
Received July 27, 2020, accepted July 31, 2020, date of publication August 5, 2020, date of current version August 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014533

Rancid: Reliable Benchmarking
on Android Platforms
SERGIO AFONSO AND FRANCISCO ALMEIDA
Department of Computer Engineering and Systems, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain

Corresponding author: Sergio Afonso (safonsof@ull.es)

This work was supported in part by the Spanish Ministry of Science, Innovation and Universities under Project PID2019-107228RB-I00
and Contract FPU16/00942, in part by the European Commission (European Regional Development Fund) and the Spanish Ministry of
Economy and Digital Transformation (MINECO) under Project TIN2016-78919-R, in part by the Government of the Canary Islands under
Project ProID2017010130, and in part by the CAPAP-H Network (Red de Computación de Altas Prestaciones sobre Arquitecturas
Paralelas Heterogéneas).

ABSTRACT Benchmarking is an important step in the code optimization process that enables empirical
performance evaluations in computer systems. Application profiling allows the detection of bottlenecks
within the code, and benchmarking can be used to measure the effect of optimizations on performance and
to compare implementations. However, obtaining reliable and reproducible performance metrics on modern
mobile platforms is a complex task that is often overlooked. This is necessary to produce scientifically
sound experiments. There are several factors that introduce noise on performancemeasurements.We identify
and measure the most relevant set of these factors and design a methodology that enables more reliable
performance benchmarking on Android platforms. We also describe our flexible benchmarking framework,
Rancid, designed to transparently solve these problems. It enables application developers to quickly obtain
reliable performance metrics for their code on a wide set of platforms. The evaluation of our methodology
and framework shows an improvement on the behavior of results, successfully providing more precise and
reproducible measurements on a range of devices and implementations.

INDEX TERMS Heterogeneous systems, mobile computing, performance of systems.

I. INTRODUCTION
The high rate of development of mobile platforms in the
last decade has resulted in increasingly low-power and
feature-rich devices with high levels of computational per-
formance. Advances in System on Chip (SoC) technologies,
which allow integrating multiple multicore CPUs and accel-
erators interconnected via a shared memory system, provide
the foundation for these developments. The performance
capabilities they provide open new application possibilities
for mobile platforms, on both smartphones and single-board
computers. Increasingly complex computer vision, image
processing and artificial intelligence applications can be
developed for real time use on these devices, meaning that
high-performance code for low-power heterogeneous archi-
tectures must be developed and optimized.

Application optimization, like most fields within com-
puter science and science in general, is predominantly an
experimental field. Any technique intended to improve any
metric of performance has to be eventually evaluated in real
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systems in order to prove its fitness. As a consequence, it is
of paramount importance that measurements are obtained
under controlled experiment conditions, such that results
can be reproduced reliably and relevant conclusions can be
extracted. Otherwise, the observed behavior could be caused
by external factors outside of the scope of the experiment.
The problem of reproducibility of experimental research in
computer science is well known [1], and it is agreed that
improvements in evaluation methodologies, along with other
factors, must be made to solve it [2].

In the applications optimization field experimentation con-
sists of locating bottlenecks within an application and then
measuring the effect of optimizations on these bottlenecks
to discover what can reduce their effect and to what extent.
Those are, respectively, the stages of profiling and bench-
marking. Profiling does not usually have to be as exact as
benchmarking, as long as it points to the actual bottlenecks
of an application, and developer-friendly tools to that end are
already available for most platforms and main programming
languages [3]–[6].

Benchmarking, on the other hand, is what allows multiple
implementations of an algorithm to be compared against
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each other and measured with a much higher precision. It is
the basis for evaluating hardware acceleration methods and
low-level optimizations, as well as the effect of compiler opti-
mizations. Hence, it demands a higher level of rigorousness
than profiling. In its simplest form, it can consist of repeatedly
running a fixed number of times a piece of code and then
finding the average of themetric under observation. However,
the measurements that it will provide can be misleading.
A much more careful planning and benchmark design is
required in order to obtain accurate measurements [7], [8].

Current mobile SoCs present a set of unique characteristics
that difficult the benchmarking process. Some of those are
related to thermal management, Dynamic Voltage and Fre-
quency Scaling (DVFS) and power limitations [9], and some
have been identified before as a problem to performance eval-
uation [10], but reliable solutions to these problems are still
to be found. On the software side, mobile operating systems
introduce problems to the benchmarking process as well, due
to their interactive, always connected and restricted nature.
We focus on Android as it is currently the most widespread
mobile operating system. Though applications for Android
are mostly written in the Java programming language, previ-
ous works about reliable benchmarking for Java [11] cannot
be directly applied due to runtime differences on various
Android versions that must be considered, as well as platform
configuration limitations.

The main features of the measurements that need to be
improved are their accuracy, precision and behavior. With
accuracy, we refer to how much the magnitude of a set of
measurements is centered around its real value within the
system that is being measured. The first problem that rises
in mobile devices is that we need to define what this real
value is. In the case of a modern mobile processor, dynamic
changes in clock frequency create different performance lev-
els, so a single performance level must be ensured so that all
measurements are done within the same specification.

The precision is the degree of closeness of multiple mea-
surements among each other, and it can be improved by
reducing random noise sources within the system. When
we speak about the behavior of the measurements, we are
talking about the shape of their distribution according to their
values. If only random noise is present, measurements should
follow a normal distribution, which is usually assumed but
not always verified. However, we have found that mobile
platforms tend to behave differently due to systematic error
sources that impact all measurements differently. Processor
frequency changes can result in multi-modal distributions,
and temperature can have an impact that gets more pro-
nounced as more measurements are taken. Fig. 1 shows
execution time histograms for independent executions of the
same benchmark using the same parameters in the same
device. It is apparent that behavior will vary widely if no
actions are taken to prevent that from happening.

In this work, we focus on the set of unique characteris-
tics of mobile devices that present difficulties to the bench-
marking process, and we propose solutions that minimize

FIGURE 1. Execution time histograms for separate repetitions of the
same benchmark. Horizontal axes represent the same range of values on
all three graphs. 50 measurements taken per benchmark.

their impact. We design a benchmarking methodology that
ensures the reproducibility of benchmark measurements on
mobile platforms, by identifying and tackling several sys-
tematic error sources present in these platforms, while sig-
nificantly increasing the precision of the measurements.
Additionally, we build a framework that we use to imple-
ment and evaluate our methodology, while being able to be
extended to alternative methodologies and easily applied to
any applications to evaluate. In summary, we i) provide an
automated system to significantly increase the reliability of
performance evaluations on mobile platforms; and ii) create
the necessary infrastructure to allow other methodologies to
be quickly implemented and compared. This differs from
existing Java benchmarking frameworks [12], [13] in that it
focuses on setting up the system prior to execution, guaran-
teeing that the execution environment will be stable, while
providing tools to change this behavior depending on device
features.

We believe that these are key steps towards advancing the
current state of the practice with regards to rigorous empirical
evaluations on these types of dynamic computing systems.
Our contributions are:

• We build on previous works focused on reliable Java
benchmarking in order to tackle major differences in
Android’s Java execution model compared to state-of-
the-art desktop and server virtual machines.

• We identify a range of systematic error sources on
mobile platforms that must be mitigated in order to
obtain accurate, precise and well-behaved measure-
ments from benchmarks in these environments.

• We design countermeasures against the identified error
sources that help reduce their impact. We also provide
indirect methods to reduce error for cases when the pre-
ferred solution is not possible due to common limitations
of hand-held devices. These serve as a set of practical
guidelines that help developers improve the reliability
of their benchmarks.

• We design and build the Rancid framework, a modu-
lar and extensible benchmarking framework that iso-
lates the benchmarking methodology from the code
to benchmark, so developers can benefit from more
reliable results with very reduced additional work
and implement and compare alternative benchmarking
methodologies.
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• We implement our proposed methodology in our bench-
marking framework, which can be easily extended to
collect anymetric the user deems relevant, contains tools
for results processingwhich can be extended as well, and
it is compatible with any platform other than Android.
It can be used to benchmark code in any system with
Java support.

