
Received July 17, 2020, accepted July 28, 2020, date of publication August 5, 2020, date of current version August 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014290

Multi-Task Optimization-Based Test Data
Generation for Mutation Testing via
Relevance of Mutant Branch
and Input Variable
XIANGYING DANG 1,2,3, XIANGJUAN YAO 4, DUNWEI GONG1, (Member, IEEE),
TIAN TIAN5, AND BAICAI SUN 1
1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
2School of Information Engineering (School of Big Data), Xuzhou University of Technology, Xuzhou 221000, China
3Key Laboratory of Intelligent Industrial Control Technology of Jiangsu Province, Xuzhou 221000, China
4School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
5School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China

Corresponding author: Dunwei Gong (dwgong@vip.163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61773384, in part by the National Key
Research and Development Program of China under Grant 2018YFB1003802-01, in part by the Fundamental Research Funds for the
Central Universities under Grant 2020ZDPYMS40, in part by the Major Project of Natural Science Research of the Jiangsu Higher
Education Institutions of China under Grant 18KJA520012, and in part by the Xuzhou Science and Technology Plan Project under Grant
KC19197.

ABSTRACT Mutation testing is a powerful software testing technique. However, it is difficult to obtain test
data for killing a large number of mutants, especially for hard-to-kill mutants. Mutant branch is formed by an
original statement of a program under test and its mutated statement. The true branch of a mutant branch is
covered by a test datum, suggesting the corresponding mutant is killed under the criterion of weak mutation
testing. This article focuses on efficiently generating test data for a large number of mutant branches. When
generating test data using a search-based method, the size of the search domain is a determining factor
affecting the search performance. The key observation is that only partial input variables affect whether
a mutant will be killed, so the search domain can be reduced by deleting irrelevant variables. Along this
line, we first group the mutant branches based on their relevant input variables, followed by formulating
a multi-task optimization model of test data generation for the grouped mutant branches, in which the
relevant input variables are taken as the decision variables. Finally, a multi-population genetic algorithm
with individual sharing is employed to generate test data by multi-tasking. The experiments based on eight
programs of various sizes show that removing related variable helps reduce the search domain, and the
efficiency of test data generation by grouping and multitasking is improved.

INDEX TERMS Weak mutation testing, multi-task test data generation, relevant input variables, grouping
mutants, multi-population genetic algorithm.

I. INTRODUCTION
Software testing, aiming to find faults in a software product,
is one of the vital processes in the life cycle of software devel-
opment, which generally consists of two phases, i.e., gener-
ating test data and executing the software product with the
generated test data [1], [2]. Among various testing methods,
Mutation testing is a fault-based software testing technique,
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which is proposed by Hamlet [3] and DeMillo et al. [4]. For
mutation testing, faults are generally seeded into a program
under test deliberately by a number of simple syntactic
changes to create a set of faulty programs called mutants [5].
The syntactic change rules are called as mutant operators.
Equivalent mutants are syntactically different but function-
ally equivalent to the original program [6], [7].

Generally, there are two kinds of mutation testing criteria,
i.e., strong mutation testing and weak mutation testing [5],
[8], [9]. Regarding the criterion of strong mutation testing,
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an incorrect state should be propagated to the output of a pro-
gram when a test datum is employed to execute the original
program and its mutant [10]. If reachability and infection are
held for a mutant, the mutant is said killed under the criterion
of weak mutation testing [11], [12]. In this paper, we focus
on test data generation under the criterion of weak mutation
testing.

Generally, when performing mutation testing, a large num-
ber of mutants will be generated. To date, various methods
have been proposed to reduce the cost of mutation testing
[13]–[16]. Along this line, Jia and Harman [1] summarized
the cost reduction techniques into two types, reduction of the
generated mutants (which combines do fewer and do faster)
and reduction of the execution cost (which corresponds to do
faster). In this paper, we focus on the latter, i.e., ‘‘do faster’’
by ‘‘searching fewer possibilities’’.

To efficiently generate test data for killing the mutants,
many scholars proposed various methods and developed
a number of tools [17]–[19], to improve the efficiency
of generating test data. Papadakis et al. [5] summarized
three main kinds of methods of generating test data for
mutation testing, i.e., constraint-based test generation [20],
dynamic symbolic execution [8], [21], and search-based test
generation [22]–[24]. Among them, search-based methods
are widely used, which commonly employ genetic algo-
rithms(GAs) as optimizers [23], [25]–[28].

GAs are one of the representative global optimization algo-
rithms. In GAs, a population composed of some individuals
continuously searches optimal solutions in the input domain
under the guidance of a specific fitness function. Along this
line, Masud et al. [26] presented a model of mutation testing
based on GAs, which has good performance in detecting
faults. The above studies suggest that GAs are competent in
generating test data under the criterion of mutation testing.
Compared with a GA with only one population, a GA with
multiple sub-populations, called a multi-population genetic
algorithm (MGA), generally has more superior performance.
Yao and Gong [25] proposed a MGA with individual sharing
to generate test data for covering multiple paths. In MGA,
each sub-population optimizes one subproblem which cor-
responds to one path, so the fitness functions of different
sub-populations differ from each other. All sub-populations
evolve in parallel. Based on the above ideas, MGA is applied
to test data generation for mutation testing in this paper.

Previous studies [23], [29]–[31] discovered that search
domain size is related to search performance(the ability to
find test data). McMinn et al. [29] discovered that the cov-
erage of a branch is affected by only some input variables.
In mutation testing, we also observe that whether a mutant
is killed or not is related to only some input variables. Thus,
to improve the efficiency of generating test data by reduc-
ing the search domain, we can remove the irrelevant input
variable. In addition, different mutants may be related to
the same input variables, as a result, we can group these
mutants. On that basis, a multi-task optimization model of
mutation-based test data generation is formulated. Finally,

FIGURE 1. One example.

