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ABSTRACT Developing high data rate systems to meet the requirements of fifth generation mobile systems
has become crucial. Hybrid radio frequency/visible light communication (RF/VLC) has appeared as a
promising mechanism for achieving this objective. In hybrid RF/VLC, data rate maximization is subject
to constraints on bandwidth, power and the user association. The joint optimization problem of bandwidth,
power and user association to maximize the data rate is non-concave and obtaining an optimal solution
is difficult with conventional optimization algorithms. The existing solutions are based on a presumption
of at least one optimization variable. In this article, this issue has been overcome by solving the joint
optimization problem in hybrid RF/VLC with a deep Q-network (DQN) learning based algorithm, which
has been recognized as an efficient learning based mechanism for optimization. Our system model considers
one RF and multiple VLC access points (APs). The idle APs are also incorporated in the system model.
The application of DQN learning based algorithm is carried out by finding an optimal policy with the help
of an action-value function. As the data sets for the considered system are large, a multi-layered network
is used for approximating the action-value function estimator. Finally, a transfer learning based algorithm
has been proposed for maximizing the total data rate of the system for the case of a newly entering user
equipment (UE) that uses the information of the environment before the arrival of the new UE. Through
simulations, it is found that our proposed algorithms can lead to an improvement of more than 10% and
54% in the achievable sum-rate and number of iterations for convergence respectively as compared to that
obtained with existing conventional optimization algorithms.

INDEX TERMS Achievable sum-rate, access points, bandwidth, radio frequency (RF), visible light
communication (VLC), hybrid RF/VLC, power, user equipment, user association, deep Q-network (DQN)
learning.

I. INTRODUCTION
With the growing population of mobile internet users,
the requirement for data rate has seen an exponential growth
in the recent years. The use of conventional only-radio
frequency (RF) systems may fail to fulfill it satisfactorily
in the near future [1]. Telecommunication community is
searching for alternative techniques to fulfill it. Visible Light
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Communication (VLC) has emerged as an efficient candidate
in this regard [1]–[3]. It uses the deployed light emitting
diode (LED) based light sources to transmit data through
dimming of light, which is invisible to the eyes. VLC offers
several advantages like high data rate, lesser interference with
the co-existing RF devices, providing communication and
illumination simultaneously, efficient unregulated spectrum
usage, and efficient frequency reuse [3]. However, it has some
disadvantages like inefficiency of non-line-of-sight (NLOS)
components, which prevent it’s stand-alone deployment [4].
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As a solution to this problem, hybrid RF/VLC has been
proposed in the literature [5], [6].

Hybrid RF/VLCmerges the RF and the VLC networks into
a single hybrid system. A typical hybrid RF/VLC architecture
consists of some light sources, with each light source acting
as a VLC access point (AP) in an indoor set-up. This set-up is
supported by one or multiple RF APs. A user equipment (UE)
present in the indoor set-up is associated either with a VLC
AP or an RF AP for receiving data. The VLC AP offers high
data rate while the RF AP ensures uninterrupted communica-
tion during blockage of LOS VLC signals to a UE, or when
a UE is out of the coverage area of any of the VLC APs and
fails to maintain the minimum needed signal-to-noise-ratio
(SNR). In this manner, both the networks compensate for the
limitations of each other.

Apparently, hybrid RF/VLC systems belong to the class
of heterogenous networks (HetNets). In general HetNets,
the joint optimization of resource allocation and association
remains a significant research problem [7]–[13]. Similarly,
resource allocation is a significant research issue in hybrid
RF/VLC systems. Along with deciding the association of the
UEs with the APs to receive the downlink data, the allocation
of downlink bandwidth and transmission power to the APs
for data transmission affects the achievable sum-rate of the
system significantly. The study of optimal resource allocation
for achievable sum-rate maximization in hybrid RF/VLC
has received tremendous focus in research [14]–[28].
A common issue faced in these research works when the
joint optimization of the downlink bandwidth, transmission
power of the APs, and the association parameter are involved,
is the non-concavity of the downlink resource allocation
problem. Generally, this issue is solved by presuming values
for at least one of these parameters and then obtaining the
optimal values for the other parameters with conventional
convex optimization algorithms. However, performing the
joint optimization of all the three parameters without such
presumptions is needed, as the association of UEs depends
on their signal-to-interference-plus-noise ratios (SINRs) with
the APs. Hence, it is directly affected by the allocation of
downlink bandwidth and power and vice versa. Presuming
a value for downlink bandwidth, transmit power of APs, or
association parameter may not give the most optimal solution
for maximizing the achievable sum-rate of the system. A
comprehensive joint optimization problem incorporates the
effects of each optimization parameter on the other one and
on the objective function, which ensures a robust solution.

The above issue is the motivation behind the present study.
We aim at jointly optimizing the downlink bandwidth, power
and association parameter for maximizing the achievable
sum-rate of a downlink hybrid RF/VLC system. The prob-
lem is subject to constraints pertaining to the availability of
resources. Attempting conventional optimization approaches
to solve this problem may lead to rigid bandwidth and power
allocation as these approaches are less adaptive to the dynam-
ics of the network, and result into an inefficient exploitation of
resources [29], [30]. In contrast to this, a moment-to-moment

optimal usage of the resources would result into a better
output. It is also necessary that the optimal design for asso-
ciation and resource allocation in hybrid RF/VLC should not
depend on prior knowledge of the environment. Some model
based optimal solutions have been developed in [31]–[33]
for specific models in general HetNets. However, the pri-
mary concern with these methods is that the incomplete
information on the system makes the solutions intractable.
Also, obtaining global maximum for a resource allocation
problem is challenging with model based optimization meth-
ods due to it’s non-concavity. The solutions based on game
theory, linear programming, Markov approximation, college
admissionmodel, and dynamic programming proposed in [5],
[7]–[9], [15], [18], [24], need almost accurate information
which is not always possible to achieve practically, evenwhen
localization in VLC is relatively accurate.

In this article, a deep Q-network (DQN) learning based
algorithm is developed for jointly optimizing the downlink
bandwidth allocation, power allocation for APs, and associa-
tion parameter, which maximizes the achievable data rate in a
downlink hybrid RF/VLC system. The UEs can be associated
with any of the APs lying within their field of views (FOVs).
Unlike [34] where DQN was carried out at each AP, DQN is
trained at a central unit (CU) which controls the association,
allows all the APs to set their transmit powers and allocate
bandwidths to the UEs associated with them [35].

Our contributions in this article can be summarized as
follows:

1) Comprehensiveness of the problem: To the best of our
knowledge, a comprehensive problem incorporating
the joint optimization of association, power and band-
width in a downlink hybrid RF/VLC has been consid-
ered for the first time in this article. Such a problem is
neither convex nor concave. Making it convex requires
prior assumption of at least one optimization parameter.
Thus, it is difficult to solve with conventional optimiza-
tionmethods in the existing works. Here, this limitation
is overcome by solving it with DQN based learning.
The optimal solution obtained with the help of DQN
based learning is not dependent on modeling errors and
works on a moment-to-moment update.

2) Considering idle APs: Some APs can be switched off
due to hardware malfunction while some APs may
not take part in communication as only selected APs
have been designed for VLC. Such APs do not cause
interference to a UE. Considering interference from
these APs can affect the robustness of the analysis. Our
mathematical model considers idle APs in the SINR
expression. Such formulation improves the practicality
of the system model.

3) Novel DQN based resource allocation in hybrid
RF/VLC: For the first time, a DQN based learning
algorithm is being used for solving the optimal resource
allocation and association problem in hybrid RF/VLC.
Our developed algorithm allows the CU to adap-
tively allocate the downlink bandwidth, power and the
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association parameter to the APs to maximize the
achievable sum-rate of the system. It is not dependent
on interaction among the UEs. A DQN based learning
algorithm is trained at the CU, instead of training the
DQN at each AP. This helps in providing an efficiently
coordinated association. As the state and action vectors
are very large in such problems, the application of DQN
outperforms the existing algorithms in terms of achiev-
able sum-rate and the number of iterations needed for
convergence.

4) Study the application of DQN with transfer learning:
The successful application of DQN with transfer learn-
ing has been shown for a newly entering UE in the
hybrid RF/VLC set-up, where the experience of UEs
already present in the set-up is transferred to a new
UE entering into the set-up. It is found that DQN with
transfer learning reduces the number of iterations for
convergence by approximately 54% compared to when
DQN without transfer learning is used for a newly
joined UE.

The rest of the paper is organized as follows: In Section II,
a literature review of the existing works that have led to the
present work is performed. Section III explains the system
model, where the light propagation model, the RF signal
propagation model, the achievable data rate formulation, and
the communicationmodel obtained after the mixing of the RF
and VLC networks is discussed, and the resource allocation
problem is formulated. In Section IV, the solution for the
resource allocation problem is designed, where the frame-
work for learning has been formed and the layout of the
proposed algorithm has been written. Section V illustrates the
transfer learning based algorithm for the newly entering UEs.
In Section VI, the simulation results to verify our proposed
algorithms have been studied. The computational complexity
and the NP hardness of the proposed schemes have also been
studied in this section. Section VIII concludes the paper.

II. RELATED WORK AND THE SIGNIFICANCE OF THE
APPLICATION OF DQN LEARNING IN HYBRID RF/VLC
Efficient resource allocation and association can lead to
a higher achievable sum-rate in HetNets. The problem of
resource allocation becomes crucial in hybrid RF/VLC as RF
and VLC networks have completely different communication
models. Several resource allocation schemes exist for per-
forming achievable sum-rate maximization and related issues
like energy efficiencymaximization or packet loss probability
minimization [14]–[28]. In [14], the total achievable data rate
of a hybrid RF/VLC system is maximized by optimizing the
association parameter, with the help of minimum distance
condition. The focus of this work is on user association
where each AP allocates equal bandwidth among the UEs
associated to it. A fixed allocation of the transmit power of
the AP has been considered here. In [15], achievable data
rate maximization is performed with joint load balancing
and optimal power allocation in hybrid RF/VLC. A fixed
configuration of bandwidth has been taken here. In [16],

