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ABSTRACT In a traditional multistate quickest path problem (MQPP), the system reliability is evaluated
based on a strict assumption that the net flow into and out of a system is equal to zero. However, certain
networks, which are known as deteriorated networks, suffer a loss due to the deterioration effect, resulting a
delivery shortage. For example, the data or goods will deteriorate or decay because the transmission distance
is too long, which affects whether the delivered data or goods arrive intact. To provide a practical solution
to this problem, a novel MQPP model, known as the deteriorated MQPP (MQPPde) model, is proposed in
this work. The goal is to evaluate the system reliability, which is defined as the probability that the end user
receives at least d units of data or goods in transmission time T in the case of a MQPP with the deterioration
effect. A simple path-based algorithm based on an integer programming model of the flow conservation law
is presented to generate all of the lower boundary points (d , T )-MPdes. Next, the reliability of the MQPPde
model can be calculated in terms of all of the (d , T )-MPdes.

INDEX TERMS Multistate flow network (MFN), quickest path problem (QPP), deteriorated network,
reliability.

I. INTRODUCTION
The quickest path problem (QPP), which is a variation of the
shortest path problem, has been proposed by Chen and Chin
[1]. The general form of this problem is to find a single path
along which to transmit a given amount of data or goods from
a source node to a sink node in a flow network that minimizes
the transmission time [1], [2]. This path is called the quickest
path. The past decade has witnessed a growing number of
variants of the QPP, such as the constrained QPP [3], [4],
k-QPP [5]–[7], the all-pairs QPP [8]–[10] and the multistate
QPP (MQPP) [11]–[16].

The MQPP is an extension of the QPP in a multistate flow
network (MFN) in which the capacities of nodes and arcs may
be uncertain due to failure, maintenance, etc. [11]. TheMQPP
is a connected network that has no self-loops, all of the nodes
are completely reliable, the capacity of each arc is a non-

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

negative integer, and the capacity of each arc is stochastic and
statistically independent with a given probability distribution.

To assess the reliability of an MQPP, all of the lower
boundary points, called (d , T )-MPs (MPs is the abbreviation
of minimal paths), must be searched first. If the level d and
transmission time T are given, then the MQPP’s reliability
can be calculated in terms of the (d , T )-MPs and expressed
as the probability that the system can transfer at least d units
of data from the source node to the sink node through one
MP within a given time T . Note that a MP is a subset of
order sequence arcs from the source node to the sink node
with no cycle such that if any arc is removed from the set,
the remaining arcs no longer form a path set [17]–[24].

A number of studies have investigated practical applica-
tions of the MQPP [11]–[16]. All of those studies evaluated
the system reliability based on the strict assumption that
the net flow into and out of the system is equal to zero.
However, some networks, called deteriorated networks, may
suffer flow losses of arcs due to the deterioration effect [25],
[26] of which the flow value is decreased during transmission
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FIGURE 1. A MQPPde in which each arc label represents (arc ID, W (ei ),
δi ).

through the arcs. To provide a practical solution to this prob-
lem, a novel MQPP model, known as the deteriorated MQPP
(MQPPde) model, is proposed in this work. In the proposed
MQPPde, all of the data or goods are transmitted along one
single minimal path and all of the flows in each node satisfy
the flow conservation law, i.e., the net flow into and out of a
node is equal to zero, but the flow in each arc may decay at
the deterioration rate of that arc.

LetG(V , E ,W ,1) be anMQPPde with node set V = {1, 2,
. . . , n}, arc set E = {e1, e2, . . . , em},W = (W (e1),W (e2), . . . ,
W (em)),1= (δ1, δ2, . . . , δm), the source node 1, and the sink
node n, where W (ei) is the maximum capacity of ei without
andwith the deterioration effect and δi is the deterioration rate
of ei. For example, an MQPPde with V = {1, 2, 3, 4}, E =
{e1, e2, e3, e4}, W = (4, 3, 3, 2), and 1 = (0.85, 0.9, 0.85,
0.85) is shown in Fig. 1.

