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ABSTRACT In this paper, we demonstrate the benefits of using state-of-the-art machine learning methods
in the analysis of historical photo archives. Specifically, we analyze prominent Finnish World War II
photographers, who have captured high numbers of photographs in the publicly available Finnish Wartime
Photograph Archive, which contains 160,000 photographs from Finnish Winter, Continuation, and Lapland
Wars captures in 1939-1945. We were able to find some special characteristics for different photographers
in terms of their typical photo content and framing (e.g., close-ups vs. overall shots, number of people).
Furthermore, we managed to train a neural network that can successfully recognize the photographer from
some of the photos, which shows that such photos are indeed characteristic for certain photographers.
We further analyzed the similarities and differences between the photographers using the features extracted
from the photographer classifier network. We make our annotations and analysis pipeline publicly available,
in an effort to introduce this new research problem to the machine learning and computer vision communities
and facilitate future research in historical and societal studies over the photo archives.

INDEX TERMS Historical photo archives, object detection, photo framing, photographer analysis, photog-
rapher recognition.

I. INTRODUCTION
Historical photographs provide a valuable source of infor-
mation for researchers in several fields of science. Alone
the photographs of the two World Wars have been ana-
lyzed in archaeology [14], [48], war history [49], [55],
post-phenomenological geography [41], photojournalism
[16], [44], religion [45], landscape research [8], history
of photography [7], [23], propaganda research [50], [58],
and others. Such research efforts require systematic anal-
ysis of large quantities of photographs, which is a labori-
ous task taking a large part of the overall research time.
State-of-the-art machine learning algorithms have potential
to significantly speed up this task and also provide novel
perspectives/directions for the following studies on different
fields [5], [22], [63].

Despite the potential, up to this point the use of machine
learning has been very scarce in this context. Previous works
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in the field include applications of face recognition to assist
in identifying persons in historical portrait photographs [37],
feature matching for geolocalization or target matching in
historical repeat photography [2], [34], [35], [60], applica-
tion of marked point processes on automatic detection of
bomb craters in aerial wartime images [26], a rudimen-
tary classification of historical photographs into portraits,
landscapes, group photographs, and buildings/architectural
photography [12].

Wide-spread exploitation of machine learning in research
using historical photographs has not started yet. One rea-
son for this may be that the researchers performing such
research typically have a background far from information
technology. Besides not having the ability to use the novel
machine learning tools, many researchers in these fields may
not even realize the potential of machine learning in their
work. Therefore, we demonstrate in this paper how state-of-
the-art machine learning algorithms can assist and provide
new insight in the historical photo analysis. As our case study,
we concentrate on Finnish World War II photographs, while
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we use general algorithms and publicly available training
data. Therefore, a similar analysis can be directly applied on
any historical dataset.

The Finnish army produced a unique and internationally
significant database of photographs during the Winter War,
Continuation War, and Lapland War in 1939-1945. This col-
lection is known as the Finnish Wartime Photograph Archive
[52] and it consists of almost 160,000 photographs captured
by men who served in TK (Tiedotuskomppania = Informa-
tion company) troops. The archive has been digitized in the
beginning of 2010s and made publicly available in 2013.
In its extent and historical significance, the Finnish Wartime
Photograph Archive is comparable to the American Farm
Security Administration/Office of War Information Photo-
graph Collection [28], which contains about 175,000 photos
taken during the depression and drought in 1930s and World
War II. One of the official tasks of the TK troops was to col-
lect ethnographic records. The Finnish Wartime Photograph
Archive provides a unique cross section of the life especially
in the Eastern Karelia occupied by Finnish troops during the
Continuation War [36].

The archive provides a valuable source of information for
historians, photojournalists, and other researchers searching
information of the life and sentiments behind the battles [13].
However, the original photograph labeling typically pro-
vides only the date, the place, the photographer, and a brief
description of the key content. Thousands of photographs
lack even this basic contextual information or it is incomplete.
Moreover, not much of the content providing insight into the
every day life and sentiments of the people has been originally
described. Therefore, humanistic researchers have invested
a considerable amount of time and effort to manually go
through the collection and search for the information related
to the studies at hand. In this paper, we show that machine
learning algorithms can ease this kind of photo analysis, not
only by helping to patch up gaps in the database but also by
providing information that would be hard to obtain bymanual
inspection.

Several hundreds of photographers captured the Finnish
Wartime collection. However, most of them only took one
or few images and just a few dozen photographers captured
half of the images. While the photographers did not have the
freedom to select their topics freely, each photographer still
provides a subjective view of the events. Objects appearing
in the photos, scene setup, and picture framing vary based
on professional background, personal training, and prefer-
ences of a photographer. Some of the photographers can
be considered as skillful photojournalists or artists, while
others simply recorded the events with their cameras with a
less experienced approach. Therefore, a better understanding
of the differences of the individual TK photographers can
provide deeper insight into the significance of the content
and help researchers to find the content they are looking for.
In this paper, we exploit state-of-the-art machine learning
algorithms to analyze the characteristics and differences
of 23 active TK photographers. We examine the typical

objects appearing in the photographs and framing of the
photos (i.e., close-ups vs. overall shots) for each photographer
and we evaluate how distinguishable different photographers
are.