the effect of bandwidth allocation on the overall sum-rate of
the hybrid RF/VLC system has been studied. A bandwidth
aggregation protocol to useVLC for increasing the bandwidth
of the overall hybrid RF/VLC has been proposed. An optimal
packet scheduling scheme is also proposed for the data pack-
ets which arrive at the system for transmitting to the UEs via.
VLC or RF networks. The scheduling scheme has an impact
on the overall sum-rate of the system, as the final objective of
the work is throughput optimization. A fixed configuration
of power allocation and association parameter has been con-
sidered here. In [17], maximization of the total sum-rate in
hybrid RF/VLC has been carried out with joint balancing of
the individual achievable sum-rates of the information UEs
and the energy harvesting UEs. The power and the DC-bias
of the UEs are optimized while a constant bandwidth and
power allocation is considered for the APs. In [18], the focus
is on maximizing energy efficiency of a hybrid RF/VLC
system, which is defined as the ratio of the sum-rate and
the total operational power, to optimize the bandwidth and
power allocation. The system model of this work considers a
single RF and VLC AP each. The association parameter and
the bandwidth are kept fixed here. In [19], similar to energy
efficiency, power efficiency maximization of a hybrid mul-
tiple access scheme for visible light communication systems
has been studied which offers a better bandwidth allocation.
The fundamental objective here is to fill the odd subcar-
riers optimally. Once again, the association parameter and
the bandwidth are kept fixed here. In [20], power efficiency
maximization for situations when illumination is not needed
and the light source is kept on only for the transmission
of data has been performed. In this situation, a VLC AP
consumes more power than the RF AP. First, the number of
APs needed to be switched on for satisfying the illumination
requirements has been determined. Subsequently, the UEs
request for real-time communication. Resource allocation
remains outside the realm of this work as fixed bandwidth
and association parameter have been considered here. The
study in [18] has been further extended for multiple VLC
APs in [21], but for only optimal power allocation. A fixed
configuration of bandwidth and association are considered
here. The authors in [22] perform minimization of packet-
loss-probability in a fractional association time based dual-
hop hybrid RF/VLC system enabled with energy harvesting.
The fractional association time is based on time division mul-
tiplexing principle, where the entire bandwidth is allocated to
each UE for a specific time fraction. The objective of [22] is
to obtain the optimal fraction of association time allocated to
a UE. Further, in [23], the joint optimization of the fractional
association and power allocation has been studied in dual-
hop hybrid RF/VLC. In [24], the sum-rate has been maxi-
mized with a mobility aware load balancing scheme, using
the location-sensitive feature of VLC systems. The solution
is based on a college admission model in a matching theory.
A fixed configuration of association parameter and power
allocation has been considered here. In [25], the focus of
the work is on the achievable sum-rate maximization with
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an intelligent selection of the network among the RF and the
VLC networks depending on the dynamics of the environ-
ment. The study is performed on an uplink-downlink system
with main focus on the non-similarity in the uplink-downlink
parameters. The association parameter is optimized in terms
ofweighted proportional fairnesswhile the bandwidth and the
power allocation are kept fixed. In [26], the achievable sum-
rate maximization for hybrid RF/VLC system has been inves-
tigated in a cross layer domain to provide optimal association.
The solution depends on the effective capacity of the network
obtained after imposing constraints on the buffer length of the
data at the AP which holds the data before transmitting it over
the selected link. A fixed allocation of bandwidth and power
have been assumed here. In [27], the user association problem
with lighting constraints for a VLC only system has been
studied and a greedy algorithm for maximizing the SINR
based utility function has been proposed. Further, in [28],
anticipatory association scheme was proposed to anticipate
the future locations of the UEs with the aim of maximizing
the achievable sum-rate maximization. The association was
performed as per the locations of the UEs. A fixed bandwidth
and power allocation has been considered in [27] and [28].

As mentioned earlier, the existing works mentioned above
presume a value for at least one parameter among bandwidth,
power, and association parameter to address the issue of non-
concavity in their respective joint optimization problems.
However, such a presumption affects the robustness of the
solution. To address this issue, we explore into learning
based solutions. Reinforcement Learning (RL) [36] has been
realized as an efficient learning mechanism. It is based on
interaction with the environment and requires lesser prior
information. It is an online learning method and has been
extensively studied in artificial intelligence researches [37].
The most popular RL technique is Q-learning which was
proposed in [38]. The convergence theorem for Q-learning
was later proved in [39]. In [40], an autonomous Q-learning
algorithm in HetNets for optimal resource allocation for
device-to-device (D2D) communication has been proposed.
A utility function defined as the difference between the
achievable throughput and the cost of power consumption
is formulated as a stochastic non-cooperative game. Each
D2D pair is a player which becomes a learning agent with
a task to learn it’s best strategy. In [41], the association
problem in vehicular networks was solved by using an online
reinforcement learning approach. The authors take the advan-
tage of the regularities in the features of vehicular networks.
Ghadimi et al. proposed a reinforcement learning method to
obtain rate adaptation in cellular networks in [42]. However,
it should be noted that obtaining an optimal solution with Q-
learning method is difficult when the state and action vectors
of the joint optimization problem are large. In this regard,
deep learning [43] has emerged as a promising technique to
solve problems with large state and action vectors. Recently,
deep learning-based methods have been used in many areas,
such as dynamic channel access [44], power allocation [45],
mobile offloading [46], cloud radio access networks [47],

interference management [48], mobile edge computing and
caching [49]. We first discuss the usability of deep learning
in communication networks.

As the use of machine intelligence into future mobile com-
munication networks is drawing tremendous research inter-
est [50], [51], a flag ship of machine learning, deep learning
is drawing tremendous research interest of communication
networking researchers. In [52] and [53], it’s potential to
solve problems in the mobile networking domain has been
explored. This encourages the use of deep learning in 5G
mobile communication systems, which are largely heteroge-
neous. The data generated in these systems are also hetero-
geneous to a large extent, as they are received from sources
of different formats having complex correlations [54]. Solv-
ing these problems with traditional machine learning tools
is quite difficult, mainly because of no improvement in
performance with more data [55] and inability to handle
high dimensional state/action spaces [43]. In contrast, big
data fuels the performance of deep learning, as it eliminates
domain expertise and employs hierarchical feature extrac-
tion. Thus, deep learning has become an efficient candidate
for solving problems in communication networks, particu-
larly in heterogeneous systems. In this regard, a detailed
account of researches on the applications of deep learning
in communication systems can be found in works like [56],
where deep learning approaches for network cybersecu-
rity have been discussed, [57] which reviews deep learning
approaches for network traffic control, [58] which presents
deep learning approaches for physical layer modulation,
network access/resource allocation, and network routing,
and [59] which presents deep learning approaches for emerg-
ing issues including edge caching and computing, multiple
radio access and interference management. The most sig-
nificant advantage offerred by DRL is that it can obtain
the solution of sophisticated network optimizations, enabling
network controllers like base stations to solve non-convex and
complex problems like joint user association, computation,
and transmission schedule, and achieve optimal solutions
without complete and accurate network information. Some
of the major advantages offered by deep learning in commu-
nications are as follows:
• Deep learning ensures network entities to learn and
create knowledge about the communication environ-
ment. For instance, by using deep learning, network
entities like UEs can learn optimal policies, like AP
selection, channel selection, handover decision, caching
and offloading decisions, without knowing the channel
model and mobility pattern.

• Deep learning enables autonomous decision-making.
It enables the network entities to observe and obtain
the best policy locally with minimum or without infor-
mation exchange among each other. This significantly
reduces communication overheads. It also improves
security and robustness of the networks considerably.

• Deep learning improves the learning speed significantly,
particularly where large state and action spaces are
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involved. Hence, in large-scale networks, deep learning
allows network controllers like base stations or APs to
control dynamic user association, spectrum access, and
transmit power for a massive number of devices and
UEs.

• Deep learning has also been found efficient in solving
game theory problems also. Several crucial problems in
communications and networking such as cyber-physical
attacks, interference management, and data offloading
can be modeled as non-cooperative games. Deep learn-
ing has been recently used as an efficient tool in finding
the Nash equilibrium, without complete information.

In a major development in this direction, it was found that
combining deep neural network (DNN) with Q-learning can
improve the learning performance and learning speed [60].
This system is called DQN. Developing a DRL- or DQN-
based learning method for joint resource optimization is a
new research direction in HetNets. For example, recently
DQN based learning has been used specifically for base
station activation in [62]. Further in [63], a post decision
state based experience replay and transfer RL algorithm for
low latency and high reliability has been proposed, for maxi-
mizing energy efficiency in hybrid RF/VLC networks. Some
learning based works in hybrid RF/VLC have also been pro-
posed in [25], which use RL with knowledge transfer based
scheme for the selection of the network among the RF and the
VLC networks, depending on the dynamics of the environ-
ment. However, hybrid RF/VLC systems generally involve
large state and action spaces. RL algrithms perform well for
small-size models but perform poorly for large-scale models.
For such cases, DQN learning can efficiently maximize the
Q-value by approximating the action-value function from
the current state. However, it has still remained unexplored
for finding optimal resource allocation in hybrid RF/VLC
systems.

FIGURE 1. Hybrid RF/VLC system.

III. SYSTEM MODEL
Fig.1 shows the system model considered in this investiga-
tion. The set-up contains multiple VLC APs (light sources)
and a single RF AP deployed on the ceiling of a typical room
as shown in the figure. The CU is co-located with the RF AP

system, which is responsible for controlling the network, viz.
bandwidth allocation for the APs, transmit power control of
the APs, and association of the UEs with the APs, with the
help of the DQN algorithm. The users carrying the UEs are
shown arbitrarily present on the floor of the room. A newly
entering user carrying a UE is also shown at the border-line
of the floor of the room. Let N be the set of APs indexed
as i = 0, 1, 2, . . . , |N |. Index i = 0 denotes the RF AP
while indices i = 1, 2, . . . , |N | − 1 denote the VLC APs.
Let M be the set of UEs present inside the room indexed as
j = 1, 2, . . . , |M|. The UEs are considered to be at height
h from the floor. The downlink communication to a UE is
done through the VLC and the RF networks. Each UE is
associated to the RF AP or a VLC AP. VLC APs reuse the
same bandwidth. Thus, inter-cell interference (ICI) is present
in the VLC network. The investigations will be performed
on a reference AP i -UE j pair for downlink communication.
The data communication between VLC APs and the RF AP
is done through a backhaul circuit [64]. The backhaul circuit
also performs the underlying circuitry operations. A non-
coordinated transmission has been considered in this set-up.
When associated with a VLC AP, a UE receives data with
LOS and reflected light ray components.

