
of the possible 58 uniform patterns, with the last value of the
histogram taking into account all non-uniform patterns.

It should be noted that the implementation parameters of
the HOG and LBP descriptors have been set on a development
pool of users taken from the 3D-FLARE DB, with no overlap
with the dataset used for evaluation (see the full experimental
protocol in Sect. X). This parameter setting process included,
1) for the HOG descriptor: size of the cells (50 x 50), size
of the blocks (2 x 2) and number of bins (9); 2) for the LBP
descriptor: number of points P = 8 and size of the radius
R=5.

IX. STAGE 6: COMPARISON

The HOG feature matrix (size C x 9) and the LBP feature
vector (size 1 x 59) generated in the previous stage for the
reference and probe fingerprint ROIs, are compared here
according to the chi-square distance. This metric has shown
very good performance to quantify the dissimilarity between
histograms [58]. In the case of the HOG descriptor, the chi-
square distance is computed for each 9-bin histogram corre-
sponding to the C total cells, resulting in C partial scores.
Then, the final dissimilarity score dyog is obtained as the
average of those C partial scores. In the case of the LBP
descriptor, the chi-square distance is directly applied to com-
pare the two LBP feature vectors, producing the dissimilarity
score drgp.

Please note that dyog and dppp are dissimilarity scores,
that is, the higher their value the less similar the two com-
pared fingerprints. Additionally, both scores are unbounded
in the range [0, co]. In order to transform them to bounded

3 https://sites.google.com/site/lbp2014ws/
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TABLE 1. False Non-Match Rate (FNMR) at three different operating
points corresponding to a False Match Rate (FMR) of: 1%, 0.1% and
0.01%. Results are shown for the complete system on the “1vs1”
verification scenario, considering the fusion of the HOG and LBP
individual scores, and for all three acquisition speeds in the database.

SCENARIO 1vs1 - HOG+LBP - FNMR in %

FMR=1% | FMR=0.1% FMR=0.01%
10mm/sec 1.09 3.38 8.13
30mm/sec 1.17 5.26 11.62
50mm/sec 5.34 10.56 15.63

similarity scores, both values are normalised to the range
[0, 1] using the inverse of the logistic function, which has
shown high efficiency for score fusion in multimodal biomet-
ric systems [59].

Lastly, the two normalised scores snyog and snppp, are
combined in the final similarity score using the weighted
sum, which is one of the most effective score level fusion
techniques for multiple classifiers [60]. Equal weights are
selected for both normalised scores, resulting in: s = 0.5 -
sngoc+0.5-snppp. A diagram of the full comparison process
is shown in Fig. 11.

X. EVALUATION: EXPERIMENTAL PROTOCOL

AND RESULTS

The new full-3D fingerprint recognition system presented
from Sect. III to Sect. IX, is evaluated on the 3D-FLARE
DB described in Sect. IV-A. The main objective of the exper-
iments is to determine if the hypothesis set forth in the
introduction of the present work, holds: a high quality full-
3D model of the fingerprint has the potential to lead to higher
recognition accuracy than 2D fingerprint images captured
with current touch-based state of the art technology.

The fulfilment of the previous general goal, will also allow
us to assess the performance of the complete system and to
answer ancillary questions such as: Is the prototype acqui-
sition sensor sound and able to acquire in a reliable and
repeatable way high resolution full-3D fingerprint models?
Are these models usable for fingerprint recognition? Is it
possible to perform accurate fingerprint recognition not based
on minutiae detection? Do 3D fingerprints contain enough
information to be recognised following a holistic approach
based on the complete model and not on the analysis of
specific local points? What is the minimum spatial resolution
required to obtain high accuracy with the new 3D fingerprint
models?

A. EVALUATION PROTOCOL

To reach the objective defined above, the 3D-FLARE DB was
divided in two separate non-overlapping datasets for devel-
opment and test. The development set contains all samples of
five subjects randomly chosen from the full database and was
used to set the parameters of the HOG and LBP descriptors,
as specified in Sect. VIII. The test set comprises all samples of
the remaining 45 subjects in the database. This data is used to
evaluate the system, computing the mated and non-mated sets
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STAGE 6: COMPARISON + NORMALIZATION + FUSION

(Chi-square distance, logistic function, weighted sum)

Chi-square dist: C partial scores

HOG feature matrix (Cx9) =

LBP feature vector (1x59) 1 Average: dhog -
J I _______________________
REFERENCE /I

HOG feature matrix (Cx9) ]

LBP feature vector (1x59)

1
1
1
1
1
I

1
I

Weighted sum:

0.55nH06+ 0.55n8p

FIGURE 11. Diagram showing the comparison process of the features extracted from a reference and a probe 3D fingerprint. The process is described
in Sect. IX. HOG stands for Histogram of Oriented Gradients, while LBP are the Linear Binary Patterns.

of comparison scores, for each different acquisition speed:
10mm/sec, 30mm/sec and 50mm/sec.