• We evaluate the effectiveness of our reliable benchmark-
ing methodology and framework, comparing our results
to baseline values gathered in a straightforwardway, on a
range of representative devices based on mobile SoCs
and CPU implementations on Java and C/C++, and
GPU implementations on OpenCL. Multiple indepen-
dent benchmark executions are used in order to evaluate
the reproducibility of the results.

Our experimentation on multiple representative devices,
kernels and programming languages shows that our method-
ology greatly improves the precision, reproducibility and
reliability of benchmarks, on both longer and shorter runs,
validating the relevance of this work. Although there is still
room for improvements, we provide the infrastructure where
these can be tested and transparently provided to application
developers.

This paper is structured as follows: on Sect. II, we present
the runtime features of Android applications and our testing
platforms; Section III identifies the set of main systematic
error sources and measures each of their impacts on bench-
marking in isolation; we propose and evaluate separately
countermeasures to minimize each of these errors in Sect. IV;
in Sect. V we present a benchmarking framework that inte-
grates many of the proposed countermeasures; an evaluation
of the proposed methodology and framework is presented in
Sect. VI; and Sect. VII finishes with conclusions.

II. ANDROID RUNTIME FEATURES
A. COMMON RUNTIME FEATURES
Android is currently the most widespread operating system
for mobile devices. It is based on a Linux kernel, on top
of which a large software stack has been built. This layer
provides application developers with abstraction from the
hardware and a unified interface for accessing the differ-
ent supported capabilities provided by the underlying SoC.
On top of that, unrestricted or ‘‘root’’ access to the system is
generally unavailable, which helps with security issues.

Being based on Linux, raw sensor data can be found in
mostly vendor-dependent paths in the file system through
sysfs [14]. This is sometimes needed when the sensor to
be queried is not part of the standard set of sensors that
the Android API defines, as is the case with processor fre-
quencies and internal components temperatures. These two
metrics are highly correlated to performance, as we show in
Sect. III, so monitoring them is a very important step towards
reliable benchmarking on mobile platforms.

Processor frequencies in Linux are controlled through
what are called CPU/GPU governors. These are heuristics

integrated in the kernel that continuously monitor the state
of the system and set processor frequencies [15] according
to it. Their main goal is usually to provide high performance
when necessary, and to optimize energy usage through fre-
quency scaling when possible. Some governors, however,
focus on achieving maximum performance or power saving.
By default, mobile devices use governors designed for a
balance between interactivity, performance and energy con-
sumption, but this means that performance varies over time in
a generally unpredictable manner. If it happens while bench-
marking, this situation implies a change on the conditions of
the experiment that triggers unreliable results.

There is a process, commonly referred to as ‘‘rooting’’,
which consists in obtaining unrestricted access to the under-
lying Linux operating system by unlocking the device’s
bootloader and replacing the system image by one in which
privilege scalation is possible. Device manufacturers can
decide not to support bootloader unlocking for security and
stability reasons, in which case the only way to achieve it
would be through a security vulnerability exploit. In order
to be able to change system parameters, like frequency gov-
ernors, root access is necessary. Although certain users go
through the rooting process, it is far from common prac-
tice and the ability of tuning system parameters cannot be
assumed in most cases.

Applications for Android are mainly written in the Java
programming language. The majority of tools for Android
development are available for Java code, such as a profiler
and debugger, and most of the Android APIs are written for
Java as well. Although benchmarking of Java applications
is already relatively well understood due to previous works,
there is a major difference in the way Android handles Java
code execution that makes previous knowledge incomplete.

FIGURE 2. Android 7.0 Java execution model.

From Android 5.0 to 7.0, Dalvik bytecode contained in
Android Application Packages (APK) is compiled to native
binaries supported by the Android Runtime (ART) at instal-
lation time in the device [16]. Starting in Android 7.0, ART
uses a combination of ahead-of-time (AOT) and just-in-time
(JIT) compilation, shown in Fig. 2. Most frequently executed
code is AOT compiled in the background when the device
is idle, and any code that is being interpreted frequently
gets JIT compiled while the application runs. This contrasts
with the way regular Java bytecode executes on any other
platform, as well as Android before version 5.0, where it is
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TABLE 1. Hardware platforms.

interpreted by a Java Virtual Machine and/or JIT compiled.
This means that JIT-compilation of hot spots in the code
only happens in certain versions of Android, although other
features of managed programming languages such as garbage
collection overhead still must be considered when designing
benchmarks.

In addition to Java, Android supports development on
C/C++ and Renderscript as well. Native C/C++ code tends
to be useful in order to integrate an application mainly writ-
ten in Java with native libraries and other available system
libraries. This integration is achieved through the Java Native
Interface (JNI), which provides a way to implement Java
methods in C/C++ and exchange data between the Java
managed and C/C++ unmanaged memory spaces. There is
a certain overhead involved in passing data between the two
memory spaces that needs to be taken into considerationwhen
benchmarking, so that it is only measured if that is the intent
of the benchmark.

An important note to make is that the vast majority of
mobile platforms nowadays are based on SoCs that inte-
grate GPU and possibly specialized Digital Signal Pro-
cessors (DSP) along with a multicore CPU. These are
all programmed in various ways through software inter-
faces such as OpenCL, Renderscript and vendor-specific
libraries, although there are frameworks that try to reduce
the development complexity by unifying many of these
interfaces [17], [18]. Writing high performance code for
Android often relies on accelerators [19], and that is a case
in which benchmarking is of paramount importance, so the
interaction between these interfaces must be considered.

B. HARDWARE PLATFORMS
In order to discover and measure the sources of error present
when benchmarking Android applications, as well as evaluat-
ing the effectiveness of countermeasures designed to mitigate
these errors, we use a heterogeneous set of devices. This
allows us to represent a large amount of cases that could arise
when benchmarking a piece of code in an Android device.
A summary of the features of each one of the selected devices
is presented in Table 1.

Every device runs a different version of Android, each
implementing one of the main Java execution models found
in this OS, described in Sect. II-A. Two of the devices have

been rooted and stripped from most non-critical applications,
whereas the other one is representative of a device used
regularly by a user, with no root access and with plenty of
applications installed. Each device is based on a SoC from
one of the main manufacturers, although they all share Arm
or Arm-based CPU and GPU designs, as they are prevalent
in this market. One of the considered SoCs contains a single
quad-core CPU, whereas the others are based on Arm’s dual
CPU big.LITTLE architecture.

Lastly, two of the devices are smartphones, whereas the
other one is a board that has been built with the same type of
processing components. This board contains a fan that is able
to actively cool the processor package, in contrast to smart-
phones that can only reduce temperature via passive means
such as reducing processor clock frequencies, switching cores
off or reducing processing load.

III. BENCHMARKING ERROR SOURCES
In general, all empirical measurements are subject to noise
caused by external factors. In the case of benchmarking,
these errors are ubiquitous, so they should always be properly
addressed in order to obtain correct and precise measure-
ments. It is common, during the application optimization pro-
cess, to benchmark multiple implementations of an algorithm
in order to select the best performing according to some
metric. If enough care is not taken during the design of the
benchmark or the interpretation of its results, random fac-
tors could skew the comparison and, ultimately, the decision
taken.

Random noise has the property of reducing the precision
and, hence, the confidence with which evaluators can reli-
ably extract properties or compare the benchmarked code. Its
impact can be greatly reduced through repetition and statis-
tical methods. In fact, the benchmarking process essentially
intends to estimate the value of a random variable with a
high level of confidence. In this case, the variable could
be some metric of performance or energy, and its random
component wouldmainly be influenced by sources of random
noise present in any computing system. Some of these noise
sources are OS process scheduling, memory latency, or CPU
branch predictors and pipeline stalls.

On the other hand, there are also systematic error sources
that impact all measurements in a similar way, leading to
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skewed results. These are harder to detect, as they cannot usu-
ally be spotted through metrics alone. Some knowledge of the
system or expected behavior is required as well. Systematic
error sources must be addressed if any proper conclusion is
to be extracted from a benchmark.