In this work, our contribution lies on the edge of the his-
torical photograph analysis and machine learning, allowing
to make a step towards automatically answering historical
research questions and to facilitate the work of historians.
Rather than presenting a novel method from the machine
learning perspective, we show how several common histor-
ical photograph analysis research problems can be addressed
by utilizing modern machine learning techniques or making
minor modifications to them. Our proposed approaches allow
automating the work of historians that currently requires a
large amount of monotonous manual labor. This can provide
a significant speed up of the research process as well as the
possibility to process considerably larger-scale data and allow
historians to use their time on analyzing higher-level meaning
and consequences of the gatherer results. More specifically,
• we propose a pipeline for historical photograph analy-
sis based on combination of four state-of-the-art object
detection methods

• we show how the above-mentioned pipeline can be uti-
lized for photo framing evaluation

• we formulate a problem of photographer recognition
and propose an approach for quantitative assessment of
visual similarity of the photographers as well as estab-
lishment of unknown authorship for photographs based
on it

• based on performed experiments, we provide the analy-
sis of the most prominent Finnish WW2 photographers
selected from Finnish Wartime Photograph Archive

• we provide the obtained bounding box annotations,
codes, and all the pretrained models obtained in our
study to facilitate further research in this area.1

We have structured the rest of paper as follows: in Section II,
we describe and discuss the tasks and methodologies adopted
in this study in a general manner understandable also without
previous knowledge on machine learning. We give the tech-
nical details separately in Section III, discuss the obtained
results in Section IV and conclude the paper in Section V.

II. MACHINE LEARNING FOR HISTORICAL PHOTOGRAPH
ANALYSIS
In this work, we propose and evaluate several application
areas in which machine learning can assist in the analysis
of historical images and photographers, namely, analysis
of objects present in the scene, photo framing evaluation,
photographer classification, and assessment of their visual
similarity. The selected tasks illustrate only a small fraction
of different ways machine learning can help in historical

1We provide all codes, models, and obtained data annotations along with a
detailed description on how to use them at github.com/katerynaCh/Finnish-
WW2-photographers-analysis. A permanent website will be created during
the review process of this paper, which will host all information related to
our research in this topic.
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TABLE 1. Selected photographers, total number of taken photographs,
and photographing periods.

photograph analysis and were chosen based on their potential
to provide a significant amount of useful information for
researchers with a small amount of additional work that does
not require deeper understanding of the underlying methods.
We provide all the codes and models along with a detailed
description on how to apply them on other historical photo
archives.

We selected for our experiments 23 Finnish war photog-
raphers. First 20 of them were the photographers with the
highest total numbers of images in the Finnish Wartime
Photograph Archive and the remaining three were included
as they are considered by experts interesting for the photo-
journalistic research. The selected photographers along with
the number of photographs and the photographing period for
each photographer are listed in Table 1. The table also assigns
photographer IDs used in later tables and illustrations. The
total number of photographs considered in our analysis is
59, 021. It is likely that most of the photographers captured
a higher number of photographs than suggested here. This is
because thousands of photos in the Finnish Wartime Photo-
graph Archive still lack the name of the photographer. As our
analysis will help to differentiate the characteristics of the TK
photographers, it may later contribute to suggesting names for
at least some of the anonymous photographs.

A. PHOTO CONTENT ANALYSIS
Presence of specific objects in a scene can provide plenty
of information regarding an image of that scene. For exam-
ple, it can be used for anomaly/fault detection [43], [47],
increasing autonomy of vehicles [3], and video surveillance
[20]. To improve the performance of such scene analysis
methods on new datasets, domain adaptation methods, that
reduce the gap between the representation of the labeled
training dataset and that of unlabeled target dataset, can be
utilized [19], [56], [57].

In the context of historical photo analysis, when using
appropriate classes, detected objects allow to determine the
context of each photo, as well as the focus of each photogra-
pher. For example, photographs on which chairs are detected,
are likely to be taken indoors, while photographs on which
horses, boats, cars, or trains are present, are more likely to
be outdoor photos. Presence of objects such as skis can help
determine the time of the year and, therefore, help establish
the time period for unlabeled photographs. In turn, a high
amount of chairs, ties, and people on the photo is likely to
indicate a photo of some official event. At the same time,
photos of airplanes are likely to resemble battles or near-battle
areas.

Besides analysis of a context of each specific photo, such
analysis can help determine the main focus of each photogra-
pher by evaluating which types of objects are present in their
photographs the most. For example, photographers having
larger numbers of people, ties, and chairs, are more likely
to have been urban photographers, while those with more
animals (e.g., dogs, horses) are more likely to have worked
in rural or countryside areas.

In our study, we propose to perform such analysis by lever-
aging the power of object detection methods, i.e., methods
that are able to localize objects from a set of pre-specified
classes on the images. Besides, we observe that labeling
and training on a specific historical image dataset is often
unnecessary as by combining the outputs of several strong
object detectors pre-trained on public modern datasets one
can achieve representative results for many common object
classes. We also provide the obtained bounding box annota-
tions for the FinnishWartime PhotographArchive to facilitate
further research in this area data1.