A. LIGHT PROPAGATION MODEL
The VLC APs transmit data to UEs on the donwlink. The
light propagation in the VLC is modeled with diffused reflec-
tion, where the light ray incident on a surface is scattered at
multiple angles. The optical power of light after undergoing
diffused reflection is modeled by the Lambertian law [65] and
is given as

Po(φ) =
m+ 1
2π

cos
m
(φ)Pi, for i ∈ N \{0}, (1)

where Pi is the total LED power, φ is the angle of irradiance,
m denotes the order of Lambertian radiation profile expressed
as

m = −
ln 2

ln cosψ1/2
, (2)

where ψ1/2 is the semi-angle at half illuminance of the LED.
Let the LED emit light with wavelength λ and spectral power
distribution Pi(λ), Pi can be expressed as

Pi =
∫
λ

Pi(λ)dλ. (3)

From (1), the LOS DC channel gain Gvij for the downlink
communication from the ith VLC AP to UE j is obtained as

Gvij =
(m+ 1)Apdcosmφij cosψijTopt(ψij)g(ψij)

2πd2ij
, (4)

where Topt(ψij) is the gain of the optical receiver filter and is
unity or a constant value within the FOV of a receiver, φij is
the angle of irradiance at AP i, ψij is the angle of incidence at
UE j, and dij is the distance between AP i and the UE j. g(ψij)

149416 VOLUME 8, 2020



S. Shrivastava et al.: DQN Learning Based Downlink Resource Allocation for Hybrid RF/VLC Systems

TABLE 1. Meanings of important notations.

is the concentrator gain given as

g(ψij) =


n2

sin2ψFOV
if 0 ≤ ψij ≤ ψFOV

0 if ψij > ψFOV,

(5)

where n is the refractive index given as
n = speed of light in vaccum

speed of light in that optical material , and ψFOV is the angle of
FOV of the receiver UE.

Next, the channel gains of NLOS reflected light compo-
nents received by the photo diode (PD) at a UE have been
computed. The lth reflected light ray component is a light
ray coming from the (l − 1)th reflecting point. The (l − 1)th
reflecting point acts as a virtual light source and the lth
reflecting point becomes the virtual receiver. Investigations
in [65] find that the effective DC channel gain of the light ray
undergoing various reflections GEffRef, is the cummulative of
the channel gains between all the pairs of reflecting points.

Mathematically,

GEffRef =

∞∑
p=0

G(p), (6)

where p denotes the index of reflection, G(p) is the DC chan-
nel gain after the pth reflection from the source LED which
can be further expressed as

G(p)
=

∫
S
G1G2 . . .Gp+1P(p)q dAs, (7)

where dAs is the infinitesimally small reflection surface area,
P(p)q is the optical power of the reflected light ray compo-
nent after p reflections emitted from the qth transmitting
VLC AP. The infinitesimally small area of the wall sur-
face is considered as the variable for the above integration.
G1,G2, . . . ,Gp+1 are DC channel gains of the path traced by
each reflected component and are expressed as [65]

G1 =
(m+ 1)As
2πd21

cosm(φ1) cos(ψ1),

G2 =
As
πd22

cosm(φ2) cos(ψ2),

.

.

.

Gp+1 =
As

πd2p+1
cosm(φp+1) cos(ψp+1)Topt(ψp+1)g(ψp+1),

(8)

where As is the incidence surface area, φb and ψb
(b = 1, 2, . . . , p+ 1) are the irradiance and incidence angles
at the bth reflection (b is a dummy variable). In (4), Gvij is
the DC channel gain between ith VLC AP and the PD based
jth receiver. On the other hand in (8), G1 is the channel gain
between the ith VLC AP and the first reflecting point, G2 is
the channel gain between the second and the third reflecting
points, and similarly Gp+1 is the channel gain between the
pth reflecting point and the receiver PD. The channel gains at
all the reflecting points are nearly in the same mathematical
form. Gp+1 is the function of Topt and g(ψp+1) as Topt and
g(ψp+1) are properties of the receiving PD and Gp+1 is the
gain relating the last reflection point and the receiving PD.

Let 0p(λ) be the spectral reflectance of the material at the
pth reflecting point, then P(p)q is given as

Ppq =
∫
λ

Pi(λ)01(λ)02(λ) . . . 0p(λ)dλ. (9)

All the sufaces of all the reflecting points are assumed to be
composed of the same material. As 0p is a function of λ, thus,
it is assumed that 01(λ) = 02(λ) = . . . = 0p(λ) = 0.
The effective recieved optical power Peff from a single

LED will be the sum of the LOS and the NLOS components
and is expressed as

Peff = GEffRefPi + GvijPi = GijPi for i ∈ N \{0}, (10)
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where Pi is the power transmitted by VLC i and
Gij = GEffRef + Gvij is the effective channel gain between
AP i and UE j for i ∈ N \{0}.

B. RF SIGNAL PROPAGATION MODEL
The signal received by UE j from the RF AP follows the
RF signal propagation model, where the power channel gain
includes fading as well as path loss. The received RF signal
power is modeled using the WINNER-II channel model [66]
given as

G0j = Ld
−pl0j
0j χ0j, (11)

where χ0j is the Nakagami fading channel, pl0j is the path-
loss exponent and d0j is the distance of UE j with the RF AP

indexed as i = 0. Here, L = 10X/10,X = M+N log10
(
fc
5

)
, fc

is the carrier frequency in GHz,M and N are the propagation
constants depending on the propagation model. In an LOS
environment, M = 46.8 and N = 20 while in a non-
LOS environment, M = 43.8 and N = 20. The Nakagami
fading channel χ0j has a gamma distribution fading power.
It is a general fading distribution. It approximates to Rayleigh
distribution when κ = 1 and Rician fading distribution when
1 ≥ κ ≤ ∞.

C. ACHIEVABLE DATA RATE
As the objective of our work is maximization of the achiev-
able sum-rate of hybrid RF/VLC systems, developing insight
on the achievable data rate of a UE, when it is associated with
RF or a VLC AP, is significant. During a UE’s association
with the RF AP, it’s achievable data rate will be expressed
by the Shannon’s capacity formula. On the other hand, when
a UE is associated with a VLC AP, it’s communication is
based on intensity modulation/direct detection (IM/DD) of
light. In this scheme, the signal amplitude depicts the instan-
taneous optical power. Consequently, there are constraints on
the signal to be real-valued and non-negative. Due to these
constraints, direct application of Shannon capacity formula
may not fulfil the purpose of obtaining the achievable data
rate.

The authors in [67]–[70] have investigated the capacity of
an IM/DD channel corrupted by the Gaussian noise. In [68],
investigations show that the channel capacity in VLC net-
works can be approximated by it’s lower bound as

C =
1
2
B log2

(
1+ w

ρ2P2eff
σ 2

)
, (12)

where w is a constant and is given as w = e/2π (e is the
Euler’s number), ρ is the responsivity of the PD, B is the
modulation bandwidth, Peff is the received optical power and
σ 2 is the Gaussian noise power. It was found in [68] that a
factor of 1

2 appears as a result of various constraints in VLC.
It was also found that the expression (12) is accurate and for
a high SNR, it is found to concur with the upper bound also.

D. COMMUNICATION MODEL
Each UE will receive data from the RF AP or from one of
the VLC APs. It’s association will be decided with the help
of the DQN based learning algorithm proposed ahead. Some
APs are likely to be idle and no UE will be associated with
them. For UE j associated with AP i for i ∈ N , the channel
gain vector will be written asGj = [G0j,G1j,G2j, . . . ,G|N |j]
where G0j ∈ C, [G1j,G2j, . . . ,G|N |j] ∈ R(|N |−1)×1

≥0 and
Gij ∈ Gj denotes the channel gain between UE j and AP i.
The signal transmitted by the APs will be represented in the
vector form as x = [x0, x1, x2, . . . , x|N |], where x0 ∈ R and
[x1, x2, . . . , x|N |] ∈ R(|N |−1)×1

≥0 . Remember that index i = 0
in the above sets denotes the RF AP. Let us consider that the
UE j is associated to AP i. When UE j is associated to AP
i = 0 i.e., the RF AP, it will receive signal yj expressed as

yj =
√
G0jP0 × x0 + nrj , for i = 0, (13)

where nrj is the additive white Gaussian noise (AWGN). On
the other hand, when UE j is associated with ith VLC AP, yj
will be expressed as

yj = ρjGijPixi +
∑

k∈N\{i}

ρjGkjPkxkDk (αkj′ )+ n
v
j ,

for i ∈ N \{0}, (14)

where ρj is as mentioned in (12), the responsivity of the
receiving PD at the UE j, nvj includes the shot noise and
thermal noise, and

Dk (αkj′ ) =

1−
∏

j′∈M\{j}
(1− αkj′ )

 , (15)

where αkj′ is an indicator function denoting the association of
the AP k with UE j′ such that

αkj′ =

{
1 if AP k is associated to UE j′

0 otherwise.
(16)

In (14), αij = 1 means UE j is associated to AP i. AP i - UE j
are the desired AP-UE pair while AP k is causing interference
at the jth receiving UE. The first term in (14) represents the
desired signal whereas the second term denotes interference.
Note that a conventional form of the expression does not have
Dk (αkj′ ) in the interference term. We multiply Dk (αkj′ ) in the
interference term to include the case of idle APs which are
not transmitting. It ensures that AP k is considered as the
interferer only if it is transmitting to at least one UE j′, where
j′ 6= j. The parameter αkj′ signifies the association of UE j′

with AP k . Dk (αkj′ ) = 0 and 1 if AP k is not transmitting and
transmitting to UE j′ respectively. This factor incorporates
the situation when an AP is momentarily switched off due
to hardware failure.

Following (12), (13), and (14), the instantaneous achiev-
able data rate at UE j for the input signal which is continous
and follows negative exponential distribution is expressed
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as [13]

rij =

B0j log2
(
1+ wγ0j

)
, for i = 0 and

1
2
Bij log2

(
1+ wγij

)
, for i ∈ N \{0},

(17)

where γ0j and γij are the lower bounds of SINR0j and SINRij
which are given as

SINR0j

=
P0G0j

N r
0B0j

, and

SINRij

=
ρ2j G

2
ijP

2
i

N v
0Bij +

∑
k∈N\{i} ρ

2
j G

2
kjP

2
k

(
1−

∏
j′∈M\{j}(1− αkj′ )

)2 ,
(18)

where B0j is the bandwidth of the RF AP (i = 0) - UE j
link and Bij is the bandwidth of VLC AP i - UE j link such
that i ∈ N \{0}. As only one RF AP has been considered in
the model, it is assumed that the RF signals suffer negligible
interference. Thus, when the UE j is connected to the RF
AP, we are interested in the SNR. However, for the sake
of consistency in notations, the SNR for RF AP-UE j link
is expressed as SINR0j. When UE j is connected to a VLC
AP, SINR will be of interest. Note that, any general mention
of SINR further will mean SNR in the case of RF signals.
Based on the above expression for instantaneous data rate,
the throughput of AP i can be formulated as

ri =
∑
j∈M

αijrij, for i ∈ N . (19)

E. THE RESOURCE ALLOCATION PROBLEM
This article aims for finding the optimal user association,
transmit power allocation for APs, and the optimal downlink
bandwidth allocation done by an AP for the UEs associated
with it. The resource allocation will be done for maximizing
ri obtained in (19). The resource allocation problem is formu-
lated as