Somewell-known sources of systematic error during appli-
cation benchmarking are compiler optimization levels or
debugging support. In the case of mobile applications and,
in particular, Android, there are additional sources of system-
atic error that should be neutralized. These are usually not
a problem or easily solved in most other systems, so their
impact on mobile platforms has been neglected by many
authors. Our goal is to identify these sources of systematic
error, illustrate their impact and provide solutions, defining
a set of practical measures that enable developers to obtain
deeper and reliable insights from their benchmarks.

It tends to be assumed that multiple repetitions of a bench-
mark should behave the same way, and large enough samples
will fit a normal distribution. This is true of an experiment
where system conditions do not change. However, specific
measures must be taken to enforce this requirement, given
the very dynamic nature of mobile systems’ performance.
Otherwise, behaviors like the ones presented in Fig. 1, based
on data from our experimentation in Sect. VI, will potentially
happen, making metrics like the mean or the standard devia-
tion not accurately represent this behavior.

We present a set of benchmarks that show the execution
time of a simple Gaussian Blur kernel when repeated multiple
times1 using the same input parameters. Ideally, the execution
time should be independent from the moment at which it was
obtained, but random and systematic error sources show that
this is not the case.We use Java, native (C/C++) andOpenCL
implementations in order to evaluate the distinct features
of each of those programming models in Android. These
benchmarks illustrate the separate effect of every systematic
error source we identified, while simultaneously mitigating
the rest. We exclude additional warm-up runs for stability
from the plotted data points.

Although the impact we measure for each error source
independently tends to seemmarginal in many cases, we need
to consider that it can be more pronounced on other devices
and applications. Furthermore, all sources of error are inter-
dependent, compounding their impact into behaviors that can
lead to unreliable or inconsistent measurements, as illustrated
in Fig. 1.

A. PROCESSOR FREQUENCY
One of the main factors to consider when benchmarking a
mobile application is processor frequency. As we discussed in
Sect. II-A, CPU and GPU frequencies in Linux are controlled
by governors. On hand-held devices, due to their stricter

1Some benchmarks contain a fixed number of repetitions, and others have
been limited to a certain global elapsed time. This is specified in the label of
the x-axis of each graph.

2Each value of the graph is the average of the previous 100 measurements,
reducing noise for better readability and ease of comparison.

FIGURE 3. CPU governors performance on P8L (C/C++, window2).

power constraints, we find default governors aremore aggres-
sive at lowering frequency than their desktop counterparts.
Fig. 3 shows how using the performance CPU governor
reduces execution time and variability.

FIGURE 4. GPU governors performance on XU3 (OpenCL).

The governor change is only possible because we have root
access to the device, and because the kernel the device is run-
ning included a performance governor that sets the frequency
at its maximum value. In this case the relative improve-
ment is minimal, but its impact depends on the default CPU
governor behavior, device and measured code. In the case
of GPU governors, we see a much larger relative change
of 33.91% in average between variable GPU frequency and
maximum performance in Fig. 4. We measured a correlation
of 97.51% between GPU frequency and execution time in this
case, which could be hinting at a compute-bound benchmark.
In any case, we see that fixing processor frequency leads to
more stable results, and ignoring its impact can significantly
skew them.

B. TEMPERATURE
Although we have observed that frequency changes are detri-
mental to benchmarking, fixing processor frequency makes
other sources of error more pronounced. One of the main
reasons, other than power consumption, why mobile devices
reduce processor and memory frequency is temperature.
Since the vast majority of these devices are passively cooled,
when temperatures rise above a certain threshold, the fre-
quency is reduced in order to reduce heat output, avoiding
user discomfort and protecting internal components. This
effect is commonly known as thermal throttling.

In Fig. 5 we observe how, by disabling the fan of the
XU3, a large amount of variation gets introduced after some
time running benchmarks. Contrary to the expected behavior
of a progressive increase of execution time as temperature
increases and processor frequency is restricted, we find that
there are many reductions in execution time as well. By look-
ing closely into this issue, we discovered that some cores were
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FIGURE 5. Performance variability due to cooling on XU3 (OpenCL).

being shut down intermittently. Our best guess is that this
resulted in an increase of memory frequency or some other
component beyond our ability tomeasure or control, due to an
instant reduction of the power draw and consequent increase
of headroom to the power cap. Our efforts trying to replicate
this behavior by manually reducing processor frequency or
switching cores off failed to show this behavior.

Again, different devices and benchmarks can make the
effect of cooling vary greatly. It tends to take a large set of
benchmarks to demonstrate this effect, so shorter runs are not
as affected if devices can cool down between benchmarks.
Automating this, however, provides the benefits we discuss
in Sect. IV.

C. PROCESSOR AFFINITY
Many modern SoCs used as the computing platform for
popular mobile devices are built around an Arm big.LITTLE
multicore CPU. In its simplest form, which we find on the
XU3 and P8L devices, the CPU is formed by two clusters of
cores; one of them containing high-performance cores, and
the other containing low-performance high-efficiency ones.
By default, the OS handles the mapping of processes to CPU
cores, and this is done by considering the computational
load of these processes. A process that runs computationally
intensive tasks will bemoved to big cores, whereas others will
run on little cores to improve battery life.

As this is done at runtime, processes are continuously
migrated from one cluster to another as their behavior
changes. When benchmarking, it is important to control the
cluster where the execution takes place. Otherwise, results
might vary depending on the heuristic decisions made by the
OS about the benchmarking process. Periods of low compu-
tation, like those used to reduce temperature between repeti-
tions or synchronization barriers, will make the OS migrate
this process to little cores as well. As a result, when execution
starts it may take an undetermined amount of time for the
OS to migrate the process back to big cores and a context
change will happen. Manually setting the benchmarking pro-
cess affinity to the desired cluster gets rid of this variability,
as it is shown in Fig. 6.

D. BACKGROUND PROCESSES
Even though Linux systems are inherently multitasking and
there are always multiple independent processes running in
the same machine simultaneously, it is frequently possible to
ignore their impact on benchmark results as their influence

FIGURE 6. Processor affinity performance on XU3 (C/C++, window2).

FIGURE 7. Performance variability between background process settings
(C/C++). Y axes adjusted to show a proportional interval size across
devices. Left Y axis labels correspond to SXZ.

is minimal and can be modeled as random noise. Android,
on the other hand, adds a new layer of process scheduling
with background processes and activities. They tend to add a
greater overhead, via frequent network communications, and
the amount of thesewill depend on the number of applications
installed in the device. Fig. 7 shows that if a mobile device is
only used for benchmarks, and all non critical applications
and services are removed, execution time stability increases
significantly. The airplane mode reduces the interference
of network connectivity related background processes, but
results are still not as reliable. Their estimated coefficients of
variation 3 are, for the regular and airplanemode benchmarks,
1.06% and 0.54% respectively, whereas having close to no
background processes running brings it down to 0.06%.

IV. TECHNIQUES TO REDUCE ERROR IMPACT
In Sect. III we presented a set of error sources that must
be considered in order to obtain reliable results from bench-
marking. We also determined features that make the impact
of these error sources to be significantly reduced. However,
some of these features cannot generally be considered avail-
able or easily achievable on any device, and indirect methods
have to be used instead. Section IV-A presents indirect meth-
ods for dealing with the identified error sources during the
benchmarking process.

Furthermore, even when all possible error sources are
reduced through careful experiment design, random varia-
tions can introduce a different set of problems. If they are not
properly managed, misleading conclusions might be drawn
with not enough data to support them. In Sect. IV-B we
show ways in which the reliability of results can be improved
independently of how measurements are taken. Other consid-
erations are discussed in Sect. IV-C.

3Measure of dispersion defined in terms of the sample standard deviation
(s) and the sample mean (x): ĉv = s

x
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A. MITIGATING SYSTEMATIC ERROR DURING
BENCHMARKING
1) PROCESSOR FREQUENCY
Switching frequency governors is only possible on rooted
devices. This quite significantly limits the range of devices
where it can be done, due to the reasons explained in
Sect. II-A. Additionally, the performance governor is not
always available, so other ways of fixing the frequency have
to be found. Our XU3 and P8L devices did not have perfor-
mance GPU governors so, in order to fix the GPU frequency
to its maximum value, the minimum frequency parameter of
their default governor was set to it. This has the limitation
that it still requires root access and it must be set periodically
because, when temperatures rise, it gets reset to default.