Two different verification scenarios are considered in the
experiments: 1) “1vs1” scenario, where each different finger
in the test dataset is regarded as a different identity, i.e.,
45 x 4 = 180 identities. This would be the case of a
verification system where each individual is recognised using
only one finger. 2) “4vs4” scenario, where each subject is
an identity, i.e., 45 total identities. This would be the case
of a system where each subject is recognised using all four
fingers available in the database (i.e., left index/middle, right
index/middle). The mated and non-mated sets of scores in the
two scenarios were computed as follows:

o “1vsl” scenario. Mated similarity scores for each acqui-
sition speed are obtained comparing all 5 samples of
one finger to all other samples of that same finger,
without repetition. This leads to 10 mated scores per
finger, which totals 180 x 10 = 1, 800 mated scores
for the complete test set. Non-mated scores are com-
puted comparing one sample of each finger to one sam-
ple of 15 randomly selected fingers, which leads to
180 x 15 = 2, 700 non-mated scores for the complete
test set.

o “4vs4” scenario. Both mated and non-mated scores are
obtained as the average of the four scores corresponding
to each of the four fingers of the same subject in the
“1vs1” scenario. This leads to 45 x 10 = 450 mated
scores, and 45 x 15 = 675 non-mated scores.

These sets of scores were computed for: 1) the HOG
descriptor (sngog); 2) the LBP descriptor (snzpp); and 3) for
the final fused score (s). This way we can compare the
discriminative ability of each individual descriptor and their
level of complementarity.

B. RESULTS: VERIFICATION ACCURACY

The Detection-Error Trade-Off (DET) curves combine in one
same plot the False Match Rate (FMR) and False Non-Match
Rate (FNMR) of the system, using logarithmic axes. These
curves are efficient graphical tools to visually compare in
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just one plot the accuracy of different systems. The lower the
curve, the better the system.

In Fig. 12 we show the DET curves of the full 3D recogni-
tion system developed in the present work for the “1vs1’ ver-
ification scenario, for all three acquisition speeds: 10mm/sec
(left), 30mm/sec (center) and SOmm/sec (right). In each of the
charts, the light grey curve corresponds to the score obtained
by the LBP descriptor snzpp, the dark grey curve to the
HOG descriptor snyog, and the black curve to the score-level
fusion of both s. As a complement of Fig. 12, Table 1 gives
the FNMR values for three different operating points defined
according to the FMR: 1%, 0.1% and 0.01%. These are
the operating points reported in the Fingerprint Verification
Competition OnGoing (FVC-Ongoing).* The main conclu-
sions that can be extracted from both Fig. 12 and Table 1 are:

o FINDING 1. Touchless full-3D fingerprint recognition
is feasible and shows high discriminative potential, with
an Equal Error Rate (EER) of 1.04% in the “lvsl”
scenario.

o FINDING 2. Full-3D fingerprint recognition can be
achieved with high accuracy based on image processing
descriptors, contrary to what has been observed so far in
existing 2D and 3D-reconstructed systems, where, for
the time being, there is not yet a competitive alternative
to traditional minutiae-based algorithms.

o FINDING 3. As could be expected, higher spatial reso-
lution (i.e., slower acquisition speed) leads to lower error
rates. A big accuracy drop is observed for the fastest
acquisition speed, SOmm/sec, with respect to 30mm/sec
and 10mm/sec. Note that S0mm/sec corresponds to a
sampling resolution of 0.08mm in the y axis (see the sen-
sor description in Sect. IV). The ridge pattern is known
to be a structure in the range of 0.1-0.3mm. This means
that, depending on the size of the friction ridge, the
sampling rate in the y axis at 50mm/sec may not suffice
to comply with the Nyquist theorem, which states that in
order not to lose any information comprised in the fin-
gerprint, the sampling rate should be at least double than