MGA is employed to generate test data for the proposed
multi-task model. In this way, we expect to improve the effi-
ciency of test data generation for a large number of mutants.

This paper has the following three-fold contributions:
(1) proposing a method of grouping the mutant branches
based on the relevant input variables, (2) formulating the
problem of multi-task mutation-based test data generation as
an optimization one, and (3) efficiently generating test data
by MGA.

This paper is organized as follows. Section II reviews the
related work. The emphasis of this paper is in Section III,
grouping mutant branches based on relevant variables, opti-
mization model of multi-task mutation-based test data gen-
eration, and test data generation via MGA. The experiments
and analysis are in Sections IV and V. Threats to validity
are discussed in Section VI. Finally, Section VII concludes
the whole paper, and directs several opportunities for future
research.

II. RELATED WORKS
A. WEAK MUTATION TESTING TRANSFORMATION
Let G be a program under test with the input vector, X .
After performing a mutation operator on a statement, si, inG,
a mutated statement is obtained, denoted as s′i. Based on
the necessary conditions of mutation testing, Papadakis and
Malevris [9] built the conditional statement, ‘‘if si 6= s′i’’,
which is defined as the mutant branch [32], [33], denoted
as Mi. One mutant branch corresponds to one mutant. In this
way, they transformed the problem of killing a mutant under
weak mutation testing into the problem of covering the true
branch of a mutant branch. By applying various mutation
operators on the statements of G, we can obtain a mutant
branch set, denoted as M = {M1,M2, . . . ,Mn}, where n is
the number of mutant branches.

For example, Fig. 1 (a) is a part of the program under test.
After performing the mutation operator on ‘‘x[6] ≤ x[4]’’,
the mutated statement, ‘‘x[6] < x[4]’’, is generated.
Based on [9], we can obtain the conditional statement,
‘‘ if (x[6] ≤ x[4])! = (x[6] < x[4])’’, which is defined as
mutant branch, M1. If a test datum can cover the true branch
of if (x[6] ≤ x[4])! = (x[6] < x[4]),M1 is killed under weak
mutation criterion. Fig. 1(b) shows a new program under test
inserted with two mutant branches,M1 and M2.
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B. TRADITIONAL OPTIMIZATION MODEL OF
MUTATION-BASED TEST DATA GENERATION
Papadakis andMalevris [9] employed the symbolic execution
method to generate test data for the mutant branches, how-
ever, for many mutants, it is difficult to find test data. In view
of the above problem, Zhang [32] used a set evolution method
to generate test data for a large number of mutants, and the
efficiency of mutation testing is greatly improved.

In addition, we formulate a problem of test data generation
as an optimization one [23], the decision vector is defined
as the input vector X of program G, and the input domain
is defined as D(X ). For a mutant branch, Mi, its objective
function is denoted as fi(X ), if X can kill Mi, fi(X ) = 0,
otherwise fi(X ) = 1. As a result, Mi is killed if and only if
fi(X ) takes the minimum value of zero.

Given that the value of fi(X ) is either 0 or 1, such a function
has the difficulty in guiding the evolution of a population.
From the beginning of the program to s′, the path that is
easy to cover is selected as the target path, denoted Pi. P(X )
is defined as a path that is covered by X . The similarity
between P(X ) and Pi, denoted as gi(X ), which is the con-
straint function.

Based on fi(X ), gi(X ) and D(X ), the optimization model of
mutation-based test data generation [23] can be described as:

min fi(X )

s.t.

{
gi(X ) = 1
X ∈ D(X )

(1)

Eq. 1 shows that the more input variables are, the larger the
search domain is. In this paper, wewill improve the traditional
optimization model of Eq. 1 by removing irrelevant variables.

III. THE PROPOSED METHOD
The framework of the proposed method is shown in Fig. 2.
A meta-program with the mutant branches is composed fol-
lowing the previous research [32], [33]. Each mutant branch
is corresponding to one mutant. In Section A, we first deter-
mine the relevance between the input variables and themutant
branches, based on which mutant branches are grouped.
Then, a multi-task optimization model of test data generation
was established for the grouped branches, which is elaborated
In Subsection B. Finally, in Subsection C, the MGA is used
to solve the multi-task optimization problem.

A. GROUPING MUTANT BRANCHES BASED ON RELEVANT
VARIABLES
In this section, we first seek the input variables related to a
mutant branch. Then, mutant branches which have the same
relevant inputs are divided into a group.
• Determining the relevance between a mutant branch
and an input variable

We discover that not every input variable will be responsi-
ble for determining whether a mutant is killed or not. Thus,
the irrelevant variables should be removed, which helps to
reduce the search domain.

FIGURE 2. Framework of the proposed method.

Let X = (x1, x2, · · · , xm), where xj is an input variable
and m is the number of input variables. D(xj) is the domain
formed by all the values of input variable xj, and the domain
of all variables can be expressed as D(X ) = D(x1) ×
D(x2)× · · · × D(xm).
Let D∗(xj) ⊆ D(xj), which is a subdomain of D(xj).

In some cases, although xj is relevant to Mi in D(xj), xj
in D∗(xj) ⊂ D(xj) is not relevant to mutant branch, Mi.
We expect to find D∗(xj), which helps to reduce the search
domain, D(xj).
If an input variable, xj, in D∗(xj) is capable of influencing

whether Mi will be killed or not, we say that xj is a relevant
variable of Mi in D∗(xj); otherwise, xj is an irrelevant vari-
able of Mi in D∗(xj).