B. PHOTO FRAMING EVALUATION
The framing of a photograph is one of the stylistic decisions a
photographer has to make. It is one of the most effective ways
to assure visual variety in a group of photographs of a single
situation. A traditional way of categorizing framings is to use
three types as defined by Kobre [25]: overall shots, medium
shots, and close-ups. A more detailed division of framings
is widely used, e.g., in cinematic storytelling. According
to this basic categorization, an overall shot sets the scene
showing where the event took place: inside, outside, country,
city, land, sea, day, night, and so on. This shot defines the
relative position of the participants. A medium shot, on the
other hand, should ‘‘tell the story’’ in one photograph by
compressing important elements into one image. It is shot
close enough to see the actions of the participants, yet far
enough away to show their relationship to one another and
to the environment. Finally, a close-up adds drama isolating
one element and emphasizing it. In photographs of people,
a close-up usually portraits a subject’s face.

Measuring the ratio of different framings in a photogra-
pher’s works in a certain collection is one way to characterize
his/her way of seeing. Here, we propose to take advantage
of a combination of several object detectors for solving this
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task. To separate different framing categories, we examine the
photographs with detected people and consider the relative
size of the largest bounding box, which usually corresponds
to the person closest to the camera, with respect to the image
size.

C. PHOTOGRAPHER CLASSIFICATION AND VISUAL
SIMILARITY ASSESSMENT
Another problem in this study that we propose to address
by utilization of machine learning techniques is the assess-
ment of visual similarity of different photos and photogra-
phers. Ability to differentiate the photographers based on
the visual cues of photographs can assist in labeling the
images for which the author is unknown. To evaluate how
distinguishable different photographers are, we select a sub-
set of 12 photographers (4-Hollming, 5-Taube, 6-Helander,
7-Jänis, 8-Hedenström, 9-Suomela, 12-Kivi, 14-Uomala,
15-Nurmi, 19-Sjöblom, 21-Roivainen, 22-Manninen) and use
some of the photographs from each photographer to train a
neural network to recognize the photographer.

A neural network sequentially applies a set of transfor-
mations to the input images, transforming them into such a
representation that allows to distinguish different photogra-
phers, after which a classification layer classifies the image
as belonging to a certain photographer. Therefore, besides
directly establishing the authorship of unlabeled images, this
approach allows to obtain such a feature representation of
the photographs in which images that are visually similar are
located closer in the feature space, allowing to asses the visual
similarities of different photographers with each other as well
as similarities of specific images quantitatively.

For quantitative analysis, i.e., establishment of the extent to
which the photographers are similar, we propose to utilize the
Earth Mover’s Distance [42] between the feature representa-
tions extracted from the pre-last layer of the neural network
trained for photographer classification.

III. METHODS DESCRIPTION
This section provides technical details on the machine
learning approaches utilized for performing the previously
described analysis, including object detection, photo framing
analysis, photographer classification, and analysis of visual
similarity of photographs.

A. PHOTO CONTENT ANALYSIS AND FRAMING
EVALUATION
For analysis of objects present in the scene of the pho-
tographs, we created a framework utilizing four state-of-the-
art object detectors, namely Single-Shot Detector (SSD) [32],
You Only Look Once v3 (YOLOv3) [39], RetinaNet [30],
andMask R-CNN [17]. We combine the four object detectors
as such combination can result in improved detection accu-
racy and bounding box precision as compared to utilization
of only one object detector, since generally a single object
detector fails to detect all the objects of interest in the image.
In this case, the information obtained from four independent

detectors can compensate each other in terms of undetected
objects of interest and therefore provide improved results.
At the same time, combination of bounding box coordinates
of objects detected by several object detectors can improve
the precision of bounding boxes. All models were pretrained
on MS-COCO dataset [31] that contains 80 classes. Among
those, we considered people, airplanes, boats, trains, cars,
bicycles, skis, dogs, horses, chairs, and ties as shown in
Table 2. The pipeline of aggregation of the information
obtained from each object detector is described below in
Sections III-A-1, 2, 3, and 4.

From each detector, we obtain a set of bounding boxes that
are given as 4 coordinates and a class label with a correspond-
ing confidence score. We discarded predictions with a con-
fidence score below a certain threshold. This threshold was
selected to be 0.7 for Mask R-CNN, 0.3 for RetinaNet, 0.5
for SSD, and 0.6 for YOLOv3. The thresholds were selected
by manually investigating the effect of different scores in
each detector on overall detection results. Higher threshold
was selected for YOLOv3 and Mask R-CNN as they tend to
produce more false positives with higher scores in our setup.

In order to determine the final bounding boxes, the aggre-
gation of the results from multiple detectors is performed.
We investigate two combination approaches. In each of the
approaches, the identification of bounding boxes correspond-
ing to the same objects is necessary. This is achieved as fol-
lows: first, the detected bounding boxes belonging to the same
class are sorted according to their confidence scores. Then,
the Jaccard similarities, also referred to as Intersection over
Union [27] of each box with respect to the most confident
bounding box of the class are calculated. Intersection over
Union is defined by the area of the intersection of two boxes
divided by the area of the union of these boxes:

IoU =
Area of overlap
Area of union

(1)

The bounding boxes having the IoUmore than certain thresh-
old θ are identified as belonging to the same object. In our
experiments, we set θ to 0.1. Then, the most confident bound-
ing box and the boxes having IoU with it higher than the
threshold are identified as belonging to the same object,
marked as processed, and removed from the bounding box
list, so that each bounding box is matched with at most one
object. The process continues starting from the bounding
box that has the highest confidence score after removal of
boxes of the previous step until all bounding boxes have been
processed.