As shown in figure 1, a deteriorated network G(V , E , W ,
1) consists of four arcs and nodes with two MPs, P1 = {e1,
e2} and P2 = {e3, e4}. Let Ii and Oi be the amount of input
flow and output flow through the ith MP Pi inG, respectively.
A flow into the system, along P1, and to the end user with a
value I1 = 2 will decay from 2 to 2× 0.85= 1.7 on e1, from
1.7 to 1.7× 0.9= 1.5 on e2, and exit the system along P1 with
a value O1 = 1.5 < I1 = 2. That is, the net flow into and out
of the system is not equal to zero in a deteriorated network.
From the system management viewpoint, it is important

to guarantee that the quantity of data or goods transmitted
meets the needs of customers or end users. In a deteriorated
network, the systemmay fail to satisfy this requirement due to
losses in the flow. In addition, the reliability of a deteriorated
network may be over–estimated when the traditional MQPP
is considered and the deterioration effect is neglected.
Therefore, this study proposes a novel MQPPmodel called

the deteriorated MQPP (MQPPde) model to address this real
and practical problem. In addition, a simple and efficient
algorithm for evaluating the reliability of the MQPPde model
is proposed. First, we find all of the lower boundary points
for level (d , T ) with the deterioration effect included. These
points are called (d , T )-MPdes. Then, the system reliability is
calculated in terms of them.

This work is organized as follows. In Section II, the prob-
lem of a deteriorated network is defined and the MQPPde
model is formulated. A simple algorithm for generating all
of the (d , T )-MPdes is presented in Section III. Section IV

describes amethod for assessing theMQPPde reliability using
the proposed algorithm with a numerical example. Section V
presents conclusions and a discussion of future work.

II. MODEL FORMULATION
A. ASSUMPTIONS
Suppose that an MQPP network,G(V , E ,W ), which does not
include the deterioration effect, has p MPs from the source
node to the sink node. Let M (P) be the maximum capacity
of MP P and X = (x1, x2,. . . , xm) be a system-state vector
with X (ei) = xi without considering the deterioration effect.
According to reference [11], the transmission time, denoted
by 9(d , X , Pj), in which the system can send d units of data
along Pj under the system-state vector X , is:

the lead time of Pj +
⌈

d
M (Pj)

⌉
=

m∑
i=1

li +
⌈

d
Min{W (ei)}

⌉
,

for each ei ∈ Pj (1)

where dxe is the smallest integer that is greater than or equal
to x and l i is the lead time of the ith arc of the jth MP.

The minimal capacity vj of the jth MP plays a key role
generating all of the lower boundary points, (d , T )-MP, and
needs to be found first. It must be such that the system-
state vector Xj has minimal capacity and the system can send
d units of data along the jth MP within time T under Xj.
Therefore, the minimal capacity vj is the smallest integer such
that:

m∑
i=1

li +
⌈
d
vj

⌉
≤ T , for each ei ∈ Pj (2)

If vj ≤ M (Pj), then (d , T )-MP Xj can be generated using the
following equations.
xi = the minimal capacity S(ei), such that S(ei) ≥ vj,

if ei ∈ Pj,
xi = 0,
if ei /∈ Pj.

(3)

If vj > M (Pj), then Xj does not exist.
Let Y ≥ X if and only if yi ≥ xi for each i and Y > X

if and only if yi > xi for at least one i. Let 3(d , X ) denote
the minimum time in which the system can transmit d units
of data from the source node to the sink node subject to the
system-state vectorX , and then, we have the following lemma
from [11]:
Lemma 1: If X is a (d, T)-MP, then 3(d , Y ) ≤ T for any