In general, whether an input variable is relevant or irrel-
evant for a particular target (killing Mi) is an undecidable
problem. However, it is possible to obtain a conservative
estimate of relevance using static analysis techniques.

Zhang and Gong [31] proposed a static analysis method
of determining the relevance between the input variables
and a path. From this viewpoint, we transform the relevance
between input variables and Mi into the relevance between
input variables and a path. Generally, multiple paths can reach
the mutant branch,Mi, However, it is too costly to determine
the relevance between Mi and the input variables involved
in all paths. Thus, from these paths, we select one path that
is easy to cover. This path is also the target path, Pi in the
traditional model of Eq. 1. In this way, we only analyze the
relevance between Mi and the input variables involved in
Pi. If each node in Pi is not influenced by xj in D(xj), xj is
irrelevant input variable to Mi. For more technical details,
please refer to [31].

To seekingD∗(xj), we also start with Pi. Eq. 1 shows that if
a test datum, X , is expected to kill Mi, X must first reach Mi
through Pi. From this perspective, the value of xj in D∗(xj)
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must cover Pi. Thus, D∗(xj) is obtained by the constraints
of conditional statements in Pi, for more details about the
constraints of conditional statements, please refer to [34].

Take the program in Fig. 1(b) as an example, we illus-
trate how to determine the relevance between the input vari-
ables and the mutant branches. The input vector of this
program is X = {x1, x2, x3, x4, x5, x6}, which is inte-
ger, and D(X ) = [1, 64]6. There are two paths reaching
M1, i.e., ‘‘1, 2, 3, 5’’ and ‘‘1, 2, 4, 5’’. Referring to previ-
ous research [23], we select ‘‘1, 2, 4, 5’’ as a target path,
denoted as P1, because statement 4 (the false branch of
‘‘if (x3 == x4)’’) has a high execution probability, suggest-
ing that ‘‘1, 2, 4, 5’’ is easier to cover than ‘‘1, 2, 3, 5’’.

Next, we investigate whether x1, x2, x3, x4, x5 and x6 are
related toM1 based on P1.

Regarding x1 and x2, they only exist in statement 1
(‘‘if ((x1 < 20)&&((x1 + x2) < 50))’’). We can obtain
D∗(x1) = [1, 19] because of ‘‘x1 < 20’’ and x1 ∈ [1, 64].
That is, x1 takes different values in [1, 19] which does not
influence whether X kills M1 or not. Further, we can obtain
D∗(x2) = [1, 30] based on interval arithmetic between ‘‘x1+
x2 < 50’’ and x1 ∈ [1, 19]. As a result, x1 inD∗(x1) and x[2]
in D∗(x2) are not relevant to M1. For x3, x4 and x6, because
they can influence some nodes on path P1 = 1, 2, 4, 5 based
on [31], x3, x4 and x6 are related to M1. Regarding x5,
it exists in statement ‘‘x5 = x5%3’’, which is a non-control
node and has no connection with other nodes. Thus, x5 is not
relevant toM1.
• Grouping mutant branches with same relevant input
variables

We discover that the relevance between input variables and
mutant branches are the many-to-many relationships, so we
can divide these mutant branches into multiple groups. For
this purpose, we first establish the relevant matrix between
the input variants and the mutant branches, and then divide
the mutant branches based on the relevant matrix.

We establish a so-called relevant matrix,3, expressed as:

x1 x2 · · · xm

3 =


ρ11 ρ12 · · · ρ1m
ρ21 ρ22 · · · ρ2m
...

...
...

...

ρn1 ρn2 · · · ρnm


M1
M2
...

Mn

where the value of ρij is 1 or 0. If xj is not relevant to Mi,
ρij = 0, otherwise ρij = 1.

Algorithm 1 gives the details of grouping mutant branches
based on 3. Firstly, we make a copy of 3, denoted 3, and
investigate the elements in the first row of 3. If ρ1j = 0,
the corresponding columns are deleted (Lines 4 to 7). Then,
we investigate each line for the reduced 3, if ργ j = 0,
the corresponding lines in 3 are deleted (Lines 11 to 14).
After reducing 3, the values of ρij are all 1, i.e., ρij =
1, suggesting that Mi and xj are relevant in the reduced
relevant matrix. As as result, we obtain the first group,
C1 = {M1,1,M1,2, · · · ,M1,h̄1}, where h̄1(≤ n) is the

number of the mutant branches. The relevant input vari-
ables are denoted as x1,1x1,2, · · · x1,`1 , where `1(≤ m) is
the number of relevant input variables (Line 18). Further,
M1,1,M1,2, · · · ,M1,h̄1 are deleted from M , and the cor-
responding lines of M1,1,M1,2, · · · ,M1,h̄1 and the corre-
sponding columns of x̄1,1x̄1,2, · · · x̄1,`1 are deleted from 3

(Line 18). The above process repeats for the reduced 3 until
M = ∅. Finally, β groups of mutant branches are obtained.