4https://biolal?n.csr.unibo.it/FVCOnGoinngI/Form/Home.aspx
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FIGURE 12. Detection-Error Trade-Off (DET) curves for the full-3D fingerprint recognition system designed in the present work. These results were
obtained on the “1vs1” verification scenario, for each of the three acquisition speeds considered: 10mm/sec (left), 30mm/sec (center), 50mm/sec
(right). Results are given for the LBP descriptor (light grey), the HOG descriptor (dark grey) and the score-level fusion of both (black).
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FIGURE 13. Score distributions in the “4vs4” verification scenario. The HOG score sn ¢ is shown in the x axis of each chart, while the LBP score sn; gp
is shown in the y axis. The three charts correspond to acquisition speeds of: 10mm/sec (left), 30mm/sec (center) and 50mm/sec (right).

the finest ridge pattern (i.e., minimum 0.05mm spatial
resolution for small ridges of size 0.1mm). As a result,
50mm/sec can lead to an inaccurate representation of
the fingerprint and, consequently, to more recognition
errors.
On the other hand, the recognition accuracy difference
between 10mm/sec and 30mm/sec is not significant,
as both speeds result in a spatial resolution that satisfies
the Nyquist theorem. Depending on the final application,
a decision on the acquisition speed should be taken con-
sidering other variants in addition to accuracy: 1) time
of acquisition, 5 seconds at 10mm/sec with respect to
1.7 seconds at 30mm/sec; 2) size of the acquired mod-
els, 20Mb and 8Mb respectively; 3) size of the final
templates, 1000Kb and 350Kb depending on the speed;
3) time of processing and comparison, with the smaller
models (i.e., acquired at 30mm/sec) speeding up the pro-
cess close to five times per comparison score computed.
o FINDING 4. The HOG descriptor shows higher dis-
criminative power than the LBP descriptor. The HOG
DET curve is always clearly below the LBP DET curve,
with an EER which is around half the value for all
the scenarios considered. This means that there is less
variability in the direction information of the ridge pat-
tern (captured by HOG) among samples of the same
finger, than in the information related to the depth of
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the pattern (captured by LBP). This may be explained
by the combination of three different factors: 1) it is
plausible that, in its natural state, the direction of the
ridge pattern may in fact be more distinctive than its
depth; 2) the 3D sensor is more accurate and consistent
at acquiring the direction of the ridge pattern, rather than
its depth information; 3) the LBP descriptor is more
sensitive to small misalignments that may exist between
the compared samples.

« FINDING 5. As was predicted, the HOG and LBP
descriptors are highly complementary. In the two sce-
narios that lead to sufficient spatial resolution (i.e.,
10mm/sec and 30mm/sec), the DET curve of the fused
score s is clearly the lowest curve for all FMR and
FNMR rates. It presents an improvement in accuracy of
around 50% with respect to the best individual descriptor
snpgoc- Such combination efficiency is likely the result
of both descriptors measuring the distinctiveness of 3D
samples based on two different sources of information:
their direction (HOG) and their depth (LBP).

All previous findings are confirmed and reinforced by the
results obtained in the “4vs4” verification scenario, pre-
sented in Figs. 13-14 and Table 2. Unlike the “1vsl” case,
Fig. 13 does not show the DET curves. Instead, it depicts
the mated (black circles) and non-mated (grey crosses) score
distributions, plotted with the HOG score snyog in the x axis,
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FIGURE 14. False Match Rate (FMR) and False Non-Match Rate (FNMR)
curves corresponding to the score distributions shown in the center plot
of Fig. 13: final fused score in the “4vs4” verification scenario for an
acquisition speed of 30mm/sec.

TABLE 2. Equal Error Rate (EER) for the “4vs4” verification scenario, for
the HOG descriptor, the LBP descriptor and the score-level fusion of both.
Results are shown for all three acquisition speeds in the database.

