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ABSTRACT Edge caching is an effective solution to reduce delivery latency and network congestion
by bringing contents close to end-users. A deep understanding of content popularity and the principles
underlying the content request sequence are required to effectively utilize the cache. Most existing works
design caching policies based on global content requests with very limited consideration of individual
content requests which reflect personal preferences. To enable the optimal caching strategy, in this article,
we propose an Active learning (AL) approach to learn the content popularities and design an accurate content
request prediction model. We model the content requests from user terminals as a demand matrix and then
employ AL-based query-by-committee (QBC) matrix completion to predict future missing requests. The
main principle of QBC is to query the most informative missing entries of the demand matrix. Based on
the prediction provided by the QBC, we propose an adaptive optimization caching framework to learn
popularities as fast as possible while guaranteeing an operational cache hit ratio requirement. The proposed
framework is model-free, thus does not require any statistical knowledge about the underlying traffic
demands. We consider both the fixed and time-varying nature of content popularities. The effectiveness
of the proposed learning caching policies over the existing methods is demonstrated in terms of root mean
square error, cache hit ratio, and cache size on a simulated dataset.

INDEX TERMS Edge caching, active learning, matrix completion, content popularity.

I. INTRODUCTION

The proliferation of numerous cellular devices and their
demand for data-hungry services result in exponential growth
in mobile data traffic. According to Cisco annual report
[2], the data traffic is predicted to increase by sevenfold
between 2017 and 2022. This explosive growth in data traf-
fic challenges the capabilities of current network architec-
tures. As the data traffic is primarily dominated by repeated
requests for a few popular contents [3], a promising solution
to overcome this challenge is to offload network traffic and
store repeatedly requested contents at the network edge [4].
Moreover, appropriate caching at the edge results in overall
reduced the latency and downloading time. This motivates the
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need for developing new algorithms to effectively cache the
contents at the edge to avoid the duplicate transmissions.
Typically content caching is divided into two phases: a
content placement and a content delivery. The content place-
ment phase depends on the historic requests of the users and
it is limited by the cache storage size. On the other hand,
the content delivery depends on serving the request of a user
upon the arrival of the request at the edge. Some of the
works that are based on joint design of content placement
and content delivery are [4]-[10]. All these works focus on
improving the utilization of the cache assuming the users’
requests to the contents are known in advance. Therefore,
the performance of these methods depends on the accu-
racy of users’ content requests (UCR). Although, in prac-
tice, the UCR is unknown and needs to be estimated [11].
Several works focused on prediction of UCR based
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on machine learning methods [11]-[16]. However, in a
real-world application, the popularity of the contents is
non-stationary, and predicting the UCR is therefore a chal-
lenging task. In the edge network, only a small set of requests
are observed in a given window of time. However, to improve
the long term average performance of cache, the number of
requests to the not-yet requested contents (missing requests)
needs to be known. As mentioned earlier, it is difficult to
collect the UCR, hence, machine learning methods have been
adopted to accurately model and estimate UCR probability
for missing requests in recommendation systems [11], [17],
[18]. For non-stationary UCR, it is important to design an
iterative recommendation model to predict future content
popularity. In this aspect, active learning (AL) is an indispens-
able tool to collect the data and steers the learning process
towards achieving the accuracy goal by actively selecting
the most useful data points to query. It is also referred to
as query learning or optimal experimental design [19]. The
main idea behind AL in edge caching is that the mobile
edge computing (MEC) server interacts with the end users
by posing queries or recommendations. This way the server
obtains knowledge about the end users’ preferences from time
to time and predicts their future content requests. From the
observed and estimated content requests the popularity of the
contents is determined, which then is used as an effective
measure for making caching decisions. We see the problem
of estimating the content requests as an active learning matrix
completion problem where the entries of the matrix are UCR.