Algorithm 1 Grouping Mutant Branches
Input:M (mutant branch set), X (input vector), 3 (relevant
matrix)
Output: β groups of mutant branches
1: int k = 1;
2: while M = ∅ do
3: k = k + 1; 3 = 3
4: for i = 1 to n do \\ n is No. of lines
5: for j = 1 to m do \\ m is No. of columns
6: if ρij = 0 then
7: Delete the j-th colum from 3

8: end if
9: end for
10: end for
11: for γ = 2 to n do
12: for j = 1 to m do
13: if ργ j = 0 then
14: Delete the γ -th line from 3

15: end if
16: end for
17: end for
18: Obtain group Ck = {M k,1,M k,2, · · · ,M k,h̄k } and

save related variables x̄k,1x̄k,2, · · · x̄k,`1
19: M = M\{M k,1,M k,2, · · · ,M k,h̄k }; Delete the

lines corresponding to M k,1,M k,2, · · · ,M k,h̄k and the
columns corresponding to x̄k,1x̄k,2, · · · x̄k,`1 from 3

20: end while
21: Return β mutant branch groups

Refer to the example given in Fig. 1 again. Suppose we
obtain the following relevant matrix.

x1 x2 x3 x4 x5 x6

3 =


0 0 1 1 0 1
0 0 1 1 0 1
1 0 0 0 1 1
0 1 0 0 0 0
1 0 0 0 1 1


M1
M2
M3
M4
M5

Based on3, we can obtain x3, x4 and x6 are relevant toM1
andM2; x1 and x5 are relevant toM3 andM5; x2 are relevant
to M4. Three groups are C1 = {M1,M2}, C2 = {M3,M5},
and C3 = {M4}, respectively.

B. MULTI-TASK OPTIMIZATION MODEL OF
MUTATION-BASED TEST DATA GENERATION
The traditional optimization model (Eq. 1) shows that the
decision variables are the entire input variables of a program.
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The domain formed by the decision variables is the search
domain. If the decision variables are the relevant input vari-
ables, the search domain will be reduced, which helps to
improve the efficiency of finding desired test data by the
search-based methods.

Along this line, we first formulate the problem of generat-
ing test data for a mutant branch as an optimization one with
a unique constraint, in which the decision variables are the
relevant input variables. Then, we establish a multi-task opti-
mization model for the multiple groups of mutant branches.

Suppose that the input variables, xk,1xk,2, · · · xk,`k , are
relevant to M k,i in Ck , the decision vector is defined as
X k= (xk,1xk,2, · · · xk,`k ).
For a mutant branch, M k,i, the optimization model of

generating test data can be formulated as:

min (f ki (X k ))

s.t.

{
gki (X k ) = 1
X k ∈ D(X k )

(2)

Eq. 2 is the improved optimization model for the traditional
one (Eq. 1).

Since the mutant branch has been divided into β groups,
we can divide the optimization problem of generating test
data into β sub-optimization problems. For this purpose,
a multi-task optimization model of mutation-based test data
generation can be expressed as:

T 1
: min(f 1i (X1))

s.t.

{
g1i (X1)) = 1
(X k ) ∈ D(X1), i = 1, 2, · · · , h̄1

T 2
: min(f 2i (X2))

s.t.

{
g2i (X2) = 1
(X2) ∈ D(X2), i = 1, 2, · · · , h̄2

· · ·

T β : min(f βi (Xβ ))

s.t.

{
gβi (Xβ ) = 1
(Xβ ) ∈ D(Xβ ), i = 1, 2, · · · , h̄β

(3)

Eq. 3 shows that group Ck corresponds to subtask T
k , and T k

needs to solve h̄k subproblems. When the decision variable
is smaller than the input variables of a program, the search
domain is reduced, which is conducive to quickly finding the
desired test data.

C. MULTI-TASK OPTIMIZATION-BASED TEST DATA
GENERATION VIA MGA
Given that different subtasks have different optimization
models and decision variables in Eq. 3, each subtask can
be solved in parallel, which is conducive to improving the
efficiency of test data generation. In each subtask, we only
need one sub-population for all of the mutant branches in
the same group, which helps to greatly reduce the number
of sub-population.

To solve the optimization model (Eq. 3), we employ a
multi-population genetic algorithm (MGA). In the follow-
ing, we will first give the representation of the individuals.
Following that, we design the fitness function and present
genetic operators. Finally, an algorithm of test data generation
by MGA is given.

For the representation of the individuals, considering that
the decision vector in Eq.(4) is the relevant input vector, the
individuals of the population are encoded only on the relevant
input vector, X k = (xk,1xk,2, · · · xk,`k ), instead of all input
vector of a program, X = (x1, x2, · · · , xm). Similarly, muta-
tion and crossover in genetic algorithms are implemented on
X k . In this way, the search domain of the population reduces
m− `k dimensions.
For an irrelevant input variable, we take a value within

its domain, and this value remains unchanged during the
evolution press.

Refer to the example given in Fig. 1 again. This program
has 6 input variables. Among them, input variables x3, x4
and x6 are relevant to M1, which are employed as decision
variables. When running MGA, the evolutionary individuals
are encoded, crossed and mutated on x3, x4 and x6. When
executing the program, we need input the values of all six
variables. To fulfill this task, x1, x2 and x5 take any value in
D∗1(x1) = [1, 19], D∗2(x2) = [1, 30], and D5(x5)= [1, 64],
respectively. Throughout the evolutionary process, the values
of x1, x2 and x5 remain unchanged, and only x3, x4 and x6
implement genetic operations. Suppose a variable contained
in an individual be encoded by 6-bit binary. The number
of decision variables is 3 in our optimization model, there
are only 23×6 candidate solutions at each iteration. However,
there are 26×6 candidate solutions based on the traditional
model. From this perspective, our method can reduce the
search domain from 6 dimensions to 3 dimensions.