SCENARIO 4vs4 - EER in %

HOG | LBP HOG+LBP
10mm/sec 0.00 0.31 0.00
30mm/sec 0.00 0.97 0.00
50mm/sec 0.9 2.08 0.9

and the LBP score snzpp in the y axis. As can be observed,
for the 10mm/sec and 30mm/sec acquisition speeds, there is
a perfect separation between both distributions, (EER = 0%),
which means that an eventual DET plot would not show any
curve. As complementary information to this figure, we also
include: 1) Table 2, which presents the EER for the individual
HOG and LBP scores and for the final fused score, for all
three acquisition speeds; 2) Fig. 14, which shows the FMR
and FNMR curves for the acquisition speed of 30mm/sec.
In this last figure, we can appreciate that there is a signifi-
cantly large range of values of the fused score s where both
curves are equal to zero (s€[0.28, 0.38]), that is, the system
does not make any verification mistakes.

The reader may have noticed that the results produced by
the “4vs4” experiments correspond to a perfect zero-error
system. Does this mean biometrics has been solved? Unfor-
tunately not. As is well known in statistics, the fact that in
a given evaluation nothing goes wrong, does not necessarily
imply that everything is all right [61]. The “4vs4” experi-
ments do not prove that full-3D fingerprints lead unequiv-
ocally to perfect recognition, but rather, that more data
is required in order to assess the system in a finer way.
We should not forget that the test dataset in this scenario con-
tains 45 different identities, which have resulted in 450 mated
scores and 675 non-mated scores. According to the “rule of
three”, often used in statistical analysis as a reliable rule of
thumb [62], for this size of the score sets, there is a 95%
confidence that the EER in the “4vs4” scenario is lower than
0.5%. Furthermore, given the wide range of s values with
Zero error, it seems reasonable to predict that the real EER
of the system is likely lower than 0.1%. In summary, in order
to confirm these estimations, a larger database is required to
compute the error rates in a more precise manner.
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TABLE 3. Comparison of the most relevant touchless 3D fingerprint
recognition methods from the state of the art. Works appear ordered
firstly by type of 3D acquisition methodology and secondly by date of
publication. By column, the information given is: 1) reference to the work
where the system is reported; 2) type of data used in the experiments,
namely, reconstructed-3D data, or full-3D data; 3) size of the database
with the number of different fingers and the number of total samples;

4) type of features extracted for the comparison of fingerprints; 5) Equal
Error Rate (EER) achieved in the given database for the “1vs1” verification
scenario.

Comparison to other SotA Contactless 3D Methods

Ref. Data type DB size Features EER
[21] Rec.-3D, photometric 240/1,920 3D minutiae 2.50
[22] Rec.-3D, photometric 300/2,760 3D minutiae 1.86
28] Rec.-3D, stereo vision 541/1,082 Curvature 15

[27] Rec.-3D, stereo vision 150/3,000 2D minutiae 1.95
[30] Rec.-3D, stereo vision 336/3,920 Deep feat. 0.64
[31] Rec.-3D, stereo vision 1,500/3,000 | 3D minutiae | 0.66
[41] full-3D, SLI 11/441 2D minutiae | 6.00

[ Ours [ full-3D, laser triang. | 200/3,000 [ HOG+LBP [ 1.04

In spite of the limits imposed by their statistical signifi-
cance, the “4vs4” results do strongly support all the findings
expressed in the “1vs1” scenario, especially in light of the big
separation gap observed between the mated and non-mated
distributions in Fig. 13 (10mm/sec and 30mm/sec plots).
Therefore, in brief, the “4vs4” experiments emphasise the
potential of full-3D fingerprint recognition as a new biometric
mode.

For reference, in Table 3 we present a comparison between
the system developed in this work and other approaches from
the state of the art that address the problem of 3D finger-
print recognition. The comparison is made considering the
following characteristics: type of data used (reconstructed-3D
or full-3D), size of the evaluation database, type of features
extracted and EER achieved. Please note that, since each work
reports the results in its own evaluation benchmark, the fig-
ures given for the EER are not directly comparable and should
be understood as a general indication of the discriminative
ability of the system.

XI. DISCUSSION AND CONCLUSION

“The point to be made here is that, at the most fundamental
technical level, biometrics is evolving very slowly from its
origins” . With this statement, James L. Wayman summarised
in a 2007 article, the development of biometrics over the
last 40 years [63]. Wayman stressed this observation even
further by asserting that “a quick overview of biometric his-
tory shows that much of what we consider to be “new” in
biometrics was really considered decades ago.”