After this stage, we examined two options of combining the
detections identified as belonging to the same object: either
the bounding box with the highest confidence score can be
selected, or themean of each coordinate of all bounding boxes
corresponding to the same object can be taken. Following the
first approach, issues related to different scoring systems of
different detectors arise, i.e., some detector might produce
higher scores for all of its detections in general, while its
bounding boxes might be less accurate. We also observe this
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TABLE 2. Ratio of photos with people, number of people per such an images, and occurrences of other object classes per 100 images for different
photographers.

heuristically, so in our experiments, we follow the second
approach of taking the mean value of the coordinate pro-
duced by all the detectors and we observe that generally this
results in more accurate positioning of the bounding box,
although this cannot be evaluated quantitatively without the
groundtruth information. This process was applied to bound-
ing boxes of each class separately.

We utilize the detections of the person class for photo
framing evaluation, or, in other words, estimation of a dis-
tance from which the photo was taken. After combining the
predictions of each detector, we used the largest bounding
box for the person class in our photo framing evaluation. The
evaluation is based on the area occupied by the bounding box
- if the bounding box occupies more than 65% of the overall
photograph, the photo was classified as a close-up, 10-65% -
medium shot, and < 10% - as an overall shot.
Further in this section, we provide details on the object

detectors utilized in the above-described approach.

1) SSD
The first object detector applied was SSD [32] that is one
of the most well-known single-shot detectors. The detector
is based on the VGG-16 [46] model pretrained on ImageNet
dataset [9] that is used as a backbone feature extractor, fol-
lowed by several convolutional layers that downsample the
image and result in multiple feature maps. Using these feature
maps from different layers, the detection can be done on
multiple scales, while preserving the parameters across all
scales, ensuring that both large and small objects are detected
equally well. In addition to that, the single-shot approach
results in high inference speed.

SSD relies on the idea of default bounding boxes, mean-
ing that prior to training, several default bounding boxes

are determined based on the amount of feature maps to be
used and the size of the feature maps. Bounding boxes are
created for the aspect ratios of {1, 2, 3, 12 ,

1
3 }. During training,

each groundtruth bounding box is associated with one of the
default bounding boxes, determined by the highest Intersec-
tion over Union [27]. This default bounding box becomes a
positive example for the groundtruth box, while the others
become negative examples.

At each scale, a feature map of different size is created and
divided into a grid cell. During inference, a set of default
bounding boxes is evaluated for each cell of the feature
map and for each default bounding box, a shape offset is
predicted along with the class probabilities for each class.
Training is done with the combination of localization loss
that is a Smooth L1 loss [15] between the predicted box
and the groundtruth box; and the confidence loss that is the
cross-entropy loss over multiple class confidences. In our
experiments, we used images rescaled to the size of 512×512
pixels as an input to SSD detector.

2) YOLOv3
The second object detector used was YOLOv3 [39] that is
in many ways similar to SSD: YOLO is a single-shot detec-
tor that makes predictions on multiple scales by performing
detection on feature maps from different parts of the network.
Prediction is done across three different scales obtained by
dividing the image size by 32, 16, and 8.

YOLO relies on an ImageNet-pretrained Darknet-53 archi-
tecture that is used as a feature extractor backbone and mul-
tiple convolutional layers are added on top of it. Similarly
to SSD, an image is divided into a grid cell and each cell is
responsible for detecting the object, the center of which is
located within its boundaries. Each grid cell predicts several
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bounding boxes along with the corresponding class label and
confidence score.

Rather than predicting bounding box coordinates directly,
YOLO predicts the offsets from the predetermined set of
boxes, referred to as anchors boxes or prior boxes, and each
box is represented by the width and height dimensions [38].
These anchor boxes are obtained by applying k-means clus-
tering [33] on the width and height dimensions of the boxes
in the training set with the distance defined as

d(box, centroid) = 1− IoU (box, centroid), (2)

where both box and centroid are represented by two-
dimensional vectors of width and height, IoU stands for
Intersection over Union, and k = 9 is chosen for k-means
clustering, resulting in 9 anchor boxes. For calculation of
IoU we assume that the centers of the boxes are located at
the same point. More specifically, for the model trained on
COCO dataset and 416 × 416 images, the anchor boxes are
(10× 13), (16× 30), (33× 23), (30× 61), (62× 45), (59×
119), (116× 90), (156× 198), and (373× 326).
For each detected bounding box, class prediction is

obtained by multi-label classification with separate logistic
classifiers. During training, the loss comprised of binary
cross-entropy loss for object classification, and sum of
squared error loss for bounding box prediction is used. YOLO
operates on images of fixed size, and for our experiments all
images were rescaled to 416× 416 pixels size.

3) RetinaNet
The RetinaNet [30] object detector is the third state-of-the-
art object detector used in this work. Overall architecture
of RetinaNet consists of the backbone network for feature
extraction, namely, Feature Pyramid Network [29] built on
top of ResNet [18], and two subnetworks, one of which is
responsible for object classification, and the other one - for
the bounding box regression. Similarly to previous detectors,
the backbone network in pretrained on ImageNet dataset.