P : max
Bij,Pi,αij

ri, for i ∈ N , j ∈M, (20)

subject to the following constraints:

C1 :
∑
j∈M

αijBij ≤ B
v
max, for i ∈ N \{0}, (21)

where Bvmax is the total bandwidth that can be allocated to
a VLC AP. The constraint in (21) illustrates that the sum of
bandwidths allocated to the UEs associated to VLC AP i for
i ∈ N \{0} cannot exceed Bvmax. Similar constaint is imposed
on the RF AP formulated as follows:

C2 :
∑
j∈M

α0jB0j ≤ B
r
max, for i = 0, (22)

The constraint in (22) shows that the sum of bandwidths
allocated to UEs associated with the RF AP cannot exceed

Brmax, which is the total bandwidth allocated to the RF AP.
The next constraint is imposed on the transmission power to
ensure the power budget saving and safety considerations for
the eyes. The transmission power of a VLCAP cannot exceed
it’s maximum available power Pvmax, formulated as

C3 : 0 ≤ Pi ≤ Pvmax, for i ∈ N \{0}, (23)

Similarly, the transmission power of an RF AP cannot exceed
it’s maximum available power Prmax formulated as:

C4 : 0 ≤ P0 ≤ Prmax, for i = 0, (24)

Additional constraints have been imposed on SINRij for
i ∈ N , j ∈M for achieving reliable communication. Let the
minimum level for SINR required by the jth UE from the ith
AP for successful communication be γij. Thus, the constraint
on the SINR is as follows:

C5 : SINRij ≥ γij, for i ∈ N , j ∈M, (25)

In the constraint C5, γij is the minimum threshold for
SINRij. For the calculations in this work, we consider
SINRij = γij. Equality is assumed here to carry out the opti-
mization of the variables Bij,Pi and αij. As the optimization
of Bji,Pi and αij will lead to the optimization of γij, taking
equality as

SINRij = γij (26)

facilitates the solution.
When the constraint C5 in (25) holds with equality, the fol-

lowing conditions are obtained for preventing SINR con-
straint voilation [11], [12]

1−
∑
i∈N

∑
j∈M

ξij > 0, and

∑
i∈N

∑
j∈M

βiξi ≤ 1, (27)

where

ξij =

(
1+

1
γij

)−1
, and (28)

βij =
N0Bij

(GijPi/γij)− N0Bij
+ 1. (29)

Constraints (25), (27), (28), and (29) are significant for
controlling interference in the system. It is possible that
the maximization of the achievable data rates for different
APs, namely ri, interfere with each other due to the inter-
AP interference. Thus, maximizing the achievable data rates
for different APs at the same time will be difficult. The con-
straint (25) ensures that a minimum SINR threshold for every
AP - UE pair is maintained. The minimum SINR threshold
has been denoted as γij. Putting a minimum SINR constraint
on each AP-UE pair ensures a cap on the interference caused
by the APs. When the interference from an AP increases to a
level that violates this SINR constraint at some UE, the DQN
learning mechanism will regulate the transmission power of
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the interfering AP in a manner that the SINR constraint is
satisfied. The constraint in (25) leads to the constraints in (27)
- (29), which are used to incorporate (25) in the algorithm
while solving the optimization problem. An AP will interfere
with the signals of another AP if the constraints in (27) - (29)
are violated. This process will be accomplished with the help
of the state space vector Sij formulated in the subsequent
section.

Note that the sum of logarithmic functions is concave in
nature. However, problem P in (20) is jointly non-concave in
Bij,Pi and αij (please refer section Appendix for proof).

IV. DQN-BASED LEARNING ALGORITHM FOR RESOURCE
ALLOCATION IN HYBRID RF/VLC
Now, a DQN-based learning algorithm to maximize the net-
work throughput in (20) is developed.

A. FRAME WORK FOR LEARNING
In this section, a DQN-based learning algorithm for the
resource allocation problem in (20) has been formulated. The
proposed algorithm maximizes the achievable data rate of
AP i in (20) while satisfying the constraints in (21)-(27).
Learning based algorithms run with the help of three vec-
tor variables: state, action, and reward. The state vector
defines the present status of the environment. The action
vector defines the action taken after observing the present
status of the environment. The reward vector defines the
reward received by the system after an action is taken by the
system. Let Sij = {s1ij, s

2
ij, . . . , s

l
ij} be the state vector and

Aij = {a1ij, a
2
ij, . . . , a

m
ij } be the action vector. l and m depend

on the formulations of Sij and Aij. At time t , the system is
in the state sij(t) ∈ Sij and it receives reward Ri(s, a). When
action aij(t) ∈ Aij is taken on the system, it moves to state
sij(t + 1) ∈ Sij. The outcome of action aij(t) is received in
terms of the reward. The CU trains the learning algorithm
to perform the association of UEs and communicate the
power and bandwidth allocation with APs. This process is
repeated iteratively. With each iteration, the system moves
towards receiving the maximum reward. The action vector,
state vector and reward are formulated as follows:

1) ACTION SPACE (Aij )
As it can be seen in (20), the association and resource alloca-
tion variables are αij,Bij, and Pi, the action spaceAij will be
formulated with αij,Bij, and Pi for i ∈ N and j ∈M. Let Bij
and Pi be the discretized sets of Bij and Pi respectively, for
i ∈ N and j ∈M. The following formulation is made for Bij
and Pi:

Bij=

0,Br/vmin

(
Br/vmax

Br/vmin

) u
(|Bij|−2)

, u=0, 1, 2, . . . ,
∣∣Bij∣∣−2,

(30)

where Br/vmin and B
r/v
max are minimum and maximum values of

Bij for RF andVLCAPs respectively. Similarly,Pi is obtained

as

Pi =

0,Pr/vmin

(
Pr/vmax

Pr/vmin

) u
(|Pi|−2)

, u = 0, 1, 2, . . . , |Pi| − 2,

(31)

where Pr/vmin and Pr/vmax are minimum and maximum levels of
the transmit power for the RF and the VLC APs respectively.
Note that the cardinality of αij will be 2|N |×|M| for i ∈ N
and j ∈ M. The design of Aij involves 2|N |×|M| values of
αij because of the presence of the interference term in (18).
Without the loss of generality, |Bij| = |Pi| = 2|N |×|M| has
been considered for the formulation of Aij. The discretized
values Bij, Pi and αij will be used to compute the threshold
γij according to (18) on each link from the ith AP to the jth
UE and the action state vector will be formulated as

Aij = {γ
1
ij , γ

2
ij , . . . , γ

|Bij|×|Pi|×|αij|
ij }. (32)

At every iteration, the CU will chose one value from the set
Aij for each AP. While choosing a strategy from Aij, the CU
adapts the transmit power Pi and the bandwidth allocation Bij
for the ith AP (such that j ∈M\{αij = 0}), and observes the
changes in the environment and it’s own transmission. Thus,
the action is the selection of Bij and Pi to achieve a minimum
SINR (γij). Next, the state space vector has been designed.

2) STATE SPACE (Sij )
The state space vector is based on constraints defined
in (21)- (29) and is defined with binary variables as
Sij = {I ij1 , I

ij
2 , . . . , I

ij
6 }, where

I ij1 =


0 if

∑
j∈M

αijBij≤B
v
max, for i ∈ N \{0}, j∈M,

1 otherwise.

I ij2 =


0 if

∑
j∈M

α0jB0j ≤ B
r
max, for i = 0, j ∈M,

1 otherwise.

I ij3 =

{
0 if 0 ≤ Pi ≤ Pvmax, for i ∈ N \{0}, j ∈M,

1 otherwise.

I ij4 =

{
0 if 0 ≤ P0 ≤ Prmax, for i = 0, j ∈M,

1 otherwise.

I ij5 =


0 if

∑
i∈N ,j∈M

ξij(γij) < 1, for i ∈ N , j ∈M,

1 otherwise.

I ij6 =


0 if

∑
i∈N ,j∈M

βijξij(γij) < 1, for i∈N , j∈M,

1 otherwise.

(33)

It can be seen that the formulations in (25)-(29) help in
creating the state vector, so as to help the proposed DQN
in maintaining a tradeoff between the desired signal power
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FIGURE 2. The DQN learning for the i th AP at the CU.

and the interference suffered. Note that the total number of
possible states will be 26.

3) REWARD (ri )
As mentioned before, AP i receives an immediate reward
depending on the action taken in a particular state. For each
i ∈ N and j ∈M at time iteration t , the CU decides actions
aij(t) ∈ Aij for the i−j link after observing the state sij(t). The
CU communicates αij(t) through a backhaul link to AP i for
all j ∈M\{αij = 0}. In the explanation ahead, the subscripts
i and j in sij, aij andAij have been dropped for simplicity. The
immediate reward Ri(s, a) is received in the form of the data
rate of the AP i and is defined as

Ri(s, a) =

{
rfix, if

∑6

c=1
I ic > 0,

ri, otherwise,
(34)

where rfix is a reward smaller than the reward obtained after
applying any action violating the interference constraints.
When the constraints are satisfied, the reward received by AP
i is ri. The CU will seek to find an optimal policy for each
AP to maximize it’s own ri. The CU repeatedly makes the
decision and finally obtains the optimal policies for the APs
to maximize their respective ris for constraints (21) to (29).
Since, ris are always non-negative, maximization of

∑
i∈N ri

can be achieved by maximizing individual ri for each AP i.
Therefore, the CU will seek to find an optimal policy through
DQN learning algorithm to maximize the reward for AP i.
The action vector, state vector, and reward have been used

for performing DQN learning as shown in Fig. 2. The CU
is shown to be equipped with a replay memory to store the
experience ei(t) = {aij(t), sij(t), ri(t), sij(t + 1)}, which was

gathered at the transition of two consecutive time instants t
and t + 1. The replay memory gets sij(t), ri(t), and sij(t + 1)
from the network and aij(t) from the DQN learning output.
A mini batch is present which takes training samples from
the replay memory at each iteration. Each iteration consists
of fixed number of episodes EPN such that each episode uses
one training sample and runs for T time slots as shown in
Algorithm 1. Further, a DQN block is shown where DQN
learning is performed. The input switch of the DQN block
switches it’s connection alternately with the output of the
mini batch and with a link to the network. When connected
with the output of the mini batch, it receives the training
samples while when connected with the link to the network,
it gathers knowledge about the state sij(t). The DQN learning
output is produced in the form of the selected action aij(t).
The output port of the DQN block switches it’s connection
alternately between two input ports ahead. The first input port
feeds aij(t) to the replay memory. The second input port feeds
aij(t) to the loss and gradient and parameter upgrading blocks,
where the upgraded θ is obtained. The output of the parameter
upgrading block is fedback to the input of the DQN block
with the mini batch ouput.