On devices with no root access, the only way to force an
increase of processor frequency is to ‘‘trick’’ the governor
into thinking that a compute-intensive task is running before
starting the benchmark, and to make sure of keeping it that
way along its whole duration. This strategy will only work
if the default governor responds to high processor usage by
increasing its frequency, unlike some power saving ones.
Monitoring the relevant processor’s frequency while some
dummy workload is executed until maximum frequency is
reached helps reduce the added overhead of this method.
Fig. 8 and 9 show the performance difference between trig-
gering a frequency increase before each run, if it is not already
set at maximum frequency, and not doing so.

FIGURE 8. CPU frequency manipulation on SXZ (C/C++).

FIGURE 9. GPU frequency manipulation on SXZ (OpenCL, window2).

In this case, we find that indirectly inducing an increase
in CPU frequency results in an average relative runtime
improvement of 5.39%. This tells us that, by default, the CPU
is running this benchmark below its maximum capacity,
resulting in a higher potential of result variability when
changes in frequency happen organically. Our method still
has limitations, because it cannot consistently keep frequency
stable, but it makes big swings in performance less likely.

On the other hand, GPU results show a completely different
picture. They indicate that GPU frequency stays mostly at
the same level regardless of our tries to increase it before

each run. Although there is not a significant global difference,
we find the first few iterations tend to achieve a slightly better
performance. These are dropped by warm-up code, so they
are only shown on the baseline benchmark. While it tells
us that there is actually potential for more performance, our
results being skewed in both cases, there is no way to sustain
that performance level for long enough to produce stable
results without control over the GPU governor. We believe
that, in this case, it is preferable to avoid the initial spike in
performance to increase the precision of results.

2) TEMPERATURE
In terms of temperature, the vast majority of hand-held
devices are only passively cooled. Extensive hardware mod-
ifications of the device would be needed in order to properly
install active cooling elements onto one of these, which is
extremely impractical and can result in permanent damage
to the device. Furthermore, certain workloads may induce a
larger power output than the thermal solution can effectively
dissipate. We propose, instead of restricting benchmarking to
development boards with active cooling, to introduce man-
ual thermal management into the benchmarking framework
regardless of the cooling solution.

By using internal temperature sensors, we can monitor
temperature within the benchmarking framework avoiding
making instrumented runs when temperature rises over a cer-
tain threshold. We effectively shift the responsibility of keep-
ing temperatures at an acceptable level to our benchmarking
system, instead of letting the OS deal with it by reducing
performance during execution. This splits the benchmarking
process into sections of intensive computation and sections of
idle wait for the device to cool down.

FIGURE 10. Temperature control on SXZ (C/C++, window2).

Fig. 10 shows the effect of manual cooling as opposed
to ignoring temperatures while benchmarking. In this case,
we clearly see how performance diverges as more tests are
carried out. Temperature-related performance behavior is
greatly dependent on environmental conditions (i.e. ambient
temperature), the hardware properties of the device in terms
of processor power consumption and thermal dissipation, and
the code that is benchmarked. All of these factors can make
a significant difference in the effectiveness of this approach,
but it is always an improvement over letting the OS change
performance parameters during benchmarking.

3) PROCESSOR AFFINITY
Processor affinity of processes in big.LITTLE CPUs can be
changed in Android through the sched_setaffinity
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[20] Linux system call. If for some reason this call failed
or was disallowed, the only possible way to achieve a sim-
ilar behavior would be to add a compute-intensive warm-up
execution right before running measured benchmarks. This
would be done in an effort to indirectly let the OS know that
this is a compute-intensive phase of the application, just as
forcing an increase in processor frequency requires.

4) BACKGROUND PROCESSES
Even though, ideally, having dedicated devices for bench-
marking stripped of any non-critical applications is the best
way for reliably obtaining results, it is still important to find
ways of achieving similar results using personal devices. This
would allow any application developer to benefit from better
insights, and significantly lower the preparation work that
setting up a device for benchmarking takes.

The problem we want to solve is the overhead that Android
background processes can unpredictably have over bench-
marks. Given any hand-held device, we should devise a
method to prevent any installed applications from interfer-
ing with the benchmark. Ideally, running the benchmarking
underlying Linux process in real-time mode would result in
it having maximum priority over the rest at the OS scheduler
level. However, it is disallowed due to the implications in
terms of ‘‘fairness’’ this would have on a mobile environ-
ment. Fortunately, Android provides a Java API [21] that
can be used to kill other Android processes. By killing all
non-critical processes before benchmarking we should be
able to get a more stable environment to help with more
reliable results. However, many of these processes will launch
again shortly or sometime after being killed, adding a great
deal of overhead at an unpredictable moment. Additionally,
system signed applications which are non-critical cannot in
many situations be killed by either the user or the benchmark-
ing application via the aforementioned API. This is another
limitation of this approach, for which the only solution is to
obtain root access to the device.

FIGURE 11. Background processes overhead control on SXZ (C/C++).

In Fig. 11 we see how stopping background processes
once before starting the benchmark and stopping them in
regular intervals compare to leaving them running. Since
killing background processes results in a significant overhead
when these are restarted, we find that this approach is, in this
case, more than a 4.5% slower than the other two approaches.
It also doubles their coefficient of variance, so it is clear that
the benefits of forcing a lower amount of running background
processes are well below the problems it introduces.

The comparison between killing background processes
once before starting the benchmark and not doing so is much
less clear. What we find is that the latter provides a slight
advantage on precision (0.62% estimated coefficient of vari-
ation, versus 0.71%) and a minimal improvement on average
runtime that is well within margin of error. On the other
hand, by killing background processes we are able to execute
34.86% more benchmark runs during the same time interval.

This tells us that minimizing the amount of background
processes running before starting the benchmark does at least
help increase the performance of the whole system. This
could be due to a reduction in global power consumption,
which results in a lower thermal output and a less frequent
need for device cool-down.

B. IMPROVING THE RELIABILITY OF RESULTS
After designing ways to increase the precision and remove
the bias from benchmark measurements, there are still some
questions that need to be answered about how these measure-
ments should be processed and presented, enabling informed
decisions and deeper insights. Additionally, we need to be
able to determine how many repetitions of a benchmark are
needed to reach the desired precision. This has been the focus
of previous works on other platforms [22], but many of their
recommendations apply in this context as well.

It is common practice to fix the number of repetitions of a
benchmark in advance, but the required number of repetitions
varies depending on the device, the algorithm and, in some
cases, even the inputs. We propose data-dependent metrics,
such as coefficient of variation and relative width of a con-
fidence interval, as the stop condition. They allow testers to
indicate the precision they require, and benchmarks should
run only as many times as needed.

By following the procedures we presented in Sect. IV-A,
we not only increase the probability of obtaining represen-
tative values, but also increase the stability of these measure-
ments. Thismeans that error tends to approach zerowithmore
executions, as opposed to what would happen if factors such
as temperature were not controlled. This property helps the
mentioned stop conditions finish quicker. Of course, there is
still a chance of never reaching the intended precision.

One way in which this can happen is by not being able to
make measurements precisely enough. If the signal to noise
ratio of the measurements taken is low enough, it may not be
possible to ever reach the desired precision. For this reason,
time limits to the benchmark should be added, so they are
guaranteed to finish. In addition, outliers happening during
the first repetitions due to JIT compilation or other issues,
could heavily increase the required number of repetitions to
achieve the precision goal. That case can be easily addressed
by using a fixed amount of the latest measurements (sliding
window), instead of the complete set, as input to the desired
stop condition.

In the general case, however, outliers detected any-
where during a benchmark should be properly managed.
As we know, each benchmark will run for a certain amount
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of repetitions without changes to either the environment,
the measured code or the input parameters. Hence, outliers do
not demonstrate a behavior worth analyzing, but only cases
where outside factors have influenced the benchmark. Cor-
rectly detecting and removing these will result in an increase
of precision, so we believe it is worth doing in this situation.