A. LITERATURE REVIEW

During recent years, several papers investigated caching at
edge network under various objectives such as minimizing
latency, network congestions, maximizing user’s quality of
experience (QoE), or energy efficiency. The following works
assume that content popularity is known as a priory. In [5],
the authors optimize the cache placement phase to minimize
the average latency and total throughput during the delivery
phase. Caching the most popular files in distributed small cell
access points to minimize the total average delay of all the
users is proposed in [4]. In [6], the authors aim to maximize
the delivery phase’s rate by considering both placement
and delivery phases jointly. A distributed caching policy is
proposed in [7] for device-to-device systems based on social
awareness and the matching theory. The authors of [17],
proposed a cache placement algorithm to reduce network
congestion in the back-haul link and maximize the QoE.
To minimize the download latency over multiple distributed
caches, the authors in [20] proposed an optimization prob-
lem as a maximization of a submodular function subject to
matroid constraints for content placement. The performance
of caching under uncoded and coded strategies is analyzed
in [21].

Content popularity prediction-based edge-caching has
been considered in [11]-[16], [22], [23]. The authors in [11]
propose a proactive caching algorithm by leveraging social
networks and D2D communications, by assuming the content
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requests follow Zipf distribution. To learn the local and global
space-time popularities of contents a reinforcement learning
framework is proposed in [13]. They also assume that the
popularities of contents follow Zipf distribution. A reinforce-
ment learning framework for the dynamic content update
using the Markov decision process is proposed [23] with
cache and user requests as state space and content eviction
and content retaining as action space. The online content
popularity is learned based on the context information of
connected users by modeling a caching policy as the multi-
armed-bandit problem [14]. From the perspective of regional
users, an online content popularity prediction algorithm is
proposed based on content features to predict content pop-
ularity in [12] using logistic regression. The authors in [15],
used content features to improve the prediction accuracy in
the Bayesian framework. They assume that the demands for
the content follow the Poisson distribution and thus incorpo-
rate bias in the process. A location-aware content prediction
model using a linear model, ridge regression is proposed
in [16] based on location and content features. A trans-
fer learning-based caching mechanism is modeled based on
learning and transferring the hidden latent features which
are extracted from device to device interactions to maximize
the back-haul offloading gains in [22]. The aforementioned
works assume that content popularity does not change over
time or it changes very slowly. However, in practice, the
content popularity is non-stationary [24] e.g, viral videos.

B. CONTRIBUTIONS

In this article, we consider an active learning framework to
predict the UCR in edge caching systems. A novel adaptive
caching framework is proposed to learn the popularities as
fast as possible while guaranteeing an operational cache hit
ratio. Our contributions are as follows:

e Firstly, we propose an Active learning method to predict
the UCR in edge caching networks. We formulate the
content caching as the matrix completion problem of
demands observed at the small base stations (SBS).

e We then estimate the popularity of the contents
using active learning based query-by-committee matrix
completion algorithm. Three passive matrix completion
algorithms, i.e., singular value thresholding, uncon-
strained nuclear norm minimization, and matrix fac-
torization, are served as the committee members.
Compared with collaborative filtering [25], which has
only one matrix completion algorithm compared to
QBC.

e Based on the predicted content popularity, we propose
two caching policies which maximize the query and
guarantee the minimum CHR requirements. The pro-
posed caching algorithms are model-free and applica-
ble to both static and time-varying content popularity
models.

e The performance analysis of both caching polices over
existing method is established through Monte Carlo sim-
ulations. It is shown that the proposed caching schemes
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FIGURE 1. The network model.

perform better than random and most popular caching
schemes.

The rest of the paper is organized as follows. Section II
describes the system model. In section III, we propose an
active learning matrix completion algorithm. Section IV
presents the caching and query strategies. Section V presents
the simulation results and finally, conclusions are drawn in
Section VL.

Notation: Lower or upper case letters represent scalars,
boldface upper case for matrices, boldface lower case for
vectors, [.]4» represents the element in row a and column
b of a matrix, ||.||« represents nuclear norm, |.||r represents
the frobenius norm, © is element-wise product or also called
as Hadamard product, ® represents Kronecker product, (.)”
denotes the transpose operator, |.| represents the cardinality
of set and 1 represents a vector of all ones.