In a similar way to other detectors discussed so far, Reti-
naNet performs detection on multiple scales and relies on a
predefined set of anchor boxes. Here, for each scale, anchors
of 3 aspect ratios {1 : 2, 1 : 1, 2 : 1} and 3 sizes {20, 2

1
3 , 2

2
3 }

are used, resulting in 9 anchor boxes per scale level.
The subnet for object classification is a small fully-

connected network, where the parameters are shared between
different scale levels. The network is comprised of 3×3 con-
volutional layers. For each spatial position, object class, and
anchor box, a sigmoid activation function predicts the proba-
bility of presence of the object of that class. Thus, this subnet
has the output of sizeW ×H ×A∗K , where A is the number
of anchor boxes,K is the number of classes, andW andH are
the width and height of the corresponding feature map. The
bounding box regression subnet is a fully-connected network
that predicts four coordinates for each anchor box at each
spatial location. The predicted coordinates correspond to the
offset relative to the anchor.

The main difference from other detectors lies in the uti-
lization of the new loss function, referred to as Focal Loss,
designed to address the issue of imbalanced classes in the
object classification subnet:

FL(pt ) = −α(1− pt )γ log(pt );

pt =

{
p, if y = 1
1− p, otherwise

(3)

where y = ±1 is the ground-truth binary class label for the
evaluated class, p is the estimated class probability, γ is a
focusing parameter, and α is a balancing parameter. For the
input to this detector, we rescaled the images preserving the
aspect ratio and setting the size of the smaller side to 800 pix-
els, while keeping the size of a larger side at 1333 pixels
maximum.

4) MASK R-CNN
Mask R-CNN [17] was the fourth detector used in this work.
It is based on Faster R-CNN [40] - a region proposal based
network consisting of two major blocks: a Region Proposal
Network (RPN) that predicts the possible candidate locations
of objects in the image, and a Region of Interest (RoI) classi-
fier that extracts features of each candidate region proposed
by RPN, assigns class labels to them, and refines the bound-
ing box location.

Mask R-CNN extends Faster R-CNN for prediction of seg-
mentation masks that is performed in parallel with bounding
boxes prediction. Mask R-CNN predicts a binary segmen-
tation mask for each candidate region proposed by RPN,
resulting in K of m × m masks per RoI, where K is the
number of classes. The prediction is achieved by Fully Con-
volutional Network. A per-pixel sigmoid is applied to the
m × m mask output on the groundtruth class during training
(i.e., only to the cth mask for the RoI with groundtruth class
c), and the segmentation loss Lmask is defined as an average
binary cross-entropy loss. The total loss is defined as L =
Lcls+Lbox +Lmask , where Lcls and Lbox are the classification
and bounding box regression loss, respectively, and they are
defined in the same way as in original Fast R-CNN [15].

Faster R-CNN relies on the RoIPool operations for extrac-
tion of small feature maps. RoIPool quantizes the float values
of RoI into discrete bins to fit the granularity of the feature
map, followed by spatial partitioning of the RoI into several
spatial bins, to which pooling is applied. Such processing
allows achieving higher training speed, while not affecting
the performance much, as classification is robust to small
translations. However, for the segmentation, pixel-accurate
processing is required, resulting in the need for substitution
of RoIPool with something else. For this purpose RoIAlign
layer was proposed, where quantization is avoided: four loca-
tions are selected in each RoI bin and their values are com-
puted using bilinear interpolation. Experimentally it is shown
that usage of architecture with RoIAlign but without the
mask segmentation component outperforms Faster R-CNN
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on bounding box prediction task already, andmulti-task train-
ing for segmentation pushes the precision even further.

The architecture of Mask R-CNN consists of the convo-
lutional backbone that is used for feature extraction, and a
head that is used for classification, bounding box prediction,
and segmentation. In our setup, ResNet101 [18] was used as
a backbone, and FPN [29] as the head. The image size of
540× 960 was used for processing.

B. PHOTOGRAPHER RECOGNITION
Evaluation of visual similarity of photographers and predic-
tion of photograph authorship for unknown photos is achieved
in this work by formulating an appropriate classification
problem. For recognizing the photographer from the photos,
we applied a pretrained and finetuned convolutional neural
network. The architecture used in this work is a modified
VGG-19 architecture [46], pretrained on ImageNet dataset.
Modifications to the original architecture include the addition
of Dropout layers after each pooling layer and each of the
last two fully-connected layers with keeping 50% of connec-
tions, and addition of a randomly-initialized fully-connected
layer with 1024 neurons, followed by another Dropout layer
that keeps 50% of connections. At the final step, a layer
with 12 neurons and softmax activation function is added.
Adam optimizer was used for training with the learning rate
of 10−5, momentum decay rates of 0.9 and 0.999 for the first
and second moment estimates, respectively, and learning rate
decay of 1e−6.

In order to address the issue of imbalanced classes, the
weighted loss was used during training, calculated as:

L = −wc
1
N

N∑
i=1

log(p[yi ∈ Cyi ]) (4)

wc =
N

Nc × C
, (5)

where N is the total number of training samples, Nc is the
number of training samples in class c, C is the total number
of classes [24], and p([yi ∈ Cyi ]) denotes the predicted
probability that ith observation yi belongs to the class Cyi .
The training, validation, and test splits were selected ran-

domly, while ensuring that the photos taken on the same day
by the same photographer are not divided between splits,
as they likely contain very similar photographs of a single
event. In our setup, 60% of the photos were selected as
training set, 20% - as validation set, and the rest - as the
test set. As a preprocessing step, we performed histogram
equalization on each photo on the value component in the
HSV space in order to improve the contrast of each photo.
Then, we resized the images into 224 × 224 pixels size.
Training was done for 100 epochs with batch size of 8 and
categorical cross-entropy as the loss function.