There is a large amount of ways to detect outliers on
univariate data sets such as the ones produced by bench-
marks [23]. Among them, some assume normality in the way
values are distributed and others are robust even where that is
not the case. By removing the main systematical error sources
from benchmarks, we effectively increase the relative impact
of smaller random errors, leading to normal distributions.
Otherwise, we can find multi-modal distributions where each
mode corresponds to a different performance level or pro-
cessor frequency, and highly skewed distributions where the
longer the benchmark runs the lower the performance is.

Taking into account these different cases, we believe that
options like Tukey’s method [24] should be preferred to
others like Z-Score [25], due to their higher robustness against
not normally distributed data and masking problems that
happen when an outlier hides the presence of others. His-
tograms, too, are powerful tools to understand the results of a
benchmark. We recommend using a sliding window method
to adapt outlier detection to the behavior of the system and
reducing computational overhead, as well.

In terms of reporting results, minimum and maximum
values are not as robust as metrics such as the median or
quartiles. Where the first are more sensitive to random noise
and outliers, the former are much more stable metrics that
should be preferred. Additionally, precision metrics like the
standard deviation or confidence intervals must be reported
and used for comparison purposes. Otherwise, wrong con-
clusions might be extracted where apparent differences in
performance or energy are in fact owing to lack of precision.
The histogram, too, is a powerful tool to understand the
results of a benchmark.

C. ADDITIONAL CONSIDERATIONS
There are other factors that need to be taken into account
in order to achieve more reliable benchmark results, which
complement what has been presented in Sect. IV-A and IV-B:

• Running benchmarks shortly after booting up the OS
could result in an irregular overhead over time, due to
start-up processes running on the background. Waiting
until the device stabilizes helps increasing benchmark
precision.

• Battery powered hand-held devices should be con-
nected to external power to avoid frequency gover-
nors from going into more power-saving states during
benchmarking.

• When benchmarking performance or energy consump-
tion of an Android application, it must be ensured that a
release build with no debugging support is used. Addi-
tionally, tools provided by the Android Studio IDE like

Instant Run, targeted at quickly replacing code in execu-
tion, must also be disabled if benchmarks are launched
from this environment. These, if incorrectly managed,
will place overhead on the benchmarked code that will
significantly skew the results.

• The execution time of the code being measured must
be large enough that the impact of the benchmarking
code that is launching its execution, and the precision
of the meters being used, are not significant. This can
be achieved by running the code multiple times per
measurement and dividing each measurement by that
number of repetitions.

• Depending on the compilation method used for Java
code on particular versions of the OS, sometimes it
might be necessary to run multiple repetitions of a
benchmark before making any measured runs. These
warm-up iterations are commonly used to benchmark
JIT-compiled languages. In our testing, we were not able
to measure the impact of this factor, but we believe it
is still worth noting, as we limited our evaluations to
kernels of a small size that could have been JIT-compiled
quickly without a noticeable overhead.

• Ambient temperature will have an effect on the perfor-
mance behavior of benchmarks, even when manually
ensuring the device temperature stays within a work-
ing range before making instrumented runs. Keeping
ambient temperature constant and reporting its value can
yield reproducibility improvements.

• Forcing the release of memory used by the bench-
mark after each run, as well as the Java garbage col-
lector, helps create a more controlled testing environ-
ment. The probability of garbage collection passes dur-
ing the execution of a benchmark is greatly reduced,
and memory usage stays constant across iterations. Pre-
vious works [26] go even further, recommending re-
randomizing the memory layout of code, stack and heap
objects at runtime in order to ensure normally distributed
results.

• If manually controlling temperature at the same time
as warm-up runs are used to force processor frequency
up, the interaction between both must be considered.
Cool-down has to be done before the following warm-
up, and the period of cool-down needs to bring the device
to a lower temperature level than ordinary to account
for a following warm-up process. The lower threshold
of temperature should be tweaked such that there is
enough headroom to benchmark several repetitions after
warm-up without hitting the upper threshold again. Oth-
erwise, most of the time will be spent managing temper-
ature and frequency, and not running benchmarks.

• Warm-up runs intended to increase processor frequency
must be bounded, so that they do not produce the oppo-
site effect: Increasing temperature until thermal protec-
tion mechanisms are triggered.

• Device temperature, frequency governors and proces-
sor frequency data in Android is accessed through
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device-dependent paths in the underlying Linux file sys-
tem, so implementing many of the proposed methods
require some amount of previous exploration of the
device in which benchmarks will run.

• Sensor data is expressed in varying units among devices,
and some sensors always return invalid values. Cur-
rently, it is important to check these features and make
sure to use the right sensors on each device. A standard-
ized cross-platform API to query these sensors would be
of great utility in this context.

• Temperature and frequency-controlling processes add a
considerable overhead to benchmarks in terms of total
required time to run a certain number of tests, as we
show in Sect. VI. In some situations, we may discover
that one or more of these processes are not making a
noticeable impact on reliability, and more repetitions
could have a greater benefit than granular control over
the environment where they run.

• Starting in Android 9.0, new application power manage-
ment features allow users to restrict certain applications
from running in the background. Application developers
looking to execute a benchmark with no root access
could benefit from restricting every other application in
the system to reduce interference.

V. RANCID FRAMEWORK
A. RELIABLE BENCHMARKING FRAMEWORK
DESCRIPTION
Implementing the large set of systematic error prevention
strategies presented in Sect. III and IV in an ad-hoc way
for each benchmark would be a largely impractical task.
We believe these strategies should be benchmark-agnostic
and independent from the code to evaluate. For that reason,
we have designed and implemented a modular and exten-
sible benchmarking framework that aims to provide a sim-
ple and powerful reliable benchmarking interface to appli-
cation developers4. Its goals are to split application logic
from the benchmarking methodology, to bring a simple and
very flexible interface to developers for obtaining, process-
ing and exporting the metrics relevant for their benchmarks,
to automate and hide the complexity of making reliable
measurements and designing computational experiments on
mobile platforms, and to provide the infrastructure to test and
compare novel benchmarkingmethodologies on any platform
supported by Java.

The design of this framework is very flexible so that it
can accommodate benchmarks with particular requirements
of any kind, as well as extensible to allow users to build
on top of it and easily get new features integrated. At the
same time, it provides a rich set of default components, which
can be built upon over time, allowing the creation of most
benchmarks with very little effort. Flexibility is important
because it is impossible to enumerate all the methodologies
that could potentially be used to do the experimentation.

4https://github.com/HPC-ULL/Rancid.

Furthermore, we want to make other benchmarking method-
ologies possible to achieve within the same framework. This
way, applications can swap between them seamlessly and
direct comparisons between methodologies can be obtained.
For example, applications that monitor system parameters
and change their behavior depending on them could not be
directly evaluated using our methodology if these parameters
coincide. In these cases, conflicting aspects of the method-
ology could be omitted or, more importantly, the ability of
setting system parameters could instead be used to evaluate
the application in various specific circumstances.

Other frameworks with similar objectives are Google
Caliper [13] and OpenJDK’s Java Microbenchmarking Har-
ness (JMH) [12]. These frameworks provide annotation-
based APIs to developers, helping reduce the learning curve.
Rancid, on the other hand, aims at a higher level of config-
urability without compromising on usability, so it exclusively
uses an object-oriented interface. It provides dynamic control
over the benchmarking process, through its ability to modify
its runtime behavior and set up dynamically produced param-
eters. It can be used as a platform on top of which to build
more feature-rich benchmarking tools, without losing the
ability to be tailored to specific platform conditions in order
to provide the most reliable measurements. Both of these
alternatives have very rich backends that could implement
some or all of the ideas in ourmethodology, but this is far from
straightforward, since allowing that type of customization
was not a main consideration in their design.Whereas Caliper
and JMH focus on solving the issue of avoiding common
microbenchmarking pitfalls, Rancid focuses on providing
flexibility in terms of how these are executed and how the
underlying system and hardware is manipulated in order to
ensure a stable execution environment. Furthermore, Rancid
has been designed with issues on mobile environments at the
core, but the alternatives are focused on classic architectures
and their integration in Android is not straightforward.