Il. SYSTEM MODEL

A. SYSTEM MODEL

We consider a heterogeneous cellular network scenario with
small base stations connected to the mobile core network
over reliable back-haul links, as shown in Fig. 1. Each SBS
is equipped with a mobile edge computing server to process
the content requests and finite storage memory to cache the
contents. Denote U/ = {t1, ..., tx} as the set of the user ter-
minals (UTs) connected to the serving SBS, which has access
to a library F = {f1,...,fr} of F contents at the content
server. Let /; be the size of file f; and denote 1 = [/, ..., IF].
Further, the coverage areas of the SBS are assumed to be
disjoint, thus a UT can only be connected to the closest SBS
at a time. Each SBS cache can store up to D Gigabits (Gbits).
Upon receiving users’ requests, the SBS first checks it’s local
storage. If the requested content is available in the SBS’s
cache, it can be served immediately. Otherwise, the requested
content is fetched from the server before being sent to the UT.

B. DEMAND MATRIX

The SBS keeps track of content demands from its users
via a demand matrix L € Z+KXF, whose rows and
columns of L represent anonymous UT profiles and the
contents, respectively. An element [L]; s € 7T represents
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TABLE 1. Notations and definitions.

Notation Definition
u Set of user terminals
F Set of content files
1 length of files vector
D Size of cache at each SBS
L Demand matrix at SBS
[Llk,s € Z" | Number of requests for content f from UT k

Number of committee members

Predicted matrix by the n-th committee model
Query budget

Popularity vector

Uncertainty vector

:v©§2

the number of requests for content f from UT k. In reality,
each UT usually requests only a small number of contents,
therefore the demand matrix is sparse and largely rectangular.
This is because the number of contents at the content server
is much large compared to the UTs connected to SBS. Due
to the mobility of UTs the size of demand matrix changes
over time, but the preferences of UT remain the same since
each UT has its profile history. To maximize the total requests
served by the SBS’s cache, the demands of content are esti-
mated by predicting the missing entries of the demand matrix.
In the next section, we propose an active learning-based
matrix completion for the estimation of missing entries of the
demand matrix.

Ill. ACTIVE LEARNING BASED DEMAND MATRIX

COMPLETION
Active learning(AL) is a sub-field of machine learning and

artificial intelligence: which is the study of computer systems
that improve through experience and training. In short, it is a
special case of semi-supervised learning in which a learning
algorithm can interactively query the oracle/human annotator
to acquire high-quality data for training [26]. In the context
of matrix completion, AL aims to find the most informative
missing entries of the matrix. In the considered caching prob-
lem, each SBS has a demand matrix which represents the
number of requests for contents from the UTs’. Since each UT
requests only a small subset of contents of the total content
library, which results in the demand matrix to be sparse
with a lot of missing entries. To estimate the missing entries
of the demand matrix we use AL-based matrix completion
which is discussed in the III-B. The main advantage in AL
is that it has the freedom to choose the data it wants to learn
from through queries in achieving good performance results.
This freedom of choice of data to train helps the learning
method fast and helps to estimate the real-time requests. The
queries/recommendations are generated based on informa-
tiveness, which means a very informative missing entry is that
the matrix completion method has a hard time determining
its actual true value. This is because if we ask the UT which
then responds with its correct true value, knowing the correct
true value of the missing entry would improve our matrix
completion predictions for similar difficult missing entries.
On the other hand, if the matrix completion method is very
confident when predicting a missing entry, then knowing it’s
actual true value is not very helpful since the predicted value
will more than likely be correct.
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A. QUERYING

A query is defined as the response received from the user
terminal to the system. Queries are selected in serial means
one at a time or either in batches means several to be labeled
at once. In the serial setting, the model/learner selects a single
most informative data point to label from a pool of unlabelled
data points. It then adds the data point to the training set
and retrains the model/learner. Due to this, it is not suitable
for many applications, since the process of inducing a model
from training data may be slow and expensive [27]. On the
other hand in the batch setting, it is more natural to acquire
labels for many different data points at once. It is important
to notice that in the batch querying, the data points should be
diverse (to avoid redundancy) as well as be informative to the
model/learner.

B. DEMANDS ESTIMATION BASED ON QBC MATRIX
COMPLETION

To estimate the demand matrix missing entries we employ
AL-based Query-by-committee(QBC) [28] matrix comple-
tion algorithm. The intuition of the QBC approach is that it
maintains a group of models that are all trained on the same
training data. Each model in the group then predicts on how to
label potential input points. The informative missing entries
are selected for querying from the input points for which
they disagree the most which result in high variance. The
fundamental idea of QBC is that the committee of models aim
to minimize the version space (set of models consistent with
the training set) [29], which is the subset of all hypothesis
space! that are consistent with the known entries. To constrain
the size of version space as small as possible, QBC uses the
uncertainty of the predictions for each missing entry. The
choice of models in the committee can be selected in many
ways [26], e.g., using simple sampling [28].