While Wayman’s claims can seem somewhat bold at first
glance, after a sober analysis we may conclude that they
are not so far away from being factual for many biometric
characteristics. For instance, although the last decade has
brought some novel ground-breaking proposals in speaker
recognition, this technology is still today ultimately based
on the cepstral coefficients introduced as fundamental fea-
tures by Luck in a pioneering work from 1969 [64]. Another
illustrative example that supports Wayman’s assertions is
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signature recognition, where some of the first works dating
back to the early 1960s, already considered dynamic infor-
mation such as acceleration and pressure [65], which are time
functions usually regarded as an innovation brought to the
field by modern digitising tablets. Furthermore, the majority
of current iris recognition systems are based on the fea-
ture extraction method and iriscode template developed and
patented by Daugman in one of the first iris-related works
back in 1993 [66].

Perhaps one of the few exceptions to this lack of fundamen-
tal progress in biometrics, is face recognition. Face recogni-
tion has taken advantage of the successive advances in image
processing, to evolve from the first studies in the 1960s based
on distance measures between anatomical landmarks [67],
to the acclaimed eigenfaces study and other algorithms based
on hand-crafted features in the 1990s and 2000s [68], to the
current generation of deep learning systems [69]. Each of
these changes in the core of the technology, has produced
not just an incremental improvement, but a big leap in
performance.

In terms of historical evolution, almost at the other end
of the spectrum with respect to face recognition, we find
fingerprint-based systems. Fingerprint recognition can be
regarded as the epitome of Wayman’s affirmations. Few bio-
metric characteristics have evolved as little regarding their
fundamental recognition methods. If we were to summarise
the current situation of fingerprint recognition in a catchy and
somewhat provocative headline, we could say that: nowadays,
fingerprint recognition consists on the application of 21st
century computational processing power, to 19th century
recognition methods.

While it is evident that such a statement would be over-
simplistic and, we may even say, a bit sensationalist, there is
a basis of reality in it. To this date, fingerprint recognition
systems are mostly based on the principles laid in the 19th
century for the manual detection and pairing of minutiae.

This is not to say that fingerprint recognition has not
improved its accuracy. On the contrary, especially over the
last decade, fingerprint systems have made rapid strides, con-
siderably enhancing our ability to accurately identify subjects
in large scale databases within seconds. However, this swift
path of technological evolution can be put down, to a large
extent, to the astounding progress of computational capacity,
and not to fundamental changes in fingerprint processing
methods. It would not be too far from fact to state that, for
the most part, fingerprint technology has got a lot better and
faster, at doing essentially the same core tasks.

It does seem that, at the moment, the enormous potential of
new sensing systems and image processing algorithms is not
being fully exploited by fingerprint technology. A point has
been reached in which the biometric community has started
to speculate with the idea that traditional 2D image-based
fingerprint systems may be reaching their accuracy ceiling.
This ceiling has proven to be certainly high and, likely, can
be pushed incrementally higher thanks to the continuous
improvement of computing capabilities. However, in order to
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take a big leap beyond it, just as happened in face recognition
with the advent of deep-based systems, a profound redesign
of the way fingerprint recognition has been traditionally per-
formed may be needed.

The current article constitutes a first step towards the ardu-
ous goal of shaking the foundations of fingerprint recog-
nition, anchored in over a century and half of immutable
practices and tradition. As initial milestone in this quest,
we have shown that a paradigm shift from the 2D plane to the
3D space is feasible. In a nutshell, the paper can be regarded
as a starting point in the ambitious path of establishing full-
3D fingerprint recognition as a new biometric mode, similar
to the appearance of 3D face recognition as a plausible alter-
native (or complement) to traditional authentication based on
2D facial pictures.

Even though this is still a novel on-going research line,
the work carried out so far has already reached some relevant
achievements presented in this paper:

« It has been shown that it is possible to acquire accurate
full-3D fingerprint models in a fast, consistent, repeat-
able and reliable way based on laser sensing technology.

« Touchless full-3D fingerprint recognition is feasible and
shows high discriminative potential, with an EER of 1%
in the “l1vsl” verification scenario and, very likely,
below 0.1% in the “4vs4” scenario (EER = 0% in the
evaluation set of data used in the work).

o Full-3D fingerprint recognition can be achieved with
high accuracy based on image processing approaches
different from the classical minutiae-based algorithms
used in existing 2D technology and in previous works
employing reconstructed-3D finger data.

o The ridge orientation information in 3D samples
extracted by the HOG descriptor, is more consistent and
discriminative than the depth information captured by
the LBP descriptor.