FIGURE 12. Main components of the Rancid framework.

Fig. 12 shows the basic structure of our Rancid frame-
work. Its main functions are separating the way benchmarks
are executed and evaluated from their implementation, and
providing a platform on top of which benchmarking method-
ologies can be tested, evaluated and compared, and swapped
easily depending on which the fittest is on every environment.
Developers only need to provide implementations and param-
eters, as well as setting up how theywould like the benchmark

VOLUME 8, 2020 143351



S. Afonso, F. Almeida: Rancid: Reliable Benchmarking on Android Platforms

execution to be carried out, and our framework provides a
large set of reusable and extensible tools that greatly reduce
the work required to obtain and analyze reliable metrics from
repeated executions of a piece of code. The main components
of our framework are the following:
• BenchmarkManager: Manager class able to handle
and run several benchmarks, and report aggregated
Results back. It is composed of a set of Benchmarks,
Meters, ResultsProcessors and ResultsLoggers. Online
processors and loggers run after each combination of
BenchmarkConfiguration and Parameters, whereas the
global ones only run after each completed Benchmark.

• Benchmark: It contains a set of BenchmarkConfigu-
rations and Parameters. Each combination of these is
executed and processed by the online loggers and pro-
cessors of the parent BenchmarkManager, where results
are aggregated as well.

• BenchmarkConfiguration: A configuration is a pair
of BenchmarkRunner and BenchmarkImplementation.
It ties implementations of a benchmark with the way in
which their execution should be handled.

• BenchmarkRunner: Runner class that is able of man-
aging the execution of any single BenchmarkImplemen-
tation given a certain set of Parameters. Its function is
to handle external factors that could impact results.

• Meter: Measurement class used in order to obtain met-
rics from running benchmarks. Users could create their
own Meters to measure any relevant property of the
benchmarked code.

• ResultsProcessor: Analysis interface for Results. It can
be used to calculate averages, histograms or any other
type of metric from data produced by Meters and pre-
viously run ResultsProcessors. It has the ability to read
and modify Results, so apart from adding new nodes it
can modify or delete them. This is useful for discarding
outliers or warm-up runs. Each analyzer processes the
complete set of Results specified, depending on if it is
working online or globally, in the order they were added
to the parent BenchmarkManager.

• ResultsLogger: The Results logging interface. Its pur-
pose is to output benchmark results as they are produced,
always right after analyzers have processed them. Their
output can be directed to a file for further processing.

• Parameters: A set of parameters, intended to be used
in a benchmark run. The user defines the names and
values of each parameter in a parameter set, and the
corresponding implementation should retrieve and use
them as input. They must not be modified, so that fur-
ther executions do not result on different outcomes or
behavior.

• BenchmarkImplementation: The implementation of a
benchmark, or the code that is to be benchmarked. Users
define their implementation by indicating how to set it
up from a set of parameters, how to finalize it and what
the code to instrument is. This way, we avoid as much
as possible measuring anything else than the developer

wants to, and we allow using any regular code from the
application without changes.

• StopCondition: Interface for classes representing stop
conditions, or logic for decidingwhether to keep running
a certain benchmark or stop. As each combination of
BenchmarkConfiguration and Parameters is executed
repeatedly, we need to indicate how many times this is
done. Stop conditions may be based on total runtime,
number of repetitions, confidence interval width or any
other property of the partial results.

• Results: Results for a benchmark are stored in a recur-
sive hierarchical structure based on nodes which can be
lists, key-value maps or single values. By default, the
levels used are MultiBenchmark, Benchmark, Parame-
terSet,Metric or Analysis, and Value.

Users are expected to create their own BenchmarkImple-
mentation subclasses, and often define their own Meters.
Other main components like the BenchmarkManager,
Benchmark,BenchmarkConfiguration,Parameters orResults
should be usablewithoutmodification for any purpose. In cer-
tain cases, users may want to define their own ResultsProces-
sors, StopConditions, BenchmarkRunners or ResultsLoggers,
when they need functions that are not already present in our
framework. Some of these may include logging results in a
certain format, calculating specific metrics from benchmark
results or preventing errors by considering external factors
during benchmarking.

However, our framework already provides a large num-
ber of predefined components that reduce the likelihood of
developers to have to implement their own. They can select
the components they need to design their benchmarks, easily
replacing them as they discover new needs or limitations of
their approach. Some of these components, which can be
extended in the future, are:

• BenchmarkRunners:ModularBenchmarkRunner. This
runner can be configured to execute any list of actions
in any order specified, separated by actions to run
before each benchmark, before each repetition, after
each repetition and after each benchmark. Apart from
the provided actions (PrintAction, SleepAction,WarmU-
pAction, CoolDownAction, FileWriteAction, Compos-
iteAction, ConditionalAction), users can easily define
their own.

• Meters: ExecutionTimeMeter, SucessfulRunsMeter,
FileContentsMeter. These meters are provided to easily
get started, but care should be taken in order to measure
the right value. Execution time meters should be added
last to the list of meters, so they do not measure the
overhead added by other meters.

• ResultsProcessors: ArithmeticAverageAnalyzer, Max-
Analyzer, MinAnalyzer, StdDeviationAnalyzer, Histog-
ramAnalyzer, SumAnalyzer, WarmUpIterationsFilter,
WindowIterationsFilter, InvalidRunsRemover, Result-
sRemover. Some processors are designed to read results
and produce new nodes which are added to the global
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Results object, whereas others carry out the task of
replacing or removing nodes.

• ResultsLoggers: HumanReadableResultsLogger, Json-
ResultsLogger, XmlResultsLogger. The human-readable
results logger is designed to be used as an online logger,
showing results as they are obtained. The others can be
used to generate data files to be further processed or
plotted.

• StopConditions: ErrorStopCondition, FixedIterations-
StopCondition, ElapsedTimeStopCondition, {And, Or,
Negate}StopCondition. We provide common stop con-
ditions and a set of logical operators to combine them
and construct more complex expressions.

B. USAGE EXAMPLE
At aminimum, in order to use ourRancid framework, the user
only needs to create the implementation of the code they
want to benchmark and set up the desired components around
a single BenchmarkManager. Fig. 13 illustrates how a user
would implement a Gaussian Blur benchmark based on their
own implementation of this algorithm.

FIGURE 13. Example implementation of a Gaussian Blur benchmark.

After defining the Gaussian Blur benchmark implementa-
tion, a developer would need to define the whole execution
properties of the benchmark using provided or custom com-
ponents, as shown in Fig. 14. This is a very modular approach
that, once set up, allows easy tweaking and reuse.

Lines 9-14 define a condition that will stop when another
two stop conditions both meet. One of these specifies a fixed
number of iterations, whereas the other depends on the mea-
sured execution times to reach a certain coefficient of varia-
tion within the last repetitions. Lines 16-22 create a bench-
mark runner that uses the previously defined stop condition,
and that adds a one second pause preceded by a message
before running each benchmark. In lines 25-31, we create

FIGURE 14. Example benchmark configuration.

a new benchmark configuration from the runner we created
above, and an instance of the Gaussian Blur implementation
defined in Fig. 13. This is the only required configuration that
we would need to add for additional benchmarks. If there
were multiple implementations of the same algorithm we
wanted to compare, we would create a configuration for each
of these and add them to the same Benchmark.
Lines 34-42 create two sets of parameters used in

the implementation of the benchmark. To be noted is that the
names used when creating parameter sets must match the
ones used to retrieve their values in the implementation.
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These parameter sets are then added to the benchmark. Lines
45-61 create the benchmark manager to which the previously
constructed benchmark is added, along with an execution
time meter and a set of analyzers and loggers. Benchmarks
start running when line 64 is executed, which returns the
Results object for additional processing if needed.