The fitness function is employed to drive test data gener-
ation during the evolution press. To generate test data for a
mutant branch,M k

i , the fitness function is designed based on
Eq.(3), denoted as fitki (X k ), formed by the objective function
(f ki (X k )) and the penalty function resulted from the unique
constraint function (gki (X k )) [23], expressed as:

fitki (X k ) = f ki (X k )× (1− gki (X k )+ c) (4)

where X k is the relevant input vector and c is a small constant
to ensure that the value in parentheses is greater than 0. Eq. 4
shows that the smaller the value of fitki (X k ) is, the better
the corresponding individual is. M k,i is killed if and only if
fitki (X k ) takes the minimum value of zero, i.e., fitki (X k ) = 0.

Algorithm 2 gives the details of test data generation by
MGA with individual sharing to solve the multi-task opti-
mization model of Eq. 3. The number of sub-populations in
MGA is the number of subtasks, i.e., β. One sub-population
optimizes the problem of test data generation for the mutant
branches of one group. The individuals of each subpopulation
are encoded according to their decision variables.

In Algorithm 2, we first randomly select a mutant branch in
each group as the optimization target (Line 1). For example,
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in group Ck , we select M k,i as an optimization target. If an
individual of Xk is an optimal solution (desired test data) of
M k,i based on genetic algorithm (Lines 4-5), we reselect an
alive mutant branch in Ck as the optimization target (Line 8).
If the optimal solution of M k,i is not found, we calculate
the fitness, implement genetic operations and generate new
individuals(Lines 11-13), and until termination criteria are
met. Repeating the above processes, if the optimal solutions
of all mutant branches in Ck are found, we stop the evolution
of this sub-population, and remove subtask T k (Line 6).
The following two termination criteria of Algorithm 2 are
adopted. One is that the desired test data are generated for
all subtask, i.e, the value of β becomes 0 (Line 3). The other
termination criterion is that the population evolves for the
maximum number of iterations.

Note that MGA with individual sharing is a key technol-
ogy in Algorithm 2. When running MGA, the individuals
of Xk not only judges whether it is the optimal solution for
its corresponding mutant branch, M k,i via genetic algorithm
(Lines 1-14), but also needs to judge whether it can kill the
mutant branches in other groups by executing these variants
(Line 15). If some mutant branches are killed by Xk , these
mutant branches are marked as killed in their groups, sug-
gesting that these killed mutant branches are not selected as
optimization targets (Lines 16-17). In this way, the individu-
als of different sub-populations are shared with each other,
and the opportunity of finding the optimal solution for an
optimization target is increased.

IV. EXPERIMENTS
We conduct a series of experimental studies to evaluate the
performance of the proposed method.

A. RESEARCH QUESTIONS
RQ1: Is it necessary to remove the irrelevant input vari-

ables for the mutant branches?
For the mutant branches in a program under test,
what is the proportion of irrelevant variables? If most
mutant branches depend on a small number of input
variables, the search may become more effective after
removing these irrelevant variables.

RQ2: To what extent does taking relevant input vari-
ables as decision variables increase the efficiency
of mutation-based test data generation?
In the traditional optimization model shown as Eq. 1,
the decision variables are all input variables of a
program, while in the improved optimization model
shown as Eq. 2, the decision variables are only the rele-
vant input variables, suggesting that the search domain
becomes smaller. To verify the performance of the
improved optimization model, we employ the random
method and a single-population genetic algorithm to
generate test data.

RQ3: To what extent does grouping and multitasking
improve the efficiency of mutation-based test data
generation?

Algorithm 2Multi-Task Optimization-Based Test Data Gen-
eration by MGA
Input:M (a mutant branch set), Pop (a population including
β sub-populations)
Output: A test suite
1: Determine an optimization target for each group; Initial-

ize the individuals of each sub-populations and assign the
values of all parameters;

2: Individuals of each sub-population execute the program
with the mutant branches;

3: while termination criteria are not met do
4: if a individual in Xk (k = 1, 2, · · · , β) is the optimal

solution ofM k,i then
5: if this individual is the optimal solutions of all

mutant branches in Ck then
6: β = β − 1; Stop the evolution of the sub-

populations;
7: else
8: Select an alive mutant in Ck as the optimiza-

tion target; goto Line 1;
9: end if
10: else
11: Calculate fitness based on Eq. 4 for each individ-

ual of each sub-populations;
12: Implement selection, crossover and mutation;
13: Generate the new individuals; goto Line 2;
14: end if
15: Individuals in Xk execute the program with the

mutant branches for the different groups;
16: if some mutant branches are killed by these individ-

uals in Xk then
17: these killed mutant branches are marked as killed

in their groups;
18: end if
19: end while
20: Save the optimal solutions and the killed mutants;
21: Return the generated test suite;

We employMGA to solve the multi-task optimization
problem of test data generation in Eq. 3. As a compar-
ison, for the ungrouped mutation branches, SGA (sin-
gle population genetic algorithm) is used to generate
test data.

B. EXPERIMENTAL SETUP
The configuration of PC in the experiments is as follows:
2*Intel(R) Core(TM) i5 CPU, 4GB memory, Microsoft
Windows 7, and VC++.

1) OBJECT PROGRAMS
We select eight benchmark and industrial programs as the
object programs under test, which are written in C lan-
guage. The scale, data type, structure, and function of the
programs under test are diverse and wide. Table 1 lists the
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TABLE 1. Information about programs under test.

main information about these programs. Among them, G1
and G2 are the standard benchmark programs, and have been
widely used by many scholars [23], [25], [31], [33]. G4
manipulates the images in the Tag Image File Format (TIFF)
[25], [29]. G5 and G6 are industrial case studies provided by
DaimlerChrysler, which are production code for the engine
and rear window defroster embedded control systems [25],
[29]. G7 and G8 are created by European Space Agency
[23], [29], [35], and G3 is created by Siemens [23], [25].
They are available from the Software-artifact Infrastructure
Repository.