To accomplish the DQN based learning algorithm for AP i,
the CU finds an optimal policy π for it with the help of state-
value function V π (s) [43]. It is the maximum discounted sum
of immediate rewards Ri(s, a) over a long span of time while
the optimal policy π is being followed. Mathematically, it is
written as

V π (s, a) = max
π
{

∞∑
t=0

ζ tE(R(s, a))t |st=s, at=a, π}. (35)

VOLUME 8, 2020 149421



S. Shrivastava et al.: DQN Learning Based Downlink Resource Allocation for Hybrid RF/VLC Systems

The optimal action-value functionQ∗(s, a) 1= max
π
V π (s, a) is

obtained with the help of Bellman’s equation as
Q∗(s, a) = max

a∈A
{r(s, a)+ ζQ∗(s′, a′)}. (36)

where ζ is the learning rate at which Q∗(s, a) is updated.
In (35),Q∗(s, a) iteratively converges to it’s optimal value for
t →∞.

The maximization of Q(s, a) leads to the maximization of
ri as the objective of DQN learning is to define an environ-
ment for the agent to perform certain actions to maximize
the reward. In this work, the reward is the achievable data
rate of the ith AP, ri. First, a state value function V π (s) is
calculated. The state value function V π (s) tells which state
gives the highest reward, i.e., the achievable data rate ri, and
is given as where

Ri(s, a) =

{
rfix, if

∑6

c=1
I ic > 0,

ri, otherwise,
(37)

The next step is the calculation of the action-value function
Q(s, a), which signifies the action or the policy that the agent
should take so that the maximum state value is achieved.
Mathematically, Q(s, a) = maxπ V π (s). Thus, maximizing
the action - value function leads to the maximization of the
reward ri.

If vectors are large, obtaining optimal Q∗(s, a) becomes
challenging. Thus, the optimal action-value function is
estimated with the help of a function estimator. In this
regard, [43] has been followed, where a neural network for
this estimation as Q(s, a; θ ) ≈ Q∗(s, a) has been proposed.
In this article, a fully connected feed-forward multilayer per-
ception (MLP) network is used for this approximation. Since
it is a neural network acting as the action-value approximator,
it also brings advantage to the DQN based algorithm. In this
approximation, it includes experience replay to improve
the performance of learning, in which the CU stores the
experience of the environment at each time step for AP i as
ei(t) = {aij(t), sij(t), ri(t), sij(t + 1)} into a replay memory.
The replay memory at different time instants is written as
Di(t) = {ei(1), . . . , ei(t)}. The two different MLP networks
used as Q-network approximators are action-value function
approximator Q(s, a) and the target action-value function
approximator Q(s, a; θ). Here, θ and θ− are the parameters
of the present and previous iterations respectively. With each
iteration, the present iteration parameter θ of the action-state
function is updated. This is done with the help of the display
memory Di where a random sample (a, s, r, ŝ) is chosen. The
updation of θ− is done after a fixed number of iterations,
where the parameters of the target value function are replaced
with the updated θ of the action value function. The update
procedure is done with the help of gradient descent algorithm
based on the following cost function:

L(θi) = E
[(
ri(s, a)+ ζ max

â∈A

(
Q̂i(ŝ, â, θ

−

i )
)

−Qi(s, a, θi)
)2
]
. (38)

Algorithm 1 Achievable Data Rate Maximization in Hybrid
RF/VLC Systems
for i = 0, 1, 2, . . . , |N | do
Initialization
Initialize the replay memory
Initialize the policy π (aij|sij; θi) parameter θi
Initialize the neural network for action-value functionQi
with random weights θi
Initialize the neural network target action-value function
Q̂i with θ

−

i = θi
end for
for Iter =1:K do
Receive the initial state
for Episode = 1: EPN do
for t < T do
for i = 0, 1, 2, . . . , |N | do
Chose a∗ij(t) as per the maximizing equation for
j ∈M
Select an action

aij(t) = argmax
aij(t)

Q(sij(t), aij(t); θi) (39)

Otherwise select a random action with probabil-
ity ε
Update the state sij(t + 1) and the reward ri(t)
according to (33) and (37)
Store ei(t) = (aij(t), sij(t), ri(t), sij(t + 1) in the
experience replay memory created for AP i, Di.
Update the current parameters θi of the action-
value function Q(sij(t), aij(t); θi), by sampling
mini-batch of transitions from Di(t)
After every fixed number of steps, update θ−i =
θi
Get mini batch samples from the replay memory

end for
end for

end for
end for
Perform r =

∑
i∈N ri

As the non-negative ri of each AP is optimized and the
sum-rate r is the sum of ris, it will lead to the optimization
of the overall system

The DQN based learning algorithm for maximizing the
achievable sum-rate of the hybrid RF/VLC system is given in
Algorithm 1. The above application of DQN learning to solve
a resource allocation problem is expected to prove efficient
as the considered hybrid RF/VLC system involves large state
and action vector spaces. In this regard, DQN learning takes
advantage of neural networks to train the learning process
and efficiently maximize the Q-value by approximating the
action-value function from the current state. With such an
application, a higher convergence speed of the algorithm and
a better output achievable sum-rate are expected. Moreover,
the solution has been achieved without complete and accurate
network information. It is clear that first each ri for the ith AP
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is optimized. As ris are non-negative and the overall sum-rate
r is their sum, it will lead to the overall system optimization.

V. A NEWLY ENTERING UE
To investigate a dynamic system, a new UE entering into
the scenario has been considered. Note that the DQN based
learning algorihthm estimates the newQ-function on the basis
of the reward of every action for each AP. The CU learns
the environment of each AP respectively. Then it takes an
action linked with the highest reward, which means perform-
ing the association of the UEs with each AP and allocating
bandwidth and power to each AP, in a manner which gives
the highest reward. Thus, the AP gets the reward pertaining
to the action taken by the DQN based learning algorithm.
The parameters of the Q-function are updated as per the
reward received immediately. In other words, these param-
eters reflect the effects brought by the action parameter of
each AP. Each AP causes interference to the other UEs in
the hybrid RF/VLC environment. The Q-function parameters
reflect the local environment of each AP and also an overall
interrelationship between the different modules of the hybrid
RF/VLC system.

In case when a new UE joins the environment, discard-
ing all the already gathered information for the individual
APs at the CU, the interconnection of the modules in the
environment, and initiating the algorithm again for the new
system will be an inefficient procedure. We propose to try
the application of the transfer learning phenomena in such
situation [61]. The already gathered information about the
environment obtained through theAlgorithm 1 before the new
entrant UE has enteredwill be used immediately after it enters
the environment. As the cognitive cycle proceeds further,
the information will be updated according to Algorithm 2.

Algorithm 2 Transfer Learning for a Newly Entering UE
(Run as a new UE joins the network)
Add the new UE with index |M| + 1
Initialize Q for AP i with parameters of the action-value
function pertaining to the UE nearest to the new-comer
|M| + 1th UE {The information for the UE nearest to the
|M|+1th UE is used by the CUwhen it enters the scenario
(transfer learning)}
for i = 0, 1, 2, . . . , |N | do
Algorithm 1 is started with the existing action value
functions for |M| + 1 UEs and then proceeded itera-
tively.

end for
Perform r =

∑
i∈N ri

VI. SIMULATION RESULTS
In this section, the effectiveness of our proposed algorithms
has been verified with the help of simulations.

A. PERFORMANCE ANALYSIS OF THE PROPOSED
ALGORITHMS
Initially, the following set-up has been considered: The hybrid
RF/VLC network consists of 1 RF AP, 4 VLC APs, and

4 UEs. At a given time instant, each AP can serve multiple
UEs, while one UE can receive data from only one AP.
The values for the parameters has been decided from [18]
for performing the simulations. The VLC AP noise N v

0 is
10−21A2/Hz, the average optical power per VLC AP (LED
lamp) is 9.2 W, physical area of the PD Apd is 1 cm2, PD
responsivity ρj for all j ∈ M UEs is 0.28 A/W, receiver
FOV is 60◦, half angle of the LED φ1/2 is taken as 70◦, and
the maximum illuminous intensity of the LED is 28 cd. A
learning rate ζ of 0.01 and discount factor of 0.9 are used
for all the APs. The path-loss exponent pl0j is taken as 2.8.
For designing the action vector Aij, Bvmax = 20 MHz, Bvmin =
12 MHz, Brmax = 10 MHz, Brmin = 5 MHz Pvmax= 195 mW,
and Pvmin = 180 mW, Prmax = 15 dBm, and Prmin = 8 dBm
have been considered. The order of Lambertian constant m is
taken as 1.2, the room dimensions are taken as 10 m ×10 m
×7 m, the height of the UE is considered as 0.9 m from the
floor. The RF AP is placed at the center and the VLC APs
are placed at the positions

[
±

10
√
8
,± 10
√
8

]
on the room ceiling.

The replay memory capacity is considered as 100 and the
mini-batch for buffer is kept at a size of 10 respectively. The
investigations have been performed over 1000 monte-carlo
simulations. The input to the neural network has 7 nodes: 6
nodes for the state and 1 node for the selected action to be
taken. The structure of DQN consists two-hidden layers of
fully-connected neural network with 3 and 2 neurons, respec-
tively. The state and action vectors are functions of downlink
bandwidth, power, and association parameter. Thus, pass-
ing state and action vectors through the input of the neural
network means passing the downlink bandwidth, power and
association parameter. The neural network trains the DQN-
learning algorithm for generating action-value approximator
with environmental interaction and receive the maximum
reward. As the iterations proceed, the algorithm converges
towards the optimal policy selection from the action vector
Aij in (32), which is choosing optimal Bij, Pi and αij, and the
achievable sum-rate is maximized.

In the evaluations, the outcome of the proposed schemes
has been compared with the exhaustive search algorithm,
the received SINR based and the received power based asso-
ciation schemes as benchmarks which are popular resource
allocation techniques in heterogeneous networks. We have
also made the comparison of the proposed schemes with
the Q-learning based power allocation scheme for hybrid
RF/VLC proposed in [71]. First, an explanation on the
received SINR and receive power based resource allocation
schemes is provided. These schemes have been widely used
in general heterogeneous networks.