Y ≥ X.
However, in the MQPPde model, the flow along each MP

may decay because of the deterioration rates of its arcs. This
may result in a flow out of the MP that is less than the input
flow, i.e., Oj < Ij. For example, suppose that a deteriorated
network, as shown in Fig. 1, need to transmit a demand d =
8 within a transmission time T = 9 to an end user along
P1. Because v1 = 2 ≤ M (P1) = 3 can be derived using
Eq. (1-2), (8, 9)-MP X1 = {2, 2, 0, 0} can be generated using
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Eq. (3). This implies the input flow value and the output flow
value along P1 are both equal to 2 under the conservation law,
i.e., O1 = I1 = 2. However, the flow will decrease from 2 to
b2× δ1c = b2× 0.85c = 1 on e1 and to b1× 0.9c = 0 on e2,
where bxc is the largest integer that is less than or equal to x.
Therefore, when the deterioration effect is considered,

the flow out of the system along P1 is 0 < vj = 2, which
fails to meet the requirements of the end user within the
transmission time T .
Definition 1: A (d, T )-MPde is a (d, T )-MP that includes

the deterioration effect to satisfy level (d, T ) along a single
MP in an MQPPde.

From the above discussion, all of the (d , T )-MPdes cannot
be found using the smallest integer vj directly. The remainder
of this section describes how to generate all of the (d , T )-
MPdes.
Let ei be the ith arc in the MP, x ′i be the current capacity

of the ith arc for some X with the deterioration effect respec-
tively. Without loss of generality, the order of arcs in a MP is
denoted by a superscript, i.e., Pi = {e1j , e

2
k , . . . , e

u
q}, with j, k

and q ∈ [1, m] and j 6= k 6= q. For example, P1 = {e11, e
2
2}

and P2 = {e13, e
2
4} in Fig. 1. Amodifiedmodel of theMQPPde

reliability problem that is based on an integer programming
model of the flow conservation law [27], called the F-IPde, is
presented in the following equations, where X (ei) = x i and
each ei ∈ Pj and W ′(ei) is the maximum capacity of the ith

arc with the deterioration effect, i.e., W ′(ei) =
⌊
W (ei)
δi

⌋
:

Ij = x1, (4)

x ′i = x i+1, i = 1, 2, . . . , u− 1, (5)

x ′u = Oj, (6)

xk = 0, for each ek /∈ Pj and k = 1,2,. . . ,m, (7)

x i ∈ {0, 1, . . . ,W (x i)} and x ′i ∈ {0, 1, . . . ,W ′(ei)} (8)

According to Eq. (2-3), the minimal capacity vj is a key
to determining (d , T )-MP for a system-state vector Xj in
the MQPP. Therefore, we let Oj = vj; then, the F-IPde can
be solved in inverted sequence using Eq. (9). In addition,
the system-state vector Xj, which has the minimum capacity
that allows the end user to receive d units of data along Pj
within time T when the deterioration effect is included, can
be generated as follows:

x ′u = S ′(eu), with S ′(eu) ≥ vj

x i = S(ei), with S(ei) ≥
⌈
x ′i

δi

⌉
, i = 1, 2, . . . , u

xk = 0, if ek /∈ Pj,

(9)

where S(ei) and S ′(ei) are the minimal capacities of the ith arc
without and with the deterioration effect, respectively, and δi

is the deterioration rate of the ith arc in someMP, respectively.
For example, Fig. 1 can be modeled as follows:

P1 : I1 = x1, x ′1 = x2, x ′2 = O1, x3 and x4 = 0 (10)

P2 : I2 = x3, x ′3 = x4, x ′4 = O2, x1 and x2 = 0 (11)

0 ≤ x1 ≤ 4, (12)

0 ≤ x2 ≤ 3, (13)

0 ≤ x3 ≤ 3, (14)

0 ≤ x4 ≤ 2, (15)

0 ≤ x ′1 ≤ 3, (16)

0 ≤ x ′2 ≤ 2, (17)

0 ≤ x ′3 ≤ 2, (18)

0 ≤ x ′4 ≤ 1, (19)

Suppose that this system is required to transmit a demand
d = 8 within a transmission time T = 9 to an end user along
P1, with v1 = 2, as calculated previously. Let O1 = v1 =
2 and x ′2 = S’(e2) = 2, so that S’(e2) = 2 ≥ O1 = 2. Let

x ′1 = x2 = S(e2) = 3, so that S(e2) ≥
⌈
x ′2
δ2

⌉
=

⌈
2
0.9

⌉
= 3.