« Orientation and depth information of the ridge pattern
are highly complementary and their fusion leads to
largely improved accuracy with respect to any of the two
descriptors individually.

The work also opens a number of research possibilities to

the biometric community that will need to be addressed in the
future, some of which are specified in the next paragraphs.

A. DATA

There is a well known principle in machine learning that
preaches: “‘in God we trust, all others must bring data’.
Following this principle, more data is needed in order to
assess more accurately the system error rates in the “4vs4”
verification scenario where at the moment an EER = 0% has
been reached.

B. QUALITY

As mentioned in the introduction, the key element to a
successful and accurate biometric system is to avoid the
GIGO principle (“garbage in, garbage out’). To this end, it
would be valuable to develop specific quality metrics for 3D
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fingerprints, capable of estimating the goodness of a given
sample for recognition purposes and, therefore, of predicting
accuracy.

C. DEEP LEARNING

Since the advent of the deep learning era at the beginning
of the 2010 decade, technology based on Deep Neural Net-
works (DNNs) has continuously shown to outperform pre-
vious methods in virtually any image-based problem related
to machine learning and computer vision. To date, one of
the few exceptions to this technological revolution has been
fingerprint recognition, where traditional methods based on
minutiae detection keep to clearly achieve lower error rates
than deep-inspired algorithms [70]. The results presented in
the current work have shown that full-3D fingerprints con-
tain enough information to use general image descriptors as
a real alternative to traditional minutiae-pairing algorithms.
This opens the door for applying all the potential of current
image processing technology, including deep learning tech-
niques, to 3D fingerprint recognition. Given this disquisition,
the application of DNNs to the problem of 3D fingerprint
recognition should be explored to determine if they can
improve, or complement, hand-crafted features such as the
ones considered in the present work.

D. AGE EFFECT

Different works have shown that traditional 2D touch-based
fingerprint technology suffers from a significant accuracy
decrease when dealing with specific age groups such as chil-
dren and elderly [71]. For the case of children, this drop in
performance has been put down to the size of fingerprints
and it has been shown to be largely reduced through the
application of growth models [72] or through the use of
scanners with significant higher resolution than the classical
500dpi ones [73]. In the case of elders, on the other hand,
the hypothesis that has been put forward to explain the error
rates increase is that the problem is originated by the tra-
ditional touch-based acquisition process itself, which is ill-
suited to dryer, less elastic skin, typical of a more advanced
age. Given that the scanner built in the current work presents
a higher spatial resolution (appropriate to acquire smaller
fingerprints) and is also contactless (appropriate to acquire
fingerprints with sub-optimal skin condition), it can be an
effective way to mitigate the loss of accuracy both for children
and elders.

E. ERGONOMICS/USABILITY

As specified in [47], the human-biometric sensor interface
plays a pivotal role in the system accuracy in its usability
and, therefore, in its acceptance by the public. Consequently,
enhancing the ergonomics of the acquisition sensor should
become one of the priorities moving forward. This design
upgrade may be reached acquiring simultaneously all four
fingers (i.e., “‘slap-prints’’). This would also allow for a much
faster acquisition and processing in the “4vs4” recognition
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scenario, making it a realistic alternative to “1vs1’ verifica-
tion in applications where time is a key constraint.

F. 3D-2D COMPATIBILITY

In the field of fingerprint recognition, all existing legacy
databases contain 2D images. In some contexts, like for
instance in the case of law-enforcement or civil applications
(e.g., national ID registry, passport registry), it is essential that
any change in technology is back-compatible with existing
data. For that purpose, algorithms capable of translating 3D
point clouds into traditional black and white ridge-pattern 2D
images would eventually have to be developed.

G. PRESENTATION ATTACKS

Presentation attacks (also referred to as spoofing), have
emerged as one of the major security concerns in biometrics.
It will be necessary to test the vulnerability of the new 3D
technology to this type of threat, and also to understand to
what extent laser sensing technology may be an efficient
presentation attack detection method.

As a wrap-up to this work we can say that, given the current
state of development of automatic fingerprint recognition,
it does not seem irrational to think that a big leap forward in
terms of accuracy may only be attained through a profound
change in the technology as we currently know it, from its
very foundations. Whether or not full-3D fingerprint recog-
nition represents this breakthrough in the field, only time will
tell. However, the first step described in the present article is
certainly encouraging and does seem like a sound and solid
one in this direction.
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