2) GENERATION OF MUTANT BRANCHES
We select around 30% of the statements from each program
to generate mutant branches, which are summarized on Col-
umn 2 of Table 2. These statements are selected in terms of
such factors as the structure complexity, the statement type,
the lines of code, and the nesting depth [36].

Next, we seed faults by mutation operators on the selected
statements. Offutt andKing [38] proposed 22 classes of muta-
tion operators for C programs. In the experiment, we choose
13 classes of mutation operators, ABS, AOR, CAR, CRP, CSR,
LCR, ROR, RSR, SCR, SAR, SRC, SVR, and UOI, and their
details refers to [1], [38], because the other 9 classes are not
suitable for the programs under test, for example, mutation
operator, SDL (statement deletion).

Further, we manually generate mutants while determin-
ing whether they are equivalent or redundant. Although our
method is artificial, it is not arbitrary, but follows a procedure
set in advance. There have been various studies concerning
how to detect redundant or equivalent mutants [35]. More-
over, the redundant mutants should be removed [37]. Our
previous research [12], [33], [35] discovered that the mutants
generated in the same location are likely to have the subsumed
relations. In addition, some mutants produced by some muta-
tion operators are redundant.

After obtaining the non-equivalent mutants, we construct
the corresponding mutant branches, listed in Column 4 of
Table 2. Note that some of these mutant branches are not
necessary to apply the proposed method, because they are
easily killed. To remove these unwanted mutants, we use
some test data generated by the random method to kill
the non-equivalent mutants, then obtained the alive mutants
as tested mutant branches. The number of tested mutant

branches are shown in Column 5 of Table 2. According to
the number of mutant branches, G1 – G2, G3 – G7, and
G8 are labeled as small-, medium- and large-scale programs.
The sizes of randomly generated test data corresponding to
these three types of programs are 150, 2000, and 12000,
respectively.

C. EXPERIMENTATION PROCESS
1) RQ1: NECESSITY OF REMOVING IRRELEVANT INPUT
VARIABLES
In the experiment, we first determine the relevance between
the mutant branches and the input variables based on Sub-
section III.A. Then, we compare the number of the relevant
input variables with the number of the input variables of the
program, and calculate the reduction rate of input variables.
The reduction rate (RR) refers to the number of irrelevant
variables to the total number of input variables, i.e.

RR =
No. of irrelevant input variables

No. of all input variables
(5)

Intuitively speaking, for a program under test, its input
domain is certain. The larger RR is, the more irrelevant vari-
ables are, and the more the search domain is reduced, the
more necessary to reduce irrelevant variables.

In Fig. 1 (b), the number of relevant input variables to M1
(x[3], x[4], x[6]), is three, thus we can obtain RR = 6−3

6 =

50% forM1, suggesting the search domain is reduced by half.

2) RQ2: PERFORMANCE OF THE IMPROVED OPTIMIZATION
MODEL
In the experiment, the random method and the single-
population genetic algorithm solving the traditional optimiza-
tion model are denoted as RDtra and SGAtra, respectively,
and the two methods based on the improved optimization
model are denoted as RD and SGA, respectively. We verify
the performance of the improved model, that is, the efficiency
of test data generation after reducing the search domain. In
terms of the success rate, mutation score, time consumption,
number of iterations, we focus on comparingRDwithRDtra
and SGA with SGAtra, and by the way observe the advan-
tages of the single-population genetic algorithms (SGA and
SGAtra) over the random methods (RD and RDtra).

The success rate (SR) is the ratio of times of finding
desired test data (success) to times of running an algorithm,
expressed as

SR =
times of finding desired test data
times of running an algorithm

(6)

Eq. 6 shows that the higher the success rate is, the better the
corresponding algorithm is.

In the experiment, the success or failure of generating test
data using RDtra, RD, SGAtra, or SGA is recorded, along
with the time consumption and the number of iterations if the
search was successful. Generally, the shorter the time and the
fewer the number of iterations required, the better and more
efficient the search is.
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TABLE 2. Information about programs under test.

Note that due to the non-determinism of the experimental
results, we independently run each algorithm 60 times to
generate test data, and take the average of these results.
Similarly, in the following experiments, the results of the
proposed method and contrast methods are obtained in the
same way.

Reflecting the degree of achievement of a test suite in
detecting various types of faults, mutation score (MS) is
defined as the ratio of the number of killed mutants to the
number of all non-equivalent mutants, i.e.

MS =
No. of the killed mutants

No. of the non-equivalent mutants
(7)

where MS are obtained under the criterion of weak mutation
testing in this paper.

In the experiment, the parameters of four algorithms are
set as follows. The number of test data generated by RDtra
and RD is set 3000. In SGAtra and SGA, the genetic
operations are roulette wheel selection, one-point crossover,
and one-point mutation. The probabilities of crossover and
mutation operations are 0.9 and 0.3, respectively. There are
two termination criteria. One is that the desired test data are
generated for all mutants. The other is that the population
evolves for the maximum number of iterations, g = 3000.

3) RQ3: PERFORMANCE OF GROUPING AND MULTITASKING
FOR THE MUTANT BRANCHES
In the experiment, we first group the mutant branches with
the same relevant variables using Algorithm 1. Then, for the
grouped mutant branches, MGA via individual sharing is
employed to generate test data based on Algorithm 2. In con-
trast, we employ SGA (used by the above set of experiments)
to generate test data for the ungrouped mutant branches.

Three metrics are used for answering RQ3. One is MS.
The other metrics are time consumption and the number of
iterations.