Let x1 = S(e1) = 4, so that S(e1) ≥
⌈
x ′1
δ1

⌉
=

⌈
3

0.85

⌉
= 4.

Finally, a system-state vector X1 = {4, 3, 0, 0} is obtained,
which implies that the system needs to send a flow value of
at least X (e1, e2) = (4, 3) along P1 to satisfy the demand d =
8 successfully within the time T = 9.

Lemma 2: The set of X1, X2, . . . , Xm contains only lower
boundary points, (d, T )-MPdes, if and only if

1) vj ≤ M ′(Pj), and
2) Xj satisfies Eq. (9)-(18) with Oj = vj.

Proof: For each Xj, we have vj ≤ M ′(Pj) and Oj = vj. It is
trivial that the transmission time T satisfies 9’(d , X ,
Pj) ≤ T and 3’(d , Xj) ≤ T , according to Lemma 1.
Moreover, if any system-state vector Y = (y1, y2, . . . ,
yn) < Xj = (x1, x2, . . . , xn), where Y (yi) < Xj(xi) and
ei ∈ Pj is such that O(Y ) < O(Xj) = vj, then, 9’(d , X ,
Pj) > T and3’(d , Xj) > T. Conversely, if Y> X , where
Y (yi)> Xj(xi) and ei ∈ Pj, andO(Y ) ≥ O(Xj)= vj, then
9’(d , X , Pj) ≤ T and3’(d , Xj) ≤ T. Therefore, we can
conclude that each Xj obtained from the F-IPde is a (d,
T )-MPde.

III. SOLUTION PROCEDURE
A simple and efficient algorithm for searching all of the (d ,
T )-MPdes for evaluating the reliability of the MQPPde is
described by the following steps:

Input: all of the MPs P1, P2, . . . , Pp in the MQPPdeG(V , E ,
W , 1) with level (d , T ).

Output: All of the (d , T )-MPdes.
Step 0: Let � = ∅ and j = 1.
Step 1: Find the smallest integer vj for Pj using equation (2).
Step 2: If vj ≤ M ′(Pj), go to Step 3. Otherwise, set Xj = ∅

and go to Step 4.
Step 3: For Pj = {e1i , e

2
k ,. . . , e

u
q}, find the minimal capacity

vector Xj = (x1, x2, . . . , xm) such that the required value
of d can be received along pathPj within time T despite
the deterioration effect.
Step 3.1: Construct the F-IPde of Pj and let Oj = vj.
Step 3.2: Solve the F-IPde in inverted sequence using
Eq. (9). If any Xj does not exist, let Xj = ∅.
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FIGURE 2. A benchmark MFN.

Step 4: Let� = �∩Xj, increment j if j < p, and go to Step 1.
Otherwise, halt;� is the complete set of (d , T )-MPdes.

After all of the (d , T )-MPdes have been found by the
proposed algorithm, they can be used to assess the reliability
of the MQPPde to achieve level (d , T ). The system reliabil-
ity can be calculated by disjoint subset methods [28]–[30],
the state-space decomposition method [31], [32], and the
inclusion-exclusion method [4], [25], [31], [33], [34]. This
study uses the inclusion-exclusion method to calculate the
system reliability because it is a simple and fundamental tool
for evaluating MFN reliability.

Assume that X1, X2, . . . , Xp are all (d , T )-MPs and Pr(Xi)
be the probability of event Xi. Then, the system reliability
calculated using the inclusion-exclusion method is given by:

p∑
i=1

Pr(Xi)−
p∑
j=2

j−1∑
i=1

Pr(Xi ∩ Xj)

+

p∑
j=3

j−1∑
i=2

i−1∑
k=1

Pr(Xi ∩ Xj ∩ Xk )+ . . .