C. PHOTOGRAPHER VISUAL SIMILARITY
In order to obtain a quantitative measure of visual similar-
ity between photographers, we extract the features from the

second last layer of the network trained for photographer
recognition. Treating the set of features of each photogra-
pher as a signature of corresponding probability distribution,
we calculate the Earth Mover’s Distance [11], [42] between
these distributions. The Earth Mover’s Distance is defined as
the minimal cost needed for transformation of one signature
into the other, where the cost is based on some distancemetric
between two features. In our case, we utilize Euclidean dis-
tance. The Earth Mover’s Distance between two distributions
P and Q is then formally defined as:

EMD(P,Q) =

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1
∑n

j=1 fi,j
, (6)

where m and n are the sizes of signatures of correspond-
ing distributions, fi,j denotes the optimal flow between sam-
ples i and j found by solving the corresponding network
flow problem, and di,j denotes the distance between samples
i and j [42].

In order to visualize the relationships between the photos
of different photographers, we utilize the same features that
are used for calculating the photographer similarity. The
resulting feature map has high dimensionality and for the
visualization purposes we exploit the t-Stochastic Neigh-
bour Embedding algorithm (t-SNE) [54]. t-SNE is a data
visualization method for high-dimensional data, that aims at
mapping the data instances in the high-dimensional space to
some low-dimensional space, where the similarity between
instances is preserved. This is achieved by modelling the
similarities between instances as conditional probabilities.
In the high-dimensional space, the similarity between data
instances xi and xj is represented by the probability of xj to
be selected as the nearest neighbor of xi if neighbors were
selected proportionally to their probability density under a
Gaussian distribution centered at xi. In the low-dimensional
space, instead of using the Gaussian distribution, the Stu-
dent’s t-distribution with one degree of freedom is used.
Using a heavy-tailed distribution helps to model moderate
distances in the high-dimensional space with a much larger
distances in the low-dimensional space, resulting in better
results compared to other methods. The Kullback-Leibler
divergence of these probability distributions is then mini-
mized with a gradient descent. The result of the visualization
can be seen in Fig. 6.

IV. EMPIRICAL STUDY, RESULTS, AND DISCUSSION
In this section, we describe the experiments performed and
discuss the obtained results for analysis based on object
detection, photo framing evaluation, photographer classifica-
tion, and their visual similarity assessment.

A. PHOTO CONTENT ANALYSIS
We applied pretrained object detection algorithms to detect
the objects appearing in images. Out of the available 80 object
classes, wemanually selected 11 relevant classes (people, air-
planes, boats, trains, cars, bicycles, skis, dogs, horses, chairs,
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FIGURE 1. Examples of successful and erroneous object detection results. Histograms of the photographs shown here and in the following examples
have been equalized. We show here also object classes not used in our analysis (e.g. cow). Photographers: U. Ovaskainen, K. Borg, K. Borg, P. Jänis.
Source of photorgaphs: SA-kuva.

and ties).We also empirically checked that the detection qual-
ity for these classes was high. Some of the potentially inter-
esting classes, e.g., cow, we discarded, because many cow
detections were actually horses, reindeer, or other objects.
Also for the selected classes, the results should be considered
only as indicative. When objects are clearly visible, they
are typically well detected. However, there are cases where
objects are missed or misidentified. Few examples of object
detections are shown in Fig. 1.
It is evident that the results do not provide exact object

numbers. Instead, we exploit the results to evaluate rela-
tive numbers of occurrences of different objects in the pho-
tographs of each photographer. The object detection results
for each photographer are given in Table 2, where we report
the ratio of images with people and the average number of
persons in these images as well as the average number of
occurrences of other objects per 100 images for each pho-
tographer and the average number of objects of all classes
per 100 images. For each object class, we highlight the val-
ues for photographers with the most frequent (bolded) and
infrequent (italic) occurrences. We also provide the average
frequency of each class among all photographers for refer-
ence.

As expected, we observe from Table 2 that different
photographers concentrated on different content: 19-Sjöblom
has people in 98% of his images, while 10-Norjavirta and
14-Uomala have people in less than 85% of their images.
8-Hedenström and 22-Manninen have the highest average
number of people in these images (i.e., only images with peo-
ple counted), while 6-Helander and 21-Roivainen captured
images with fewer people.

6-Helander and 15-Nurmi captured high numbers of air-
planes, while 9-Suomela and 12-Kivi concentrated on boats.
Interestingly, 6-Helander has rather high occurrence of other
types of vehicles as well (boats, trains), while 15-Nurmi
focused predominantly on airplanes. In 21-Roivainen’s pho-
tos, there aremany animals (horses, dogs), showing that many
of his photos were taken in rural environements rather than
urban scenes.

Based on our manual inspection, chair pictures are typ-
ically taken indoors, while ties are worn by high ranking
soldiers or wealthy people in urban conditions.Generally,
presence of these objects in the scene allows us to make
a conclusion that a photo is taken at some formal event.

19-Sjöblom, who has the highest ratio of photographs with
people and 22-Manninen, who has the highest average num-
ber of people in his pictures, also have the most chairs.
At the same time, both of them have a low rate of skis, dogs,
and horses, supporting the claim that they were focusing on
reporting the formal events and photographing high rank-
ing military servants in urban environments. The connection
between occurrence of chairs and people is supported by the
fact that the 4-Hollming and 14-Uomala have the lowest chair
rate. 14-Uomala has also a low ratio of people images, while
4-Hollming pictured a high amount of skiing photos, which
shows that he photographed more outdoors. The occurrence
of animals in his photos is rather high as well.