By creating a custom BenchmarkRunner or adding the
right actions to a ModularBenchmarkRunner, we can imple-
ment all the processes explained in Sect. III and IV-A to create
a much more reliable benchmarking procedure on Android
devices. Furthermore, ideas mentioned in Sect. IV-B can be
trivially implemented as stop conditions or processors.

Since our framework is not dependent on particular
Android features, it can be used for benchmarking code in any
other system, so custom runners for reliable benchmarking on
these other systems can be implemented as well. Although
Java code is the easiest to instrument using this framework,
implementations can be created in any language that can
interface with Java. C/C++ is one of these cases, with the
JavaNative Interface (JNI) being the standardway of commu-
nication. Using native code as a bridge, other programming
models can be benchmarked as well. We evaluated Java,
C/C++ and OpenCL implementations in order to demon-
strate the flexibility of this system.

VI. FRAMEWORK EVALUATION
A. SINGLE BENCHMARK EVALUATION
We evaluate the effectiveness of the Rancid framework, pre-
sented in Sect. V, by comparing execution times on 2 hour
benchmark executions of a Gaussian Blur kernel imple-
mented in Java, C/C++ and OpenCL on each of the hardware
platforms presented in Sect. II-B, using a single 3840 ×
2160 (4K UHD) pixels input image. For each of these cases,
we run a managed version that implements all applicable
error countermeasures as described in Sect. III and IV, and
a baseline, which represents a naive benchmark execution
taking no specific measures against error.

In this section, we use the concepts ‘‘precision improve-
ment’’ and ‘‘performance improvement’’ to compare the
results obtained on baseline and managed benchmarks. Preci-
sion improvement refers to the achieved reduction in the sam-
ple standard deviation, whereas performance improvement
measures the reduction in median execution time obtained in
each benchmark. Significant variations in performance mean
skewed results, whereas variations in precision point to differ-
ing levels of background random noise. Ideally, our managed
benchmarks should be able to eliminate any skeweness and
significantly reduce random noise in order to obtain accurate
and reproducible results. However, these are independent
features and improvements in one do not necessarily have to
reflect in the other. Improvements in any of the two metrics
are beneficial, even if the other remains unchanged. The
baseline itself does not always suffer from significant random
or systematic error sources. In these cases, improvements to
the corresponding metric are not expected.

It is to be noted that the performance improvements we
find in our testing are not related to possible speedups of
the mobile application that is being benchmarked. These
improvements correspond to performance headroom avail-
able in the system that, if not properlymanaged, could prevent
achieving reliable measurements and comparisons during
benchmarking. The application developer’s task is to use
these reliably obtained measurements to inform application
optimization decisions that end users will take advantage of.

Our managed benchmarks use different countermeasures
against errors due to processor frequency, temperature, pro-
cessor affinity and background processes depending on the
capabilities of each device. Warm-up iterations, in cases
where the frequency governor could not be changed or forced
JIT compilation was necessary, were executed for up to
10 seconds or until processor frequency was at its maximum
value. Temperature thresholds over which manual cool-down
was introduced were chosen depending on the optimal work-
ing temperature range for each device, avoiding thermal
throttling without spending too much time cooling down the
device. Background applications were killed before starting
each benchmark, and the benchmarking thread was scheduled
onto high-performance cores in big.LITTLE architectures.
None of these methods are applied to the baseline. Table 2
shows a summary of the results we obtained and compares
the measured precision and performance of the baseline and
managed benchmarking methods implemented in the Rancid
framework.

TABLE 2. Summarized improvements on 2 hour benchmarks.

These metrics allow comparing the effectiveness of bench-
marking methods in terms of random noise and systematic
error reduction. Imprecision in the measurements can pre-
clude from extracting useful data, whereas skewness could
lead to wrong conclusions. Fig. 15 gives a graphical overview
of these results for ease of comparison. There, we can
intuitively see precision differences by comparing whisker
lengths and box sizes, and performance differences by look-
ing at the relative positions of the median markers.

Results show high increases in the precision of results in
the vast majority of cases. The outlier we find on the P8L
C/C++ benchmark is due to having obtained very precise
results in the baseline (σ = 2.35ms), though the added noise
on the managed benchmark is not very significant (1σ =
0.42ms). The Java case in P8L does not see great precision
improvements due to the same reason.
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FIGURE 15. 2 hour benchmarks results. Each subplot is scaled to the
minimum and maximum execution times of the baseline-managed pair.
Boxes represent the first and third quartiles, along with the median, and
whiskers extend to the 1st and 99th percentiles.

The general increase of precision results in a much more
robust foundation on top of which to achieve valuable
insights, because a lower dispersion allows making finer
grain comparisons between different results. With regards to
skewness correction ofmeasurements, results showmuch less
drastic improvements.

This is to be expected, since major systematic error sources
tend to be less common. The main reasons for treating them
are avoiding edge cases and compounding of errors. OpenCL
execution on the XU3 and P8L platforms sawmajor improve-
ments in performance and precision mainly due to the behav-
ior of their default GPU frequency governor, which tends to
change frequency levels often and spend significant portions
of the time on the lower levels.

Tests carried out in SXZ were impacted by temperature,
as seen in Fig. 10, and warm-up iterations helped maintain
slightly higher processor frequencies on average. On this
device only countermeasures that do not require root access
were used, showcasing again the effectiveness of the methods
described in Sect. IV.

B. ERROR EVOLUTION EVALUATION
In practice, benchmarks of small kernels are rarely exe-
cuted for very long periods of time, because it would be a
waste of resources. Measurements and error of well-behaved
benchmarks stabilize and, when they do, further measure-
ments will not vary results. Previous results in this paper
have focused on long executions that represent cases where
many kernels, implementations or parameters are evaluated
in sequence on the same system, so factors that increase their
importance over time, like temperature, can be demonstrated

and evaluated. Benchmarks, however, should only run for
as long as necessary until the actual measurements have
provided a certain confidence that they are representative.

We evaluated the evolution of benchmark error over time
by comparing the running median execution time, obtained
for an amount of repetitions ranging from 1 to 1000, to a ref-
erence representative value obtained as the median of 2 hours
of benchmarking using our reliable methodology.

In addition, the inter-quartile range (IQR) evolution was
analyzed in order to assess the precision of results as more
repetitions are finished. Fig. 16 demonstrates the most repre-
sentative behaviors we observed.

FIGURE 16. Error and precision evolution graphs.

In these plots we represent the relative error between the
median execution time and the reference, and the IQR size
relative to the magnitude of the measurement. These values
are plotted for the baseline benchmark execution, as well as
the managed benchmark execution.

A well-behaved benchmark should show, in these graphs,
a progressive reduction of error until reaching zero and sta-
bilizing when enough experimental measurements are made.
It should also show IQR to decrease as more experiments are
done, until it reaches a stable level that represents the random
noise floor for that experiment.

The three basic behaviors we observed are represented by
each of the sub-figures:
• Steady reduction of error over time that converges
slightly away from the reference value. Fig. 16a is one
instance of this very common behavior. Even though the
baseline benchmark shows the type of behavior that was
expected, if we compare it to the managed benchmark,
we see that, after convergence, it suffers from a slight
deviation from the reference value. It shows that some
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TABLE 3. Reproducibility evaluation on 30 runs of 50 iterations benchmarks. Absolute and relative improvements over baseline are displayed.

systematic error source is present in the baseline. The
precision of the managed version is also higher than that
of the baseline.

• Error increase over time instead of decreasing, leading
to divergence and impossibility to obtain reliable results.
Fig. 16b shows how the baseline benchmark error and
dispersion increase over time instead of going down
and stabilizing. This is the type of effect that we expect
temperature to produce on these platforms. Ignoring the
impact of this problem makes it so that no amount of
executions will yield reproducible results. On the other
hand, the countermeasures we designed solve this prob-
lem in the cases we have studied.

• Quick convergence followed by a reduction in precision
and performance, to finally converge further away from
the reference value than initially. The behavior shown in
Fig. 16c is a worst-case scenario of how some systematic
error sources such as frequency governors can signifi-
cantly skew results in a way that is not easily detectable.
The baseline benchmark very quickly converges to a
35% error level over the reference, while maintaining a
very low IQR, to then see a dramatic increase in IQR
followed by an increase in execution time. It finally pro-
vides misleading results with a high level of confidence,
after a final reduction in IQR, in contrast to our managed
benchmark that quickly converges to a 0% level of error
in this case.