+ (−1)p+1 Pr(X1 ∩ X2 ∩ . . . ∩ Xp)

where

Pr(Xj) = Pr{X |X ≥ Xj} =
m∏
i=1

Pr{X (ei) ≥ Xj(ei)}. (20)

IV. EXAMPLE ILLUSTRATION
An illustration of the proposed algorithm using the bench-
mark network in Fig. 2 is introduced in this section. We gen-
erate all of the (d , T )-MPdes using the proposed algorithm in
Stage 1. Then, the reliability of thisMQPPde can be calculated
in terms of all of the (d , T )-MPdes obtained in Stage 1,
as shown in Stage 2.

Stage 1. The capacity, lead time and deterioration rate of each
arc are listed in Table 1. This benchmark has six MPs:
P1 = {e1, e6}, P2 = {e1, e7, e8}, P3 = {e1, e3, e4},
P4 = {e1, e3, e5, e8}, P5 = {e2, e4}, and P6 = {e2,
e5, e8}. Given that level (d , T ) = (6, 10), all of the (6,
10)-MPdes can be generated as follows:

Solve:

Step 0: Let � = ∅ and i = 1.

TABLE 1. The arc data for the example of network in Fig. 2.

Step 1: The lead time along P1 is l1+ l6 = 2 + 2 = 4.
Therefore, v1 = 1 is the smallest integer such that 4
+

⌈
6
v1

⌉
≤ 10.

Step 2: v1 ≤ M ′(P1) = 3; therefore, go to Step 3.1.

Step 3.1: Construct the F-IPde for P1 = {e1, e6} and let
O1 = v1 = 1.
Then, the F-IPde for P1 has I1 = x1, x ′1 = x6, and
x ′6 = O1 = 1.

Step 3.2.1: Let x ′6 = S
’(e6) = 1, so that S’(e6) ≥ O1 =

1.
Step 3.2.2: Let x ′1 = x6 = S(e6) = 2, so that S(e6) ≥⌈

x ′6
δ6

⌉
=

⌈
1

0.85

⌉
= 2. Because x6 = 2 ≤ W (e6)

and x ′1 = 2 ≤ W ′(e1) = 4, go to Step 3.2.3.

Step 3.2.3: Let x1 = S(e1) = 3, so that S(e1) ≥
⌈
x ′1
δ1

⌉
=⌈

2
0.9

⌉
= 3. Because x1 = 3 ≤ W (e1) = 5,

we obtain X1 = (3, 0, 0, 0, 0, 2, 0, 0).

Step 4: Let � = � ∩ X1. Because i = 1 < p = 6, let i =
2 and go to Step 1.

145538 VOLUME 8, 2020



M.-F. He et al.: Quickest Multistate Flow Networks With the Deterioration Effect

Step 1: The lead time for P2 is l1+ l7 + l8 = 2 + 2+ 1 =
5. Therefore, v2 = 2 is the smallest integer such that 5
+

⌈
6
v2

⌉
≤ 10.

Step 2: Because v2 ≤ M ′(P2) = 2, go to Step 3.1.

Step 3.1: Construct the F-IPde for P2 = {e1, e7, e8} and
let O2 = v2 = 2.
The F-IPde of P2 has: I2 = x1, x ′1 = x7, x ′7 = x8,
x ′8 = O2 =2.

Step 3.2.1: Let x ′8 = S
’(e8) = 2, so that S’(e8) ≥ O2 =

2.
Step 3.2.2: Let x ′7 = x8 = S(e8) = 3, so that S(e8) ≥⌈

x ′8
δ8

⌉
=

⌈
2
0.8

⌉
= 3. Because x8 = 3 ≤ W (e8) =

3 and x ′7 = 3 ≤ W ’(e7) = 4, go to Step 3.2.3.
Step 3.2.3: Let x ′1 = x7 = S(e7) = 4, so that S(e7) ≥⌈

x ′7
δ7

⌉
=

⌈
3

0.85

⌉
= 4. Because x7 = 4 ≤ W (e7) =

5 and x ′1 = 4 ≤ W ’(e1) = 4, go to Step 3.2.4.
Step 3.2.4: Let x1 = S(e1) = 5, so that S(e1) ≥⌈

x ′1
δ1

⌉
=

⌈
4
0.9

⌉
= 5. Because x1 = 5 ≤ W (e1) =

5, we obtain X2 = (5, 0, 0, 0, 0, 0, 4, 3).