B. PHOTO FRAMING EVALUATION
Photo framing evaluation is performed for photographs on
which people are present according to the output of the
combination of object detectors. We manually defined two
thresholds to divide such photographs into three classes:
close-ups, medium shots, and overall shots. Fig. 2 shows an
example photograph belonging to each of these classes.

Fig. 3 shows how the photographs with people are divided
into different framing categories for different photographers
(the percentages of close-ups and overall shots are shown,
the remaining percentage corresponds to medium shots). The
figure shows that 19-Sjöblom took relatively most close-ups
andmedium shots and fewest overall shots. From the previous
subsection, we know that he had also the highest ratio of pho-
tos with people and the objects detected in his photographs
profiled him as an urban photographer.

We also observe that the rest of the three photographers
having the highest ratio of close-ups, i.e., 6-Helander, 7-Jänis,
and 21-Roivainen have also rather low chair and tie rates
along with a low number of persons per image. At the same
time the number of images on which people are present is
average for these photographs. These observations lead us
to the conclusion that these photographers were focusing on
portrait photographs when photos of people were taken.

In addition, we observe that 2-Nousiainen and 14-Uomala
captured relatively most overall shots. 14-Uomala also had
fewest people photographs in general and only few chairs
in his images, which led us to conclude that he did mostly
outdoor photography. The fact that the average number of
objects on his photographs is also the lowest leads us to the
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FIGURE 2. Examples photographs of different framing categories and the corresponding detection results. We show here also object classes not
used in our analysis (e.g. elephant). Photographer: K. Borg. Source of photorgaphs: SA-kuva.

FIGURE 3. Percentage of different framing categories among photographs with people (the rest of the photographs are considered as
medium shots).

same conclusion. These observations support each other as
overall shots are mainly outdoor images. 18-Laukka took
fewest close-ups, and the objects detected in his photos
mainly profile him as a non-urban photographer, although the
ratio of objects in each category is rather low. Interestingly,
4-Hollming had only few overall shots, while the object in
his photographs profiled him as a non-urban outdoor pho-
tographer. One possible explanation comes from the fact that
he has the highest ratio of skis, which are more likely to be
present in close-up or medium photographs of people that are
taken outdoors.

C. PHOTOGRAPHER RECOGNITION
Following the described classification method for photogra-
pher recognition, we evaluated whether the trained network
can be used to recognize the photographer for the unseen
photographs not used in training. Since each photographer
has a certain amount of duplicate images, here we split the
photographs into train and test sets according to the capturing
times to ensure that photographs depicting the same event are
not used for both training and testing.

Overall, the network achieved 41.1% classification accu-
racy on the test set. The confusion matrix of the classification

FIGURE 4. Confusion matrix for photographer recognition.

results in shown in Fig. 4, where all the diagonal elements rep-
resent correctly classified samples. We see that the network
was able to correctly classify a significant part of photographs
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from each of the photographers. The photographer-specific
recognition rates vary from 20.1% for 9-Suomela to 69.7%
for 21-Roivainen. The recognition accuracy of each photog-
rapher is shown in Table 3.

TABLE 3. Classification accuracies of different photographers.

Comparison of the recognition results with the earlier anal-
ysis on detected object reveals that some of the most recog-
nized photographers have also specific objects. 21-Roivainen
(69.7% accuracy) has most dogs, horses, and cars in his pic-
tures. 4-Hollming (51.4%) has the highest number of skiing
pictures and only few chairs (i.e., many outdoor photos).
22-Manninen (35.5%) had the highest average number of
people in his people photos and the highest occurrence of
chairs (i.e., indoor photos). 19-Sjöblom (50.4%) captured
photographs in urban environments. Some of the main con-
fusions occur between 4-Hollming, 6-Helander, and 7-Jänis.
We observe also that all three of them can be considered
as non-urban photographers having rather similar number of
persons per image and relatively low number of chairs and
ties.

In addition, 5-Taube and 12-Kivi are confused to each
other. 19-Sjöblom and 22-Manninen are often misclassified
as 8-Hedenström - these are also the three photographers
having the highest numbers of chairs and ties, i.e., the pho-
tographers that appear to be the most urban. Also 9-Suomela
is often misclassified as 12-Kivi, - both of them have a high
rate of boats and rather high rate of trains. These observations
support the conclusion that besides establishing the author-
ship of photographs, the learned feature representation allows
to make conclusions about overall visual similarity of these
photographers and similarity of the styles of their photos.

D. PHOTOGRAPHER VISUAL SIMILARITY
We calculated the Earth Mover’s Distance between all pairs
of photographers to assess their similarity as described in
section III-C. The results are outlined in Fig. 5, where higher
values show higher distances, i.e., lower similarity. The high-
est distances are highlighted in bold, and the lowest distances
are underlined. We observe that the obtained results corre-
spond closely to the misclassification rates of the photogra-
phers, i.e., photographers that are often misclassified as each
other also have low distance between each other. For exam-
ple, this can be observed in the pairs 5-Taube and 12-Kivi;
15-Nurmi and 9-Suomela; 12-Kivi and 15-Nurmi. We also

observe that for these photographers the similarities can be
seen based on the detected objects as well: both 15-Nurmi
and 12-Kivi have similar number of objects per image and
person images, and their rates of persons per image are equal.
We observe the same for the pair 15-Nurmi and 9-Suomela.