A fundamental challenge in the estimation of the demand
matrix is that only a small subset of requests are observed.
This result in the data sparsity and cold start problems [1].
AL-based QBC tackles the data sparsity and cold start prob-
lems at the root, by identifying the most informative and
useful data that better represents the UT preferences through
queries [30]. This can be done in various forms, through serial
setting by requesting the UT to assess content-by-content
or through batch setting by requesting the UT to assess
several contents at a time. Let the total number of passive
matrix completion models in the committee be N. The pre-
dicted matrix by the n-th committee model is represented
by M,, for n € [1,...,N]. In the following, we have used
the three low-rank approximation variants of passive matrix
completion algorithms as the members of the committee.

1) SINGULAR VALUE THRESHOLDING

Singular value thresholding (SVT) [31] is a standard low-rank
approximation matrix completion algorithm. In this method,
the algorithm is iterative and produces a sequence of matrices

Lset of possible approximations of true function that the algorithm can
create.
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at each step, and performs soft-thresholding on the singular
values obtained at each step. It is inferred as the convex
relaxation of a rank minimization problem of a matrix. The
minimization problem is defined as,

minimize ||Mj, ||«

n

subject to [Mn]k,f = [Llxs, V&k,[):[Qly=1.

To compute the singular values and singular vectors
efficiently, we use PROPACK [32]. Unlike Matlab built-in
function for ’svds’, PROPACK uses the iterative Lanczos
algorithm to compute singular values and singular vectors
which is efficient. It is about ten times faster than Matlab
built-in function for ’svds’.

2) UNCONSTRAINED NUCLEAR NORM MINIMIZATION

In this method, fixed point and Bregman iterative algorithms
are used to solve the nuclear norm minimization of a matrix
[33]. The homotopy approach is used together with an
approximate singular value decomposition (SVD) procedure,
which results in a very fast, robust, and powerful algo-
rithm called fixed-point continuation with approximate SVD
(FPCA). The unconstrained nuclear norm minimization of a
matrix is given as,

minimize p[Myll« + [[$2© (L — M)l

where p is the regularization constant to avoid overfitting and
is determined by cross-validation. Both the nuclear norm and
the Frobenius norm are convex functions which results in the
whole equation to a convex function. This is solved directly
using CVX solver [34] in Matlab.

3) MATRIX FACTORIZATION

Matrix factorization [35] is a way of reducing a matrix into its
latent factor space. The minimization of a regularized squared
error on the set of observed entries is given as,

minimize |2 © (L — XYD)IZ +A(XIE + Y3,

where X € RE*" and Y e RF*’ are two latent fac-
tor matrices such that M,, = XYT, r is the rank, and A
is the regularization constant that is determined by cross-
validation. We used an alternating least squares method to
solve the minimization problem. Since both the latent factors
are unknowns the minimization problem is not convex. But,
the minimization problem becomes quadratic by fixing one
of the unknown and can be solved optimally. When one of
the unknown is fixed the equation is solved as a least-squares
problem with other unknown and vice versa, is continued
until convergence.

C. POPULARITY AND UNCERTAINTY ESTIMATION

The final estimated demand matrix, denoted by E, is
calculated as the average of the predicted matrices by the
committee members as,

E=—_Y"M, 1)
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The caching at the SBS is done based on two factors:
popularity and uncertainty. The popularity indicates the fre-
quency in the demands of the contents across all UTs. The
popularity of the content f by the committee member n,
say p}, is defined as,

K
pp=Y My n=1,....N. f=1,....F. (2
k=1
However, each committee member predicts the matrices
(.e. {M,,}nNzl) differently, which results in different
popularity values (i.e., {p}'}}f:’:l) associated with file . The
uncertainty of file f, denoted by uy, is defined as the
range of the predicted popularity values for a file across all
committee member estimates associated with file f and is
mathematically defined as,

n
ur = max —
f n=l1,..., pr n

i /3 3
NPT ©

With the defined notations, the popularity of the file f,
say py, is defined as the mean of the popularities of estimates
by all the committee i.e.,

N
1
prNZp}',fZI,...,F. )
n=1

Further, the popularity and uncertainty vectors are defined as
p = I[p1,...,prl and u = [uy, ..., ur] respectively. In the
sequel, we jointly optimize the caching and query processes.