Step 4: Let � = � ∩ X2. Because i = 2 < m = 6, let i =
3 and go to Step 1.

Step 1: The lead time for P3 is l1+ l3 + l4 = 2 + 3+ 3 =
8. Therefore, v3 = 3 is the smallest integer such that 8
+

⌈
6
v3

⌉
≤ 10.

Step 2: Because v3 > M ’(P3) = 2, X3 does not exist; go to
Step 4.

Step 4: Because i = 3 < m = 6, let i = 4 and go to Step 1.
Step 1: The lead time for P4 is L4 = l1 + l3 + l5 +l8 = 2 +

3+ 1+ 1= 7. Therefore, v4 = 2 is the smallest integer
such that 7 +

⌈
6
v4

⌉
≤ 10.

Step 2: Because v4 ≤ M ’(P4) = 2, go to Step 3.1.

Step 3.1: Construct the F-IPde for P2 = {e1, e3, e5, e8}
and let O4 = v4 = 2.
The F-IPde of P4 has: I4 = x1, x ′1 = x3, x ′3 = x5,
x ′5 = x8, x ′8 = O4 = 2.

Step 3.2.1: Let x ′8 = S ′(e8) = 2, so that S ′(e8) ≥ O4 =

2.
Step 3.2.2: Let x ′5 = x8 = S(e8) = 3, so that S(e8) ≥⌈

x ′8
δ8

⌉
=

⌈
2
0.8

⌉
= 3. Because x ′5 = 3 > M ’(e5) =

2, X4 does not exist; go to Step 4.

Step 4: Because i = 4 < m = 6, let i = 5 and go to Step 1.
Step 1: The lead time for P5 is L5 = l2 + l4 = 1 + 3 = 4.

Therefore, v5 = 1 is the smallest integer such that 4
+

⌈
6
v5

⌉
≤ 10.

Step 2: Because v1 ≤ M ′(P5) = 2, go to Step 3.1.

Step 3.1: Construct the F-IPde for P1 = {e1, e6} and let
O5 = v5.
The F-IPde of P5 has: I5 = x2, x ′2 = x4, x ′4 =
O5 = 1.

Step 3.2.1: Let x ′4 = S ′(e4) = 1, so that S ′(e4) ≥ O5 =

1.

Step 3.2.2: Let x ′2 = x4 = S(e4) = 2, so that S(e4) ≥⌈
x ′4
δ4

⌉
=

⌈
1

0.85

⌉
= 2. Because x4 = 2 ≤ W (e4) =

3 and x ′2 = 2 ≤ W ′(e2) = 2, go to Step 3.2.3.

Step 3.2.3: Let x2 = S(e2) = 3, so that S(e2) ≥
⌈
x ′2
δ2

⌉
=⌈

2
0.85

⌉
= 3. Because x2 = 3 ≤ W (e2) = 3,

we obtain X5 = (0, 3, 0, 2, 0, 0, 0, 0).
Step 4: Let � = � ∩ X5. Because i = 5 < m = 6, let i =

6 and go to Step 1.
Step 1: The lead time for P6 is l2+ l5 + l8 = 1+ 1 + 1 =

3. Therefore, v6 = 1 is the smallest integer such that 3
+

⌈
6
v6

⌉
≤ 10.

Step 2: Because v6 ≤ M ’(P6) = 2, go to Step 3.1.
Step 3.1: Construct the F-IPde for P2 = {e2, e5, e8} and

let O6 = v6 = 1.
The F-IPde of P6 has: I6 = x2, x ′2 = x5, x ′5 = x8,
x ′8 = O6.