Besides, observing the photographers that are identified
to be distant from each other, we can see that their mutual
misclassification rates are low, and the objects detected on
their photographs provide a reasonable explanation to their
differences. The three least similar pairs are 19-Sjöblom and
21-Roivainen; 21-Roivainen and 8-Hedenström; 19-Sjöblom
and 4-Hollming. From Table 2, we can observe that
19-Sjöblom has the highest ratio of person images, the lowest
number of dogs and horses, and the highest number of chairs
and ties. At the same time, 21-Roivainen has the highest
ratio of dogs and horses, and low numbers of chairs and
ties. He also has an average number of person images and
objects per image, while 19-Sjöblom has rather high ratios.
The similar reasoning holds for the pair 4-Hollming and
19-Sjöblom, as 4-Hollming has low number of chairs and ties,
while having rather high ratios of non-urban photos. Besides,
4-Hollming has the highest ratio of skiing photos, meaning
that he was most likely having significantly more winter
photos than other photographers, making him visually more
distinguishable. 21-Roivainen has the lowest ratio of persons
per image, while 8-Hedenström has the highest. The average
number of objects per image differs rather significantly as
well. Besides, 8-Hedenström has high ratios of chairs and ties
compared to 21-Roivainen.

Another noticeable fact is that the photographers hav-
ing many of the extreme values of detected objects, e.g.,
19-Sjöblom (maximal ratio of person images, chairs, and ties,
and minimal ratios of dogs and horses) and 21-Roivainen
(maximal ratios of cars, dogs, and horses; minimal ratios
of persons per image and bicycles) also have the higher
distances to all other photographers, which can be seen by
the fact that the corresponding rows and columns are rather
dark compared to others. These facts support the meaningful-
ness of the proposed method for establishing photographers’
similarity.

We further examined the similarities and differences
between the photographers by extracting the features learned
by the classifier network for the test images and visualize
them using the t-SNE algorithm [54] in Fig. 6. In the figure,
the dots denote photographs and different colors correspond
to different photographers. Some of the colors are clearly
concentrated on certain spots further confirming that dif-
ferent images are characteristic for different photographers.
The similarities of adjacent images are also illustrated by
the examples, showing that images that are located close to
each other in the feature space are also visually similar even
if the photographers are different. It can be observed that
the upper-right corner images represent the landscapes, the
lower-right corner shows images that contain many people
in close proximity, and the upper-left corner contains images
of multiple people located at distance, where not much other
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FIGURE 5. Similarity of the photographers (higher value denotes lower similarity).

FIGURE 6. Visualization of the photograph similarities using the t-SNE algorithm and sample photographs with a varying similarity. Source of
photorgaphs: SA-kuva.

details are present. This further confirms the reasonability of
the proposed approach for obtaining feature representations
and allows to compare visual similarity of images of different
photographers.

V. CONCLUSION
We showed that modern machine learning algorithms can
help in societal research on historical photo archives in many
ways. In this paper, we applied state-of-the-art object detec-
tion models and neural network architectures to obtain statis-
tics and characteristics of prominent Finnish World War II
photographers. We examined the typical object categories in
the photos of each photographer and analyzed the differences
in their ways of capturing and framing people. Furthermore,
we showed that a convolutional neural network was able to
some extent recognize photographers from the photos leading
to the conclusion that certain photos can be considered typical

for a specific photographer. The confusion matrix of the
photographer classifier revealed some similarities between
the photographers. We are not aware of any prior works
using machine learning to such photographer analysis. The
obtained results will help historians, other researchers, and
professionals using historical photo archives in their work to
analyze and compare the works of specific photographers.

In this work, we used only publicly available pretrained
object detection models and basic photograph information,
i.e., the photographer, available for most photo archives. The
pretrainedmodels showed good performance on the historical
gray-scale photographs even though pretrained with modern
color photos. We also provide all codes, models and data
annotations along with a detailed description on how to use
them. Thus, the same methods can be easily applied on other
historical photo archives. At the same time, we remind that,
in a single paper, we can demonstrate only a tiny fraction of all
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currently available machine learning tools. The photographer
analysis could be further enhanced, for example, by con-
sidering photographer intentions [10] and their photo quality
[51], besides, object detection performance can be enhanced
by considering information fusion approaches [6], as well
as improving detection of smaller sized objects [4]. Here,
we only considered person detection, while person segmenta-
tion [21], face detection with facial expression analysis [53],
group-level emotion recognition [59], or age estimation [1]
will openmore interesting opportunities. Besides object-level
analysis, scene recognition [62] will help to further character-
ize photographers.

In the future, we will concentrate on issues requiring more
specialized methods such as recognizing object classes only
appearing in Finnish historical photos or duringWorldWar II.
We aim at exploiting the original textual photo descriptions
to produce more complete object labeling and as well as topic
and event recognition [61]. This will help us to solve one of
the biggest challenges in analysing wartime photos, namely
separating different statuses of subjects - whether the people
in the photographs are alive, wounded or deceased. These
kinds of more refined results can help us in the end to draw a
more detailed picture of the aims, qualities, and characters
of individual TK photographers. We aim at publishing all
our results in the archive to assist different types of societal
studies on the archive.
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