IV. CACHE AND QUERY STRATEGY

In this section, we propose two caching policies to maximize
the caching and query performance based on the predicted
popularities.

The storage at the SBS is used to store both the popular
and uncertain (most informative contents). This allows the
system to leverage the trade-off between exploration and
exploitation. Here, the exploration is associated with the
uncertainty of the contents, and exploitation is associated
with the popularity of the contents. Therefore, the system
finds more information about UT’s preferences by exploring
the uncertain contents and then exploits the popular content
to maximize the system performance, e.g., cache hit ratio
(CHR). In the following, we propose two caching policies for
storing the contents at the cache.

A. FIXED-MEMORY CACHING POLICY

In this caching policy, the storage at the SBS is divided into
two parts, one part stores the most popular contents which
is referred to as exploitation of contents, and the second
part stores the uncertain contents which is referred to as
exploration of contents. The number of uncertain contents to
be cached alongside with the popular contents in the cache
is given by query budget Q (< D) Gbits. The selection set
and cache placement vector is defined by C and binary vector
x € {0, 1}F*1. As described in the Algorithm 1, the top D—Q
contents of p and the top Q contents of u are selected to cache
placement x. The stopping criteria of the algorithm is defined
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Algorithm 1 Fixed-Memory Caching With Active Matrix
Completion

Initialize: L, 2, N, D, Q
repeat
M, M>, ..., My] =QBC(L, 2,N),

calculate p and u as given in III respectively
Sorting and Indexing: [Pyaiue, Pindex] = sort
(p, descend) [Wygrue, Wingex ] = sort(u, descend)
6: Selection set: C C = {F; U Fit | i = Pindex[] :

A

D -0, i = ingex[1 : Q1)
7. Placement vector: x € {0, 1}/'*!
1, fecC
x]r = 5
L)y {O, otherwise ®)

8: Query generation: Get the uncertain entries of the O
placed contents to query.
9: until: stopping criteria

Placement vector (x) l

Caching
Optimization SBS

P ‘ %E— ——>CHR
u
QBC a] oo ]
i

Content requests (L)
. MEC Server

g Storage unit/Cache

[0 Userterminals

FIGURE 2. System model which iterates between placing files in the
cache and receiving feedback of the number of requests.

when the uncertainty vector becomes zeros which implies that
all the entries of demand matrix are perfectly known as a
result the placement vector does not change and will have a
maximum cache hit ratio.

B. ADAPTIVE CACHING PoOLICY

In this subsection, we define an adaptive caching policy based
on optimization formulation for cache placement, shown
in Fig. 2. Since we want to store both popular and uncertain
contents in the cache we define two binary vectors which indi-
cate 1 if the content is stored in cache and O if it is not stored.
Let x; € {0, 1}*! and x, € {0, 1}¥*! be the binary vectors
which define the cache placement of the contents. x; includes
files selected which are popular to achieve exploration while
X are uncertain contents to exploitation. We formulate an
optimization problem that maximizes the exploration under
guaranteed cache hit ratio as,

P1: max (uo1)x;
X1,X2

s.t. Cp @ xp,xp € {0, 171,
G xp+x <1,
C3: x =X +Xp,

Cy: x'1 < D,
(p—wolIN)x
Cy: ——————— 6
5 polh > (6)
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Remarks:

o Formally, x; and x, are two binary decision variables
for caching the popular contents and to querying the
uncertain contents respectively.

o The objective of the function P; is responsible for
maximizing the exploration of uncertain contents.

o The constraints C, and C3 describes the files to cache in
the storage.

o (4 is the maximum storage constraint.

o And the last constraint Cs5 denote the guaranteed cache
hit ratio greater than or equal to a given CHR target
6 € [0, 1]. Note that for known files, the corresponding
uncertainty in u is zero.

The optimization problem P; regulates the trade-off between
exploration and exploitation by ensuring the guaranteed
cache hit ratio (GCHR) greater than or equal to 6. The queries
are generated based on the binary decision variable xj.
We used Mosek solver of CVX [34] to solve the optimization
problem P; in Matlab.