In the experiment, the sub-population size of MGA is
size = 5, the other parameter settings and the genetic oper-
ators are the same as SGA. The settings of SGA refer to the
above set of experiments.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. ANSWER TO RQ1
Column 6 in Table 2 lists the average numbers of relevant
input variables for each program. Column 7 lists the average
values of reduction rate (RR), which are obtained based on

Column 3 in Table 1 and Column 6 in Table 2. We can see
that, from Column 7, the largest RR is 90% corresponding
to G5 and the smallest is 32.33% corresponding to G1, and
the average value of RR is 54.38% for all mutant branches
of eight programs, suggesting that the mutant branches in the
different programs have the different values of RR, and more
than half of input variables are irrelevant.
This set of experiments shows that it is necessary to remove

the irrelevant input variables for most mutant branches, which
helps to improve the efficiency of generating test data by
reducing the search domain.

B. ANSWER TO RQ2
Table 3 lists the values of success rate, SR, of the random
methods (RDtra and RD) and the single population genetic
algorithms (SGAtr and SGA) when generating test data
using, where ‘‘Mean’’ and ‘‘Max’’ represent the mean and
maximum values of SR for all mutant branches of a program.
The minimum value of SR is 0, indicating that the mutant
is not been killed after executing the algorithm 60 times.
Given that the display with the minimum value (0) of each
program is meaningless for comparison, we select the second
minimum value of SR, denote as ‘‘2ndMin’’ in Table 3, which
represents the minimum value greater than 0.
Columns 2–7 of Table 3 summarize the values of SR

using the random method (RDtra and RD) in terms of ‘‘2nd
Min’’, ‘‘Max’’, and ‘‘Mean’’, we discover that the differ-
ences between their values are relatively small. For example,
‘‘Mean’’ of SR using these two methods are 48.13% and
51.88%, their difference is only 3.75%. It implies that, for
the improved model, SR is unaffected by the removal of irrel-
evant input variables. This is probably because the random
algorithm randomly samples in the search domain. Even if
the values of irrelevant variables are removed, the values of
relevant variables are still highly uncertain in the reduced the
search domain, which makes no significant difference in SR
when searching for desired test data.
Columns 8–13 of Table 3 summarize the values of SR

using SGA and SGAtra. Their ‘‘Mean’’ are 85.14% and
89.79%, especially ‘‘Max’’ of SGA is 100% for G1–G5 and
G6. These results provide evidence that SGA solving the
improved model is better than SGAtra in RS, indicating
that SGA helps to increase the effectiveness and efficiency
of finding desired test data by reducing the search domain.
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TABLE 3. Success rate by the different methods based on two models.

In addition, we can see from Table 3 that, in terms of
‘‘2nd Min’’, ‘‘Max’’, and ‘‘Mean’’, SGA and SGAtra are
significantly better than RDtra and RD. Especially, in the
average values of ‘‘Mean’’, SGA and SGAtra are 37.91%
(89.79%–51.88 %) and 36.87 % (85.00 % – 48.13 %) more
than RD and RDtra.

Given that the removal of irrelevant input variables does
not have much impact on the performance of generating
test data using the random methods, we focus on evaluat-
ing the performance of SGAtra and SGA in SR, the num-
ber of iterations and the time consumption. We employ the
Mann-Whitney U Test based on the statistical tool, Spss. Let
the significance level of the U test be 0.05.

Given that the ‘‘Mean’’ may not reveal the personalities
of different mutant branches or may mask abnormal data,
we select three kinds of representatives mutant branches
to display in the limited space of this paper. Table 4 lists
the Mann-Whitney U Test results of SGA comparing to
SGAtra in threemetrics for the representativemutants, where
Mi1,Mi2 and Mi3 (i = 1, 2, · · · , 8) refer to the mutant that
corresponds to ‘‘Max’’, the one closest to ‘Mean’’, and the
one that corresponds to ‘‘2nd Min’’. Symbol ‘‘+’’ indicates
that SGA is significantly better than SGAtra, and ‘‘=’’ indi-
cates that there is no significant difference when generating
test data. In the last row of Table 4, ‘‘The superior ratio’’ refers
to the number of ‘‘+’’ to the number of the experimental
evaluation. For example, when evaluating 32 results of U test
in terms of time consumption, 22 results show ‘‘+’’, that is,
the superior ratio is 22

32 = 68.75%.
Similarly, for 4242 tested mutant branches, we employ the

Mann-Whitney U test to evaluate the performance of SGA.
Fig. 4 shows the values of the superior ratio in terms of three
metrics. In the last column of Fig. 4 (a–c), the average values
of superior ratios are 83.9% (SR), 82.78% (the number of
iterations) and 68.71% (the time consumption). It means that,
for most of the mutant branches, SGA is significantly better
than SGAtra.

The results of Table 4 and Fig. 4 provide evidence that,
in terms of SR, the number of iterations and time consump-
tion, for most of the mutant branches, SGA is better than
SGAtra, and SGA is more significant for the hard-to-kill
mutants (Mi3).

The values of MS, obtained by four methods, are shown
as Fig. 3. As can been seen that the average values of MS
based on SGAtra and SGA are 98.15 % and 97.80 %,

FIGURE 3. MS by the different methods based on two models.

respectively. They are significantly better than that of RD
(80.46 %) and RDtra (80.83 %), suggesting that SGA and
SGAtra are more capable in killing the mutants. Of course,
their excellent performance is not related to the removal of
irrelevant input variables, but the excellent search mechanism
of genetic algorithm. In addition, rows 3 and 4 of Fig. 3 show
that, in terms of the average values of MS, the difference of
SGA and SGAtr is 0.35% (98.12%-97.80%), suggesting that
SGA is higher than SGAtra, but their difference is small.
It is because they have the same search mechanism based on
genetic algorithms.