Generally, we find that themanaged benchmarkingmethod
is more reliable at reaching the reference value, while achiev-
ing a higher precision. It also consistently displays the
expected behavior of a progressive reduction of error and
IQR as more repetitions are executed, without significant
increases after the first few repetitions. This shows that it is
not enough to run tests more times in order to obtain more
reliable and precise results, but a correct management of the
intrinsic error sources of the system is required as well.

In terms of deciding what amount of repetitions is suffi-
cient, what Fig. 16 shows is that a fixed amount or a target
precision value are not enough. It appears to be preferable to
run until both median execution times and IQR stabilize.

C. REPRODUCIBILITY AND RELIABILITY EVALUATION
The ultimate goal of our methodology is to improve the repro-
ducibility of benchmark measurements on mobile platforms,

helping add scientific rigorousness to these evaluations. Our
results have shown the gains in precision and accuracy our
methodology is able to achieve on individual benchmarks,
but we need to assess its effectiveness in terms of producing
the same results on separate independent repetitions of a
benchmarking experiment as well.

To that end, we reproduce on each of our testing platforms
a set of 30 independent benchmark executions, each corre-
sponding to individual application launches, for our Java,
C/C++ and OpenCL implementations of Gaussian Blur and
Pattern Thinning [27] kernels, which run for 50 iterations
each. The amount of iterations of each benchmark has been
chosen as a more realistic limit that should be able to pro-
vide statistically significant results. We demonstrate that our
methodology and framework help obtainmore reliable results
independently of the kernel being evaluated.

Table 3 summarizes the performance and precision impro-
vements we obtained across benchmark executions. Values
are aggregated from a single benchmark execution of 50 iter-
ations, and those are further summarized across all 30 bench-
mark repetitions before being compared. The median and
standard deviation of the median execution times on each
managed benchmark execution are compared to the corre-
sponding ones obtained in the baseline execution. In that
table, we present relative and absolute improvements in
performance and precision as reproducibility improvement
indicators for Gaussian Blur and Pattern Thinning kernels,
highlighting cases with over both 1 ms and 1% difference in
performance or precision.

These reproducibility results show that our methodology
improves the precision across most of the execution times
measured during our benchmarking. This means that inde-
pendent repetitions of a benchmark, given the same initial
state, will report significantly more consistent values. We
believe that, because these improvements are a consequence
of a more stable system, most other metrics that can be
extracted from these executions will be consistent as a result.
At the same time, our methodology makes some signifi-
cant improvements to performance, due to a reduction of
the weight of the systematic error sources present in the
system. We observe this improvement especially on the Pat-
tern Thinning kernel, which is more compute intensive. This
improvement comes mainly from the ability of fixing proces-
sor frequency and using performance cores on big.LITTLE
architectures. However, in the SXZ case, where none of these
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options are available, we manage to get marginal improve-
ments that increase with larger kernels. Precision improve-
ments, however, are still very significant for most of our
benchmarks.

Benchmarks running on the XU3’s CPU, however, show
that our methodology can, in some cases, introduce new
sources of error that revert any improvements we were able
to get. Looking at the results of each benchmark execution,
we found that our methodology significantly increases the
precision within each execution, but the aggregated results
have a larger variation across independent executions, reduc-
ing reproducibility. This is one of the anomalies we study in
Sect. VI-D. There is still room for improvement with regards
to these types of anomalies, but we believe the advances we
have achieved are an important first step towards improving
the current state of benchmarking on mobile architectures.

D. ANOMALIES
Despite our best efforts to control every system parameter
with a significant impact on benchmark results within our
methodology, we have found evidence of other unidentified
error sources, as well as counterintuitive behaviors we have
not been able to explain. We illustrate these in Fig. 17.

FIGURE 17. Main anomalies found within our experimentation.

Although our methodology significantly increases the pre-
cision of a single C/C++ Pattern Thinning benchmark on
the XU3, we found that it also reduces the reproducibility
of the obtained results when the benchmark is executed sev-
eral times. After running several of these managed two-hour
benchmarks we observed a few different behaviors that we
summarize through three results in Fig. 17a. Many of the
benchmarks showed the behavior of the black bar, in which
there appears to be a baseline execution time and some outlier
values that go over. However, the baseline was slightly differ-
ent on each execution, taking values within a 15 ms range.
In other occasions, the execution time would frequently jump

between two different performance levels, which in very few
cases would stabilize during the execution of the benchmark.
Our observation is that execution times seem to fall within a
few well-defined steps, like these that result from changing
processor frequency. Given that processor frequency was
fixed, we believe that memory frequency could be the culprit.
As we have not found a way to measure or fix memory
frequency in that device, we are not able to give a definitive
answer to this anomaly.

On the other hand, evaluating the effects of manually
setting the processor affinity while executing GPU codes
on the P8L, we came across another unexpected behavior.
In Fig. 17b, the average execution times for the Pattern Thin-
ning kernel on GPU using OpenCL are shown for each avail-
able processor frequency together with the average memory
frequency they used during each of these tests. What we find
is that little cores seem to produce better results than big
cores independently of the frequency they run at, but, at the
same time, the higher the frequency they run at, the lower
the execution time is. On the other hand, increasing clock
speeds to big cores only results in a performance reduction,
even if memory frequency gets significantly increased as a
result. Furthermore, big and little cores on this device are
the same model but behave differently at similar frequencies,
which we can see at around the 1400 MHz mark. Given that,
in the Pattern Thinning kernel, most of the CPU time is spent
waiting for the GPU to finish executing a simple kernel and
quickly checking a flag to decide if it should be executed
again, the variation we observe among CPU configurations
seems exceedingly large. Our guess as to why this anomaly
exists is that there must be a driver or hardware-level feature
that allows a lower latency of communication between GPU
and little cores. By testing several other kernels, it would be
possible to confirm if this behavior is application dependent.

VII. CONCLUSION
Benchmarking is a tool of great importance on the optimiza-
tion of compute-intensive codes. Classical desktop and server
platforms, coupled with relatively low overhead OS, tend to
maintain a stable behavior during these types of evaluations.
Mobile architectures, on the other hand, given their thermal
and power constraints, and due to the differing runtime exe-
cution modes of the applications written for them and the
design goals of their OS, show much more varying levels of
performance. This increased noise level makes the precision
of measurements significantly harder to improve to a level
where small variations on benchmarked code can be detected.

Recent advances on SoC technologies have made their
computational capabilities much greater, widening the types
of applications they are able to interactively execute. Some
of these heavier applications include image processing, com-
puter vision and artificial intelligence kernels. Reliably mea-
suring the performance of such kernels through benchmark-
ing is increasingly important, but the current state of the
art oversimplifies the required benchmarking procedure by
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implementing straightforward techniques that have previ-
ously proved sufficient on classical systems.

In this work, we have identified the main systematic
sources of error on mobile platforms that must be properly
treated in order to avoid misleading benchmark measure-
ments. We have provided with direct and indirect methods of
reducing the impact of these error sources, as well as other
random errors, increasing the precision and reproducibil-
ity of benchmarks for any application on these platforms.
Although there are still other errors that need to be inves-
tigated, our experimentation shows that our methodology
greatly improves the precision and reliability of benchmarks,
on long and short runs equally. We recommend running
multiple independent benchmark executions, each of them
until the metric to measure and precision converge. This way,
anomalies such as the ones we found can be noticed, and their
impact on reproducibility reduced.

We have implemented our methodology in a modular and
extensible framework to make it very simple for application
developers to evaluate kernels of their applications in a repro-
ducible way. Our Rancid framework can be the foundation
for achieving reliable results on any platform, by adding
the particular error countermeasures associated to each of
these platforms. Advanced statistical analysis methods can
be included to easily extract relevant information from any
desired metric gathered through benchmarking.
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