Due to the nature of optimization problem 7Py,
whenever the variance of uncertain contents goes to zero
implies when there is no exploration the storage will not be
utilized completely. The size of remaining storage is given as,

Dyew =D — (XTl)- (7)

Based on the remaining storage, we formulate an optimiza-
tion problem that maximizes the CHR by storing the most
popular contents in the remaining storage and is referred to
as enhanced GCHR. So, when the uncertain vector is zero we
focus on the exploitation of the learned phase by utilizing the
full cache storage. This is mathematically formulated as,

Py : maXM

y (polh)

st.Cp:ye {0, 1}F*1,
Cr:x+y<l,

C3 1 Y"1 < Dy 8)

Remarks:

o Where y is the binary decision variable for caching the
popular contents and x is the placement vector of the
optimization problem P;.

o (C, describes the files to cache.

« (3 is the storage constraint.

The optimization problem P, aims at maximizing the
cache hit ratio by storing the most popular contents. The addi-
tional contents to be stored after the optimization problem P
to fill the cache completely is given by y. The optimization
problem P, is solved using the Mosek solver of CVX [34].
Note that, in both the caching policies the MEC server check
and skip the contents, if the contents are already in the cache.
The popularity and uncertainty of the contents change over
time, so before making content eviction and replacement the
popularity and uncertainty of contents are calculated.
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V. NUMERICAL RESULTS

We evaluate the performance of the proposed caching
policies through numerical results. First, we consider the
stationary demand model and evaluate the performance of
the fixed-memory caching policy. Then, we consider the
non-stationary demand model and evaluate the performance
of the adaptive caching policy. For both the scenarios, we con-
sider the total number of contents (F) at the server is 100 and
the number of user terminals (K) connected to SBS at a
given time is 30.> The UTs connected to SBS changes from
time due to mobility and as a result, the demand matrix also
changes over time, for simulations we consider an average
of 30 UTs connected to SBS at any given time. The content
requests from the UTs for the contents can follow any dis-
tribution since our proposed caching polices are model free.
However, we consider that the requests follow a Zipf-like
distribution denoted by,

Pk(f)=w/fa’ 9)

F —1

where v = (Z l/f“)
f=1

A. STATIONARY DEMAND MODEL

We analyze the performance of fixed-memory caching policy
as metrics of root mean square (RMSE), cache hit ratio
(CHR), and back-haul load. For this, we generate a demand
matrix L., with all entries and delete 98% of entries to eval-
uate the performance of the active learning query approach in
finding the missing entries. with the help of notations defined,
the metrics are defined as

and « is the Zipf skewness factor.

1
RMSE = —”Ltrue - L”Fv (10)
”Ltrue”F
T
PtrueX
CHR = (1D
ptruelT

The back-haul load is defined as the number of new
contents fetched from the content server. Note that, before
storing the contents in the cache, the MEC server will check
and skip the contents if it is already stored. The performance
obtained by random query strategy and collaborative filtering
[25] is used as the benchmark for comparison of the results
and matrix factorization is used as the baseline without query
strategy. In figure 3, we evaluate the performance of the
fixed-memory caching policy via the RMSE metric. The
aim is to study the rate of reduction of RMSE When more
and more contents are explored. Initially, the active learn-
ing approach performs poorly since 98% of the entries are
missing. As a result, the random caching and collaborative
filtering scheme achieve smaller RMSE until iteration 25 for
Q = 2. This effect is explained by the property called inco-
herence property [36]. It is seen that after 25 iterations the rate
of decrease in RMSE is faster with active learning compared
to random caching and collaborative filtering. This is due to
the fact that using active learning the contents to a query

2We limit the total UTs to Nimax
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By increasing the query budget to Q = 5, AL-based caching
outperforms the random caching policy after iteration 8.

Figure 4 presents the CHR as a function of the query
iterations. Similar to figure 3, the active learning with query
budget is 2 approach has poor performance until iteration
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FIGURE 8. Impact of CHR vs Skewness factor.