1) RECEIVED SINR BASED SCHEME
The fundamental work in this area can be found in [10].
Further it has been followed in [72]. The fundamental prob-
lem addressed in [10] is the optimal allocation of association
parameter for equal resources alloted to all the APs. The opti-
mal association parameter association is aimed for achievable
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data ratemaximization of a singleAP iUE j link. The problem
for obtaining optimal association parameter is given as

max
α

∑
i∈N

∑
j∈M

αij log(
Rij

Loadi
)

st
N∑
i=1

αij = 1forj ∈M

αij ∈ {0, 1}, i ∈ N , j ∈M (40)

where, Loadi =
∑M

j′=1 αij′ is the total load on the ith AP,
which means that Loadi represents the number of UEs asso-
ciated with the ith AP. As equal resource allocation has been
followed at each of the |N | APs, the data rate Rij will be
equally divided among all the UEs associated with the ith
AP. The authors propose a highest SINR based algorithm for
solving this problem. The algorithm is based on the SINR
which a UE has with each of the |N | APs. To formulate
the algorithm, the problem in (40) is re-written in terms of
Lagrange multiplier as

max
α

D(µ) = fα(µ)+ gK (µ) (41)

fα(µ) =


maxα αij(log(Rij)− µi)
st
∑N

i=1 αij = 1
αij ∈ {0, 1}

(42)

gK (µ) = max
Loadi<M

∑
j

N∑
i=1

Loadi(µi − log(Loadi)) (43)

The proposed algorithm is aimed to solve the problem (41) is
as follows:
UE’s algorithm:

• Each UE measures the SINR by using the pilot signals
from all the APs, and receives the value of µi broadcast
by each AP at the beginning of the iteration.

• UE j determines the AP i∗ which satisfies the follows:

i∗ = argmax
i
(log(Rij)− µi(t)) (44)

If there are multiple maximizers, the UE will chose one
of them.

AP’s algorithm: Each AP updates the new value of Loadi and
µi in the two steps and announces the new multiplier µi to
the system.

• To obtain the maximizer of problem in (43), we set it’s
gradient to be 0 with the constraint Loadi ≤ |N | i.e.,

Loadi(t + 1) = min{|N |, exp(µi(t)− 1)} (45)

• The new value of the Lagrange multiplier is updated by

µi(t + 1) = µi(t)− δ(t).Loadi(t)−
∑
i

αij(t) (46)

where δ(t) is a dynamically chosen stepsize sequence based
on some suitable estimates.

2) RECEIVED POWER BASED ASSOCIATION SCHEME
The next comparison of the proposed DQN-learning based
resource allocation scheme has been made with received
power based association technique. The most significant
received power based association technique has been shown
by Lin et al. in [73]. The association of a UE is decided
according to the signal power it receives from different APs.
A UE will be associated with an AP if it provides signals at
the highest power. Suppose UE j is at a position yj, VLC AP
i at a position xv,i, i ∈ N in a hybrid RF/VLC system. If the
position of the RF AP is x0, a UE will be associated with the
VLC AP if

min
i

(
Pi(m+ 1)Apd cosm φij cosψijTopt(ψij)g(ψij)(

|xi − yj|
)−2)

≥ P0Lχ0j|x0 − yj|
)−pl0j

(47)

The above condition is also based on the received power at
the UEs from the APs. The channel losses in the RF and VLC
mediums has also been taken into consideration.

3) EXHAUSTIVE SEARCH METHOD
The third benchmark considered for investigating the effi-
ciency of our proposed schemes is the Exhaustive search
method [74]. This method is highly complex. The Exhaustive
search method used here involves a trellis based mechanism.
For instance, let us imagine the optimization of the parame-
ters αij,Bij, and Pi, which lead to the calculation of the action
variable γij as a traverse between it’s initial random value
and it’s final optimal value. This process involves forming a
trellis between the two points. The trellis consists of a certain
number of levels, with the final level having the optimal value
of γij. Each level consists of a number of possible values for
γij. The main objective here is it to determine all the possible
paths from the initial random value to the final optimal value.
It involves working through the trellis from level 1 to the final
level which involves calculating the number of paths at each
level. Let R be the set of trellis levels, then there will be |R|
trellis levels. Each level has M points where optimum value
could be obtained. If Q(rl,m) be the number of paths at the
point m of the level rl , where 1 ≤ m ≤ M possible from the
level 1, as shown in Fig. 3, the calculation of the total number
of paths possible will be

∑M
m=1Q(r,m).

4) Q-LEARNING BASED POWER ALLOCATION SCHEME IN
HYBRID RF/VLC
We compare our proposed schemes with the state-of-the-
art multi agent Q-learning based power allocation in hybrid
RF/VLC systems proposed Kong et al. in [71]. Kong et al.
have used multi agent Q-learning for optimization of the
transmit power of the RF and VLC APs. Being multi-agent
Q-learning, it is performed at eachAP separately. On the basis
of the application of Q-learning, each AP decides it’s transmit
power. We compare our results with [71] as it is the state-of-
the-art work available on this topic.
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FIGURE 3. Exhaustive Search Mechanism.

The proposed DQN learning based resource allocation
algorithm is different from the work in [71] in several aspects.
Thework in [71] deals onlywith transmit power allocation for
the APs. On the other hand, the proposedDQN learning based
resource allocation algorithm deals with transmit power allo-
cation for the APs, the bandwidth allocation for the APs and
deciding the association of the UEs with the APs. It can be
seen that the domain of the problem addressed here is much
larger. The work in [71] consists of only two constraints on
the transmit powers of the RF and the VLC APs. However,
our work considers six constraints which consist of the two
transmit power constraints, two constraints on the bandwidths
of the RF andVLCAPs, one-one constraint on the association
parameter and the SINR each. Thus, our problem formulation
is more practical. Considering constraints only on transmit
power of the APs leads to presumptions on bandwidth and
association parameters, which may compromise with the
practicality of the system.

This process of comparing the schemes proposed in [71]
with our schemes is accomplished by implementing the
scheme proposed in [71] for our system and then comparing
them with our results (shown ahead in Fig. 10). In [71],
transmit power of the APs is the optimization variable and
is optimized with Q-learning. Thus, to implement [71] in
our work, the action vector in expression (32) is formulated
with only power Pi terms as variables and presumptions are
made for bandwidth Bij and association αij parameters. The
problem (20)-(27) is reduced to

P : max
Bij,Pi,αij

ri, for i ∈ N , j ∈M, (48)

such that
A constraint is imposed on the transmission power to

ensure the power budget saving and safety considerations for
the eyes. The transmission power of a VLCAP cannot exceed
its maximum available power PVLCmax , formulated as

C1 : 0 ≤ Pi ≤ PVLCmax , for i ∈ N \{0}, (49)

Similarly, the transmission power of an RF AP cannot exceed
its maximum available power PRFmax formulated as:

C2 : 0 ≤ P0 ≤ PRFmax, for i = 0, (50)

Further, the optimization of action vector Aij is carried out
with Q-learning. For the allocation of bandwidth, equal allo-
cation is considered for all the APs, while association param-
eter αij is allocated as per the minimum distance criteria.
For power allocation, the investigation is performed with two
cases, when the number of UEs is fixed and when a newUE is
entering into the system. When the number of UEs is fixed,
DQN learning without transfer learning serves the purpose
while when a new UE is entering into the scenario, the appli-
cation of transfer learning is investigated. The comparisons
have been shown ahead in Fig. 10. The achievable sum-rate is
compared with the increasing number of VLC APs deployed
as shown in Fig. 9.

We now present the simulation results. In Fig. 4, the num-
ber of iterations needed for the maximization of the normal-
ized achievable sum-rate with the application of the proposed
algorithms has been studied. The investigation for the fixed
number of UEs is done in Fig. 4a and in Fig. 4b, the investiga-
tion for the case of a new incomingUE ismade. Asmentioned
above, |N | and |M| are conisdered as 5 and 4 respectively. In
Fig. 4a, the DQN learning mechanism starts showing output
achievable sum-rate of 380 Mbits/s at nearly 240 iterations
which goes on increasing with minor fluctuations as the
iterations are increased. In nearly 1600 iterations, the final
value of the maximized achievable sum-rate is obtained as
1270 Mbits/s. On the other hand, the exhaustive search algo-
rithm starts showing output at nearly 250 iterations and shows
a final achievable sum-rate value of 1140 Mbits/s in nearly
1600 iterations. The final values of the achievable sum-
rate obtained with the received power and the SINR based
association schemes are 850 and 990 Mbits/s respectively,
which shows that the proposed DQN based learning based
mechanism outperforms exhaustive search, received power
based association and received SINR based association, and
leads to at least 10% increase in the achievable sum-rate.

Fig. 4b shows the performance of the transfer algorithm
(Algorithm 2) for the case of a newly entering UE, which has
been labelled as DQN-transfer learning. Fig. 4b also shows
the performance of DQN-learning based method, exhaustive
search, received SINR based and received power based algo-
rithms for this case. For applying DQN-transfer learning,
the CU uses the information of the already learned network
for the newly joined UE while for applying DQN learning
based method, the CU initiates action-value function parame-
ters randomly for the newly joined UE. Similarly, the exhaus-
tive search method, the receive SINR and the receive power
based algorithms re-start from the beginning after the arrival
of the newUE and operate till convergence. It can be seen that
the DQN-transfer learning converges to a final value of nearly
1290 Mbps in just 1200 iterations, while the DQN learning
based mechanism converges to it in 2600 iterations. The
exhaustive search, received SINR and received power based
mechanisms converge to the final values attained in Fig. 4a,
but in 2650, 3200 and 2700 iterations respectively. Note
that the high number of iterations needed by the received
SINR and power based association schemes arises due to
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FIGURE 4. Graph depicting the convergence of the proposed algorithms by showing achievable sum-rate vs the number of iterations when (a) a fixed
number of UEs are present in the room. (The performance of Algorithm 1 compared with the existing algorithms.) (b) a new incoming UE enters the
room. (The performances of Algorithm 1 and Algorithm 2 (DQN with transfer learning) are compared with the existing algorithms).

FIGURE 5. Graph depicting the behavior for number of iterations with the umber of UEs when (a) a fixed number of UEs are present in the room. (The
performance of Algorithm 1 compared with the existing algorithms.) (b) a new incoming UE enters the room. (The performances of Algorithm 1 and
Algorithm 2 (DQN with transfer learning) are compared with the existing algorithms).

load balancing and proportional fairness issues. Unlike the
proposed DQN based approaches, these algorithms use the
total sum-rate as the objective function.

In Fig. 5, the average number of iterations needed for con-
vergencewith varying number of UEs is shown. Fig. 5a shows
that as the number of UEs increases, the number of iterations
needed for the convergence of all the algorithms increases.
It can be seen that the DQN based learning algorithm can
attain a level of achievable sum-rate is much lesser number
of iterations compared to the other algorithms for a given
number of UEs in the network. For a network with 55 UEs,
at least 10% higher achievable sum-rate can be attained by
the DQN-learning based algorithm in 14.28% lesser itera-
tions compared to the achievable sum-rate value attained by
exhaustive algorithm. Further, Fig. 5b shows that when a new
UE enters the network, the DQN-transfer learning achieves
its maximum achievable sum-rate in nearly 54% lesser

number of iterations for a given number of UEs present in the
set-up.