Step 3.2.1: Let x ′8 = S ′(e8) = 1, so that S ′(e8) ≥ O6 =

1.
Step 3.2.2: Let x ′5 = x8 = S(e8) = 2, so that S(e8) ≥⌈

x ′8
δ8

⌉
=

⌈
1
0.8

⌉
= 2. Because x8 = 2 ≤ W (e8) =

2 and x ′5 = 2 ≤ W ′(e5) = 2, go to Step 3.2.3.
Step 3.2.3: Let x ′2 = x5 = S(e5) = 3, so that S(e5) ≥⌈

x ′5
δ5

⌉
=

⌈
2

0.85

⌉
= 3. Because x ′2 = 3> W ′(e2) =

2, X6 does not exist; go to Step 4.
Step 4: Because i = p = 6, halt. � is the complete set of (6,

10)-MPdes.
Stage 2.Three lower boundary points,X1 = (3, 0, 0, 0, 0, 2, 0,

0), X2 = (5, 0, 0, 0, 0, 0, 4, 3) and X5 = (0, 3, 0, 2, 0, 0,
0, 0), for level (d , T ) = (6, 10) are generated using the
proposed algorithm in Stage 1. The MQPPde reliability
of the system shown in Fig. 2 can be calculated by
applying the inclusion-exclusion method as follows:

Solve:

[Pr{X1} + Pr{X2} + Pr{X5}]

− [Pr{X1 ∩ X2} + Pr{X1 ∩ X5} + Pr{X2 ∩ X5}]

+ [Pr{X1 ∩ X2 ∩ X5}]

= (0.765+ 0.273+ 0.72)

− (0.2457+ 0.5508+ 0.1966)+ 0.1769

= 0.9418.

where

Pr{X1} = Pr{X ≥ (3, 0, 0, 0, 0, 2, 0, 0)}

= Pr{x1 ≥ 3} × Pr{x2 ≥ 0} × Pr{x3 ≥ 0}

× Pr{x4≥ 0}× Pr{x5 ≥ 0}× Pr{x6 ≥ 2}

× Pr{x7 ≥ 0} × Pr{x8 ≥ 0}

= 0.85× 1× 1× 1× 1× 0.9× 1× 1

= 0.765,

Pr{X1 ∩ X2)= Pr{(X ≥ (3, 0, 0, 0, 0, 2, 0, 0))

∩ (X ≥ (5, 0, 0, 0, 0, 0, 4, 3))}
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= Pr{X ≥ (5, 0, 0, 0, 0, 2, 4, 3)}

= 0.2457,

Pr{X1∩ X2 ∩ X5)= Pr{(X ≥ (3, 0, 0, 0, 0, 2, 0, 0))

∩ (X ≥ (5, 0, 0, 0, 0, 0, 4, 3))

∩ (X ≥ (0, 3, 0, 2, 0, 0, 0, 0))}

= Pr{X ≥ (5, 3, 0, 2, 0, 2, 4, 3)}

= 0.1769.

V. DISCUSSION AND CONCLUSION
There are p and m variables for all of the MPs and arcs in G,
respectively. The time complexities of finding the minimal
capacity vj and comparing it to M ′(Pj) Step 1 and Step 2 are
both O(m) in the worst case. Therefore, both Step 1 and Step
2 take O(pm) time. The F-IPde in Step 3 requires O(pm) time
to generate all of the (d , T )-MPdes in the worst case.

In a MFN system, a delivery shortage may occur because
of the deterioration effect. Therefore, a novel MQPPde model
is presented that evaluates the reliability of an MQPP in
which the deterioration effect is included to solve this real-life
problem. TheMQPPde reliability is introduced and expressed
as the probability that a deteriorated network can send at least
d units of data or goods from the source node to the sink node
within T units of time along a singleMP. In addition, a simple
path-based algorithm that generates all of the lower boundary
points, which are called (d , T )-MPdes, by solving the F-IPde
is proposed. Then, the MQPPde can be calculated in terms of
those points.

The study of calculating the reliability of deteriorated net-
works is still in its infancy. Future research could analyze
the effects of different deterioration rates on the system reli-
ability, determine the most critical nodes or arcs to system
reliability, and extend the deterioration problem to a large-
scale network system or an MFN system that delivers the
data or goods along all of the feasible MPs simultaneously
and develop a model to calculate the reliability of such a
system.
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