25 due to incoherence property. After 25 iterations CHR

improves drastically compared to the random caching policy
for the same reason mentioned in figure 3. However, the per-
formance of active learning can be improved by increasing
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FIGURE 9. Data distribution at time slot T=1.

the query budget and is illustrated with the query budget
to 5 in figure 4. By increasing the query budget induces
higher back-haul load as shown in figure 5. The performance
of active learning with query budget 5 can be achieved
without increasing the back-haul load with query budget
2 with the number of iterations. This impact can be seen
around the iteration 45-50 in figure 4. The performance of
the AL-based caching scheme in terms of the back-haul
load is shown in figure 5. Active learning with query bud-
get 2 requires lesser back-haul load compared to a random
querying strategy. However, the active learning method with
query budget 2 imposes a slightly higher back-haul load after
45 iterations and converges. This slight increase in back-haul
load results in higher CHR as explained in figure 4. Moreover,
increasing the query budget results in higher back-haul load,
this is observed in figure 5.

B. NON-STATIONARY DEMAND MODEL

In this sub-section, we consider the non-stationary online
demands for the contents, also we analyze the performance
of the adaptive caching policy. The relation between user
terminals and contents at t” time slot are modelled by demand
matrix represented as L; € 2+ *F The entries of the
demand matrix represent the number of times the contents
have been requested by the user terminals. To capture the
evolution of content requests over time, we assume that L;

follows a first-order Markov process:
L =L-1 +E;,
L; = max(L;, 0)

t=1...T. (12)

where E, ~ N (0, Q). Q is modeled as a correlation between
user terminals and contents given by Q = Qr ® Qu. Thus,
the dependencies are modeled as the Kronecker product of
covariance matrices Qg of contents and Qg of user termi-
nals. The covariance matrices generated are symmetric and
positive semi-definite, with unit diagonal and other elements
in the closed interval [—1, 1] [37].

VOLUME 8, 2020

1200

1000

800

600

Demands

400

200

Contents

(b) Skewness factor = 0.7

We generate the entire demand matrix Ly, 1 at the initial
time slot T = 1, we then use first-order Markov process
to generate a sequence of demand matrices over the time
from multivariate normal distribution as described above.
We model the observed L; at T = 1, by deleting the 50%
of entries randomly. This implies only 50% of entries are
observed at an initial time slot. From the T = 2, the missing
entry percentage depends on the contents placed in the cache
and forgetting factor, which is defined as, more importance
is given to recent observations and less importance to earlier
data [38]. In our simulations, we use fixed forgetting factor
based on the bootstrap method.

The effect of the skewness factor can be seen in figure 9.
As seen in the figure the contents are uniformly distributed
when the skewness factor is equal to 0.3 and are more skewed
when it is equal to 0.7. In figure 6, the performance of the
proposed active learning caching is compared with the most
popular caching and random caching schemes. The cache hit
ratio is shown as the function of time. The goal of this study
shows that the proposed caching scheme always maintains
the cache hit ratio above 0.55 which is a guaranteed cache hit
ratio. While the most popular and random caching schemes
perform poorly than the proposed scheme.

In figure 7, we show the average cache hit ratio as a
function of varying cache size for different guarantee cache
hit ratio (0). As seen in the figure, as 6 increases the average
cache hit ratio also increases. For greater 6 values need higher
cache size, for example when 6 = 0.3 the valid cache size
is 10 Mbits below this the proposed optimization problem
is infeasible. Higher 6 value needs a higher cache size. The
impact of the cache hit ratio as a function of the skewness
factor is shown in figure 8. The cache hit ratio increase with
the skewness factor. This is because for higher skewness
factor there are only a few most popular contents and our
proposed learning model effectively finds those contents and
cache them for exploitation, as a result, higher skewness
factor results in a higher cache hit ratio.
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VI. CONCLUSION

In this article, we studied a novel active learning-based
caching framework at the edge node. By formulating the
content caching problem as a matrix completion problem,
an active learning query by committee approach was used
to predict the missing entries. The most informative missing
entries are selected based on uncertainty measure to query.
The interactive learning between the system and user ter-
minals helps the user terminals become more self-aware of
their own likes/dislikes while at the same time providing new
information to the system which helps in better estimation of
the popularity of contents. Our proposed caching framework
is model-free, it can be used either for fixed or time-varying
popularity learning situations. The superiority in the perfor-
mance of both the caching policies over the state-of-the-art
method is established through simulations.
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