Fig. 6 shows the plot for achievable data rate with the
number of UEs. Fig. 6a shows the results for a fixed set up
while Fig. 6b shows the results for the case of the arrival
of the new UE. In both the figures, the number of UEs are
varied from 5 to 55. It can be seen that for this entire range of
the number of UEs, the DQN based learning algorithm and
DQN-transfer learning outperform the exhaustive algorithm,
the received power and the received SINR based association
by reasonable margins. On increasing the number of UEs,
the achievable sum-rate increases with the increase in the
number of AP-UE links. The achievable sum-rate is found
to increase at a higher rate in the 5 to 15 UEs range. As the
number of UEs is increased from 15 to 25, a slight decrease
in the rate of increment can be seen. For all further incre-
ments in the number of UEs till 45, a slight decrement in
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FIGURE 6. Graph depicting the behavior for achievable sum-rate vs the number of UEs when (a) a fixed number of UEs are present in the room. (The
performance of Algorithm 1 compared with the existing algorithms.) (b) a new incoming UE enters the room. (The performances of Algorithm 1 and
Algorithm 2 (DQN with transfer learning) are compared with the existing algorithms).

FIGURE 7. Graph depicting the behavior for achievable sum-rate vs the height of the room when (a) a fixed number of UEs are present in the room. (The
performance of Algorithm 1 compared with the existing algorithms.) (b) a new incoming UE enters the room. (The performances of Algorithm 1 and
Algorithm 2 (DQN with transfer learning) are compared with the existing algorithms).

the respective rates can be seen. This behavior is the same
in all the algorithms investigated here. Intuitively, it is due
to the fact that an increase in the number of AP-UE links
also results in increased interferences. However, when the
number of UEs is further increased from 45 to 55, the rate
of increment again increases, which shows that for a high
number of UEs, the desired signal power component becomes
dominant. In Fig. 6b, the DQN-learning algorithm gives
nearly the same output as the DQN-transfer algorithm. The
difference between their applications is only the number of
iterations needed to converge to their final outputs, as shown
in Figs. 4 and 5.

In Fig. 7, the effectiveness of the proposed algorithms is
investigated for a varying height of the room. As the height
of the room increases, the transmitter-receiver separation
increases which results into a decrease in the achievable
sum-rate. This decrease is evident from (4), (8), and (11),

where it is shown that the channel gains for RF and VLC
networks decrease in magnitude with the increase in the
transmitter-receiver separation. As the height of the room is
increased, the attenuation in the signals received by the UEs
increases. Similar to the previous figures, Fig. 7a shows the
investigation for the fixed UEs case while Fig. 7b shows the
investigation for the newly entering UE. It can be seen that the
DQN learning based algorithm and DQN-transfer algorithm
outperform the algorithms under consideration.

Fig. 8 shows investigations on the FOV of UE j. The
FOV impacts the VLC system performance significantly.
The achievable sum-rate obtained with the different schemes
under consideration has been plotted over a wide range of
FOV from 60◦ to 180◦. When the FOV of the receiver is
small, the effect of interfering signals is lesser on it. Thus,
it gives a higher achievable sum-rate. Contrarily, when the
FOV of the receiver is large, it receives more interfering
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FIGURE 8. Plot showing the variation of achievable sum-rate vs the FOV of the UE j when (a) a fixed number of UEs are present in the room. (The
performance of Algorithm 1 compared with the existing algorithms.) (b) a new incoming UE enters the room. (The performances of Algorithm 1 and
Algorithm 2 (DQN with transfer learning) are compared with the existing algorithms).

FIGURE 9. Deployment architecture of new APs.

signals from the unassociated APs. Thus, the interference
increases which results into the decrement of the achiev-
able rate. This behavior has been depicted in Fig. 8a and
Fig. 8b. It can be seen that the proposed DQN learning and
DQN-transfer learning based methods outperform the other
schemes under consideration. It can also be concluded that for
a fixed deployment of VLC APs on the corners of the room,
a sharp decrease occurs in the achievable sum-rate with the
increasing FOV of the receiver. Such behavior may change
for a different deployment of the APs.

The results presented so far do not consider the case of
dense AP deployment. To address this concern, we perform
simulations for higher number of APs, as shown in Fig. 9. The
deployment of the new APs is done as it was done earlier for
4 APs. The 4 APs which were deployed earlier are positioned
on the same coordinates in the four corners of the room as
before. The new APs are placed within the area covered by

these 4 APs as shown in the Fig. 9. The coordinates of the new
APs has also been shown here. Next in Fig. 10, the achievable
sum-rate vs. the number of APs has been plotted for this
set-up. Fig. 10a shows the performance of DQN-learning
mechanism, while Fig. 10b shows the performance of the
transfer learning algorithm. From Fig. 10, it can be seen that
the DQN-learning and the DQN transfer learning algorithms
outperform the existing algorithms for the static and the
dynamic cases.

B. COMPLEXITY ANALYSIS OF THE PROPOSED
DQN-LEARNING BASED ALGORITHMS
The objective of this work is the maximization of action
value function Q(s, a) which is achieved by bringing Q(s, a)
as close to the target action-value function Q̂(s, a, φ). The
algorithmic complexity is the sum of the statistical and the
algorithmic error in this process [75]. The total error rate is
given by

||Q̂− Qk || ≤ C .
φµ,σ

(a− ι2)
.|A|

. (log n)1+2ζ .n(α∗−1)/2 +
4ιK+1

(1− ι)2
.Rimax (51)

where Qk is the Q term at the kth iteration, µ and
σ are the mean and standard deviation of P(S × A)
where P denotes distribution, φµ,σ is a constant such that
(1 − ι)2

∑
v≥1 ι

v−1v.K ≤ φµ,σ , n is the sample size, ζ is a
constant, Rimax is the maximum reward value for the ith AP.
The first term on the right hand side (RHS) of the equation
is the statistical error while the second term on the RHS of
the equation is the algorithmic error. The algorithmic error
converges to zero in linear rate as the algorithm proceeds,
but the statistical error represents the fundamental problem.
When the following condition for the number of iterations
K is satisfied, the statistical error dominates the algorithmic
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FIGURE 10. (a) Performance comparison with Q-learning based power allocation in hybrid RF/VLC. (b) Performance comparison with Q-learning
based power allocation in hybrid RF/VLC for a newly entering UE.

error

K ≥ [logA+ (1− α∗). log n]/ log(1/ι) (52)

Viewing ι and φµ,σ as constants and ignoring the polygarith-
mic term, the proposed algorithms achieve the error rate

|A|.n(α∗−1)/2 = |A|.max
j∈|q|

nβ
∗
j /(2β

∗
j +tj) (53)

which scales linearly with the capacity of the action space
and goes to zero when n goes to ∞. Here, tj and βj are
time parameters for the jth UE. The term nβ

∗
j /(2β

∗
j +tj) in

the above equation recovers the statistical rate of the non-
parametric regression in l2-norm. It is further found that the
algorithm achieves an error rate of |A|.n−βj/(2βj+r) when K is
sufficiently large, where r ∈ N, N denotes a natural number.
Note that π is the greedy policy with respect to Q̂ and Q

functions. As the construction of Q is done with an iterative
algorithm, the error convergence has to be related to the
error in the previous steps, i.e., Q̂k − Q̂k−1. This relation is
formulated as

||Q̂− Qk || ≤
2φµ,σ .ι
(1− ι)2

. max
k∈[K ]
||Q̂k − Q̂k−1||σ

+
4ιK+1

(1− ι)2
.Rimax (54)

where φµ,σ is a constant that depends only on the distribu-
tions of µ and σ .
Thus, asmentioned above, the total error is the sum of algo-

rithmic and statistical errors, where maxk∈[K ] ||Q̂k − Q̂k−1||σ
is the statistical error and the second term on the RHS of the
equation is the algorithmic error. The statistical error goes to
zero as n increases to a large number. The algorithmic error
goes to zero as the number of iterations K increases. The
fundamental difficulty of DQN is the error incurred in the
single step. The bound on ||Q̂k − Q̂k−1||σ is obtained as

||Q̂k − Q̂k−1||2σ ≤ 4.[dist∞(F0,G0)]2

+C .V 2
max/n. logNδ + C .Vmax.δ (55)

where Vmax = Rmax/1− ι F0 = {f : S × A → R : f ∈
F},G0 = {f : S ×A→ R : f ∈ G}, F is the family of DQN
defined on the state vector S and G is the set of composition
of smooth functions defined on S ⊆ R. At the fundamental
level, both the proposed algorithms use DQN learning. Thus
the above expressions depict the complexity of the proposed
algorithms.

C. ON NP HARDNESS OF THE RESOURCE ALLOCATION
PROBLEM OF HYBRID RF/VLC
In this section, we make an analysis on the NP hardness of
the proposed algorithms. The proposed algorithms are based
on the maximization of action value function Q(s, a). The
maximization is carried out by bringingQ(s, a) as close to the
targetQ(s, a, φ) as possible. It is performed with the help of a
neural network based multi layer perception (MLP) network.
The action value and the target action value functions need
one - one neural network based MLP networks each. Thus,
the core function of the proposed algorithm is based on a
neural network as shown in Fig. 11. The network considered
here has 2 hidden layers of 3 and 2 neurons respectively. This
neural network has 7 inputs, 6 from the state vector and 1
from the action vector as shown in the figure.

It can be seen that the state vector has 6 binary input
values. First, the input node decides 1 or 0 to be given into
the neural network. The bit 1 or 0 is decided according to
an M dimensional linear equation as shown in (33) for the
constraints in the problem. For an i− j link,

I ij1 = 1 for αi1Bi1 + αi1Bi1αi1 + . . .+ αiMBiM ≤ Bvmax

I ij1 = 0 for αi1Bi1 + αi1Bi1αi1 + . . .+ αiM for BiM > Bvmax

(56)

I ij2 = 1 for αi1Bi1 + αi1Bi1αi1 + . . .+ αiMBiM ≤ Brmax

I ij2 = 0 for αi1Bi1 + αi1Bi1αi1 + . . .+ αiMBiM > Brmax

(57)
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FIGURE 11. Depiction of the Neural Network for performing MLP.