In summary, SGA has the highest SR and MS, the least
time consumption and the number of iterations, suggesting
that, when generating mutation-based test data, the perfor-
mance that the genetic algorithms solve the improved model
is significant.

C. ANSWER TO RQ3
Fig. 5 and 6 show the average values of the iterative
number and time consumption obtained using MGA and
SGA for the mutant branches of each program. In the
average values of the iterative number, MGA (877.87) is
1.37 times SGA (1202.50). In time consumption, MGA
(3.17s) saves 1.17 times more than SGA (6.88s).

To verify the significant superiority of MGA, we employ
the Mann-Whitney U test to evaluate the results of the itera-
tive number and time consumption. Let the significance level
of the U test be 0.05. Fig. 7 shows the results of the superior
ratio ofMGA comparing to SGA.We can see that the average
values of the superior ratios are 69.59% in the number of
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TABLE 4. Mann-Whitney U Test results of SGA comparing to SGAtra in
three metrics for the representative mutants.

FIGURE 4. The superior ratios of SGA compareing to SGAtra in three
metrics.

iterations and 65.08% in the time consumption, shown as the
last column of Fig. 7 (a–b), suggesting that MGA is signifi-
cantly superior to SGA for most mutant branches. Especially,
for G8, the superior ratios are 82.42% (2391/2901) in the
number of iterations and 82.21% (2385/2901) in the time
consumption, suggesting that the more mutant branches are,
the more significant MGA is. MGA is excellent because,
at each iteration, SGA can generate only one test datum

FIGURE 5. The number of iterations of MGA and SGA.

FIGURE 6. Time consumption of MGA and SGA (in second).

FIGURE 7. The superior ratio of MGA comparing to SGA in two metrics.

targeting at one mutant branch, whereas MGA can gener-
ate test data for more mutant branches by multitasking, the
information sharing of the individuals can prompt a mutant
branch to be executed by the multiple individuals of different
sub-population when runningMGA.
MS of SGA and MGA are listed in rows 4–5 of Fig. 3.

For eight programs, MS of SGA and MGA are higher than
those of the other three methods. The average values ofMS of
SGA andMGA are 98.15% and 98.38%, respectively, which
indicates thatMGA is slightly better than SGA, because they
have the same mechanism for generating test data. Although
MGA is not significantly better than SGA, its advantage
should be improving the efficiency of generating test data,
which can be verified by the results of Fig. 5–7.

In summary, MGA outperforms SGA, not only due to its
higher MS, but also because of its shorter time and fewer
iterations when generating test data. In other words, for a
large number of mutant branches, the performance of gener-
ating test data by grouping and multitasking is significantly
improved.
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VI. THREATS TO VALIDITY
This section provides the main threats to validity of the
proposed method and ways to alleviate these threats.

The first threat is the existence of equivalent mutants and
redundant mutants. They can affect the quality of the test
suite. To avoid human judgment bias for equivalent mutants,
if a team member is not sure about whether a mutant is
equivalent, we will discuss together. In this way, the deter-
mination of equivalent mutants is more accurate. In addition,
non-equivalent mutants are also obtained via our previous
methods [23], [35]. For the redundant mutants, they do not
contribute during the testing process, although they are con-
sidered for calculating themutation score [37]. As a result, the
mutation score is inflated. To obtain the reasonable mutation
score, we just used some rough methods to reduce the redun-
dant mutants based on our previous research [12], [33], [35]
and other literature [1], [5]. How to reducing the redundant
mutants is not the focus of this paper, which will be involved
in future studies.

The second threat comes from the cost of the static analysis
of the relevance between the input variables and the mutant
branches. To reduce cost, we adopt two strategies. One is that
we choose a path that is easy to cover from multiple paths,
and then only analyze the relevance between the variables
involved in this path and a mutation branch. The other is that
we remove themutants that are easily killed, and only analyze
the relevance between the hard-to-kill mutants and the vari-
ables. In these ways, the cost of the proposed method should
be reduced. In the future, we will study some automatic
methods to determine relevance, which helps to improve the
efficiency of the proposed method.

VII. CONCLUSION
Mutation testing is an important method for evaluating the
quality of a test suite. However, the cost of mutation testing
is relatively high, which greatly reduces its application in
real software engineering. Previous research has shown that
many factors affect the efficiency of test data generation,
such as a large number of mutants, the diversity of mutant
operators, and the huge domain formed by the input variables.
In this paper, we focus on improving the efficiency of test data
generation by reducing the search domain and multitasking.

We evaluated the performance of the proposed method on
eight programs from different application domains and with
various scales. The experimental results show that (1) for
most mutant branches, there are many irrelevant variables,
suggesting it is necessary to remove irrelevant variables;
(2) taking relevant input variables as decision variables in the
improved model increases the efficiency of mutation-based
test data generation; (3) the efficiency of test data gener-
ation by grouping mutant branch using MGA is improved
significantly.

Although the proposed method has a higher performance
in generating mutation-based test data, the cost of the static
analysis we used may be relatively large, especially for com-
plex programs. We need to further explore the characteristics

of the mutants, and group the mutants under other criteria to
promote the efficiency of killing mutants. In addition, in this
paper, we determine the relevance between the input variables
and the mutants under the weak mutation testing. For strong
mutation testing, an incorrect state should be propagated to
the output of a programwhen a test datum is employed to exe-
cute the original program and its mutant. Therefore, we need
to design a better strategy to determine their relevance under
strong mutation testing.
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