Similar is the case for the other state variables for maintaining
the minimum SINR values as

I ij5 = 1 for ζi1 + ζi2 + . . .+ ζiM ≤ 1

I ij5 = 0 for ζi1 + ζi2 + . . .+ ζiM > 1 (58)

I ij6 = 0 for βi1ζi1 + βi1ζi1 + . . .+ βiMζiM > 1

I ij6 = 0 for βi1ζi1 + βi1ζi1 + . . .+ βiMζiM > 1 (59)

The state variables pertaining to power constraints involve
selection of power Pi within the constraints. Thus, the input
nodes involve solving an M dimensional hyperplane. Once
the decisions regarding 1 or 0 are formed at the input nodes,
each node gives it’s decision to each of the neurons of the first
layer. Let I ij1 , . . . , I

ij
6 be the inputs from the 6 input nodes,

the neural network checks
∑6

r=1 I
ij
r is > or = 0, which

accounts to solving a 6 dimensional hyperplane.
The neural network needed to solve a hyperplane is NP

hard [77]. Therefore, as both the proposed algorithms involve
solving hyperplaneswith neural network, both of them areNP
hard.

D. DISCUSSIONS ON THE BETTER PERFORMANCE OF
DQN LEARNING OVER EXHAUSTIVE SEARCH METHOD
A reasonable question comes here that why do the proposed
algorithms perform better than the Exhaustive search mech-
anisms. As mentioned earlier, the Exhaustive search method
used here involves a trellis based mechanism. For instance,
let us imagine the optimization of the parameters αij,Bij, and
Pi, which lead to the calculation of the action variable γij
as a traverse between it’s initial random value and it’s final
optimal value. This process involves forming a trellis between
the two points. The trellis consists of a certain number of
levels, with the final level denoting the optimal value of γij.
Each level consists of a number of possible values for γij.
The main objective here is it to determine all the possible
paths from the initial random value to the final optimal value.

It involves working through the trellis from level 1 to the
final level. It involves calculating the number of paths at each
level. Let there be |R| trellis levels with M points at each
level. Let Q(r,m) be the number of paths at the point m of
the level r , where 1 ≤ m ≤ M possible from the level
1, as shown in Fig. 3. The calculation of the total number
of paths possible will be

∑M
m=1Q(r,m) which comes out

as M |R|. The computational cost associated with each path
is β0(|R| − 1) where β0 is the average computational cost
associated with any path segment in the trellis. The total com-
plexity Q(r,m)β0(|R| − 1). The process makes Exhaustive
search method complex. As a moment-to-moment update is
needed in the present work, a limited time span is available
for optimizing γij. The Exhaustive search method is likely to
fail in finishing the optimization of γij in the available time
span.

As the complexity of Exhaustive search is higher,
the Exhaustive search compromises with a lower magnitude
of throughput within the designated time span for a moment-
to-moment update. The magnitude of throughput reached
with DQN learning requires much more time with Exhaustive
search. Thus, the final throughput will be lower than that
obtained with DQN learning.

E. DISCUSSIONS ON THE CONFLICTS OF INTERESTS
AMONG THE ACCESS POINTS
Among the APs, there are conflicts of interest and hence the
action-value function Q(s, a) for different APs are related
to each other. The action-value function Q(s, a) mainly has
two variables, s and a. The variable s signifies the state
in which an AP-UE pair are present while the variable a
signifies the action taken by the CU for each AP and the UEs
associated to it to receive the highest reward. The action-value
functions Q(s, a)s for different APs are related to each other
through s and a, as s and a include the conflicts of interest
between the APs. The conflict of interest between the APs
occurs in two major ways: in interfering with the signals from
other APs and in load balancing. As was mentioned earlier,
the interference reduction is expressed in the expression (25)
which is written as a constraint for the maximization of ri.
When the DQN algorithm runs for themaximization of ri, this
constraint on interference is included in it. Thus, all the output
results are produced with due consideration of this constraint.
The second conflict of interest is load balancing, whichmeans
that when the UEs get a high SINR from a particular AP,
they try to associate with it. As a result, the load on this
AP increases severely and it has to bifurcate it’s bandwidth
into more smaller parts for allotting spectrum to the UEs
associated. Consequently, the effective achievable data rate
decreases.

Generally in achievable sum rate maximization with con-
ventional optimization methods like the maximum received
SINR and maximum received power methods, the cost
function is the final achievable sum rate of the system
r =

∑N
i=1 ri. When the problem max r is studied, it may

happen that a particular AP from i ∈ N lies close to many
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UEs and thus offers high SINR. Consequently, a large number
of UEs will be associated with this AP causing the problem
of load balancing. To address this issue, the most widely used
mechanism is to instead maximize

∑N
i=1 log ri. This ensures

that the final maximization is performed on log
∏N

i=1 ri,
which ensures that no ri remains lesser in magnitude as it will
harm the final solution.

However, in DQN learning based maximization technique,
maximizing the final sum rate r is difficult with learning
based mechanism, as the data rate at each AP or each UE
needs to be maximized separately. The maximization is per-
formed on each ri first and then all the ris are summed up.
Thus, this remains the limitation of our work.

VII. CONCLUSION
In this article, the joint optimization problem for band-
width, power and association parameter allocation in a hybrid
RF/VLC system in the downlink has been addressed. It is
observed that the problem is neither concave nor convex.
To overcome the limitations of conventional optimization
algorithms in solving such a problem, a centralized DQN
based learning algorithm has been designed, which is based
on learning from the hybrid RF/VLC environment. The state
vector for DQN is formulated with the constraint terms in
the optimization problem, while the action vector for DQN
is based on the choice of bandwidth, power, and association
parameter. The optimal policy is obtained with the help of
an action value function. For opting the appropriate action
for optimal policy formulation, the CU picks the appropriate
values of bandwidth, power and association parameter from
the action vector set. A transfer learning basedmechanism for
a newly entering UE in the system has also been proposed,
which uses the already gathered information in the network
for the new entrant. Simulation results verify that the pro-
posed learning based algorithm outperforms the exhaustive
search algorithm, the received SINR based association and
the received power based association algorithms by more
than 10% in terms of achiveable sum-rate and 14.28% in
terms of the number of iterations needed for convergence.
It is also found that the CU is successful in applying the
transfer learning algorithm for using the already gathered
information for the new incoming UE in the system, with the
maximum achievable sum-rate reached in 54% lesser number
of iterations.

APPENDIX
PROOF OF NON-CONCAVITY OF THE ACHIEVABLE
DATA RATE OF AN AP
The objective function in the problem P for i ∈ N \{0} is
given in (60), as shown at the bottom of the page.

Though the sum of logarithmic functions is strictly con-
cave. However, as αij is an indicator function, ri will be
neither concave nor convex inαij. It is proved that the function
ri will is neither concave nor convex in Bij and Pi. Let us take
a system as i = 1, 2 and j = 1, 2. Let us assume α11 = 1,
α12 = 0, α21 = 0 and α22 = 1 and define vector
x = {x1, x2, x3, x4} where x1 = B11, x2 = B22, x3 = P1,
and x4 = P2 and

√
wG11 = a,

√
ρG12 = b,

√
ρG21 =

c,
√
wG22 = d and N0 = g. Then,

ri(x) =
1
2
x1 log2

(
1+

a2x23
gx1 + b2x24

)

+
1
2
x2 log2

(
1+

d2x24
gx2 + c2x23

)
. (61)

The hessian matrix of ri wrt x, i.e., ∇2
x ri(x) is obtained to

check for it’s concavity. The elements of ∇2
x ri are obtained

as

d2ri
dx21
= −

a2gx23 ((a
2gx23+2c

2gx24 )x1+2a
2c2x24x

2
3+2c

4x44
ln(2)(gx1 + c2x24 )

2(gx1 + a2x23 + c
2x24 )

2
,

(62)
d2ri
dx22
= −

d2gx24 ((d
2gx24+2b

2gx23 )x2+2d
2b2x23x

2
4+2b

4x43
ln(2)(gx2 + c2x23 )

2(gx2 + d2x24 + b
2x23 )

2
,

(63)
d2ri
dx23
= −

−2d2b2x24x2

(b2x23 + gx2)
2(

d2x24
b2x23+gx2

+ 1)

+
8d2b4x24x2x

2
3

(b2x23 + gx2)
3(

d2x24
b2x23+gx2

+ 1)

−
4d4b4x44x2x

2
3

(b2x23 + gx2)
4(

d2x24
b2x23+gx2

+ 1)

+
2a2x1

(gx1 + c2x24 )(
a2x23

gx1+c2x24
+ 1)

−
4a2x1x23

(gx1 + c2x24 )
2(

a2x23
gx1+c2x24

+ 1)
, (64)

and

d2ri
dx24
= −

−2a2c2x23x1

(c2x24 + gx1)
2(

a2x23
c2x24+gx1

+ 1)

+
8a2c4x23x1x

2
4

(c2x24 + gx1)
3(

a2x23
c2x24+gx1

+ 1)

ri =
∑
j∈M

1
2
αijBVLCij × log2

1+ w
G2
ijP

2
i

N v
0B

VLC
ij +

∑
k∈N \{i} ρjG

2
kjP

2
k

(
1−

∏
j′∈M\{j} (1− αkj′ )

)
 . (60)
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−
4a4c4x43x1x

2
4

(c2x24 + gx1)
4(

a2x23
c2x24+gx1

+ 1)

+
2d2x2

(gx2 + b2x23 )(
d2x24

gx2+b2x23
+ 1)

−
4d2x2x24

(gx2 + b2x23 )
2(

d2x24
gx2+b2x23

+ 1)
. (65)

It can be seen that d
2 ri
dx21

and d2 ri
dx22

are always negative but the

nature of d2 ri
dx23

and d2 ri
dx24

is not fixed. It can become positive

or negative for varying values of B11,B22,P1 and P2. Thus,
for the VLC network, ri will neither be concave nor convex
in B11,B22,P1, and P2. Next, the behavior of ri in the RF
network has been investigated. The system model consists of
only one RF AP indexed as i = 0. The achievable data rate
for the RF network is given as

ri =
∑
j∈M

α0jB0j log2

(
1+

P0G0j

N r
0B

RF
0j

)
. (66)

As mentioned earlier, as α0j is an indicator function, ri will
be neither concave nor convex in α0j. Further, the concavity
of ri with P0 and B0j has been investigated. For simplicity in
calculations, let us consider α0j = 1, |M| = 1, N r

0 = a and
a vector x = {x1 x2} where x1 = B01 and x2 = P0 G0j. The
achievable rate can be written as

ri(x) = x1 log2

(
1+

x2
ax1

)
. (67)

The elements of the Hessian matrix ∇2
x ri(x) are obtained as

d2ri(x)

dx21
=

−x22
ln(2)x1(ax1 + x2)2

, (68)

and

d2ri(x)

dx22
=

−a2x1
ln(2)(ax1 + x2)2

. (69)

It can be seen that both the elements of ∇2
x ri(x) are negative.

The higher order of |M| will result to sum of such similar
functions. Sum of concave functions is a concave function.
This means that for the RF network, ri will be jointly concave
in B0j and P0. However, it is neither concave nor convex in the
indicator function α0j. Thus, jointly it will be neither concave
nor convex in α0j, B0j and P0.
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