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ABSTRACT In view of the long computation time and low registration accuracy of the current point cloud
registration algorithm, a point cloud registration algorithm based on the grey wolf optimizer (GWO) is
proposed, denoted PCR-GW. The algorithm uses the centralization method to solve the translation matrix
and then simplifies the points of the initial point cloud models by using the intrinsic shape signatures (ISS)
feature. Next, various parameters of the rotation matrix are obtained via the GWO algorithm by employing
the quadratic sum of the distances between corresponding points in the simplified point cloud as the objective
function. Finally, the point cloud registration process is completed by using the obtained transformation
matrix. By conducting a registration experiment on the point cloud library model and comparing PCR-GW
with the traditional algorithms, the algorithm proposed in this article is shown to be promising for improving
the computation speed and registration accuracy.

INDEX TERMS Point cloud registration, feature point extraction, grey wolf optimization algorithm.

I. INTRODUCTION
In recent years, 3D reconstruction has been extensively
applied in medical images, industrial inspection, self-driving
cars, cultural relic reconstruction, and indoor modeling [1].
In addition, it has been widely used in aerospace, agriculture,
and other fields. The 3D model is built through the steps
of data collection, point cloud registration, surface recon-
struction, and texture mapping. In the process of data col-
lection, due to the limited visibility of the scanning system,
the scanner needs to scan multiple angles and then splice
the data to obtain a complete point cloud model. In other
words, the point clouds from different angles must be merged
into a unified coordinate system, which is known as point
cloud registration. As shown in Figure 1, the point cloud in
(a) transforms into the point cloud in (b) through rotation and
translation and finally merges into a complete point cloud
model in the same coordinate system. The result of point
cloud registration can directly affect the accuracy of the point
cloud model; thus, point cloud registration is a key step in the
construction of the point cloud model.
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FIGURE 1. Point cloud registration process for the Happy Buddha [2].
(a) The point cloud data scanned from the front of the object. (b) The
point cloud data scanned from the side of the object. (c) The point cloud
model after registration.

According to the process used, point cloud registration
methods can be divided into coarse registration and fine
registration [3]. The former type makes the point clouds with
overlarge initial distances approach each other, and the latter
further refines the result of the former. Existing methods
either reduce the accuracy to obtain a higher speed or use
more time. It is difficult to balance the time and accuracy,
so a better method is needed to solve the problem.

The rest of this article is organized as follows: The sec-
ond section reviews representative work on point cloud
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registration and briefly introduces the algorithm in the paper.
The third section explains the principle of point cloud reg-
istration. The fourth section provides a detailed description
of the PCR-GW method. The performance of the proposed
algorithm is validated by comparison with other registration
methods in the fifth section. The sixth section summarizes the
PCR-GW algorithm and provides future research directions.

II. RELATED WORK
At present, the iterative closest point (ICP) algorithm pro-
posed by Besl andMcKay [4] in 1992 is the most widely used
fine registration method; it is based on the optimal matching
algorithm of the least-squares method for iteratively solving
the rotation and translation matrix until the convergence con-
dition is satisfied. The algorithm has high precision and does
not need to extract features. However, its long computational
time and need for an inclusion relationship for two-point
clouds [5] seriously affects the performance of the ICP algo-
rithm. Hence, many experts and scholars have proposedmany
approaches to improve the algorithm [6]–[8]. Because of this
limitation of the algorithm, ICP and its variants need good
initialization to avoid falling into a local minimum.

Coarse registration provides a good initial position from
which fine registration can improve registration efficiency.
Feature-based registration is a classical method used in coarse
registration. This method is divided into the following steps:
First, key points are selected for use in simplifying the point
cloud models with filtering methods, such as the scale invari-
ant feature transform (SIFT) [9] and 3D Harris [10]. Second,
the feature descriptors are used to describe the features of
points in the point cloud. The fast point feature histogram
(FPFH) [11], heat kernel signature (HKS) [12], and viewpoint
feature histogram (VFH) [13] descriptors are exploited to
encode the local or global shapes of points. Third, there
are many strategies to find corresponding points according
to the similarity of point features between the source point
cloud and the target point cloud. Cirujeda et al. [14] proposed
a registration strategy based on the game theory method,
and there are also strategies based on the genetic algorithm
(GA) [1] and particle swarm optimization (PSO) [15]. Finally,
the transformation matrix between the two-point clouds is
obtained through a series of corresponding points. This kind
of algorithm is easy to understand but takes a long time to run
and becomes sensitized to noise.

Additionally, there are also some non-feature-based meth-
ods. Aiger et al. [16] proposed the 4-point congruent set
(4PCS) for registration. This method takes advantage of the
constant ratio of segments from four coplanar points in the

affine transformation, which has a simple feature and strong
antinoise performance. However, it is unsuitable for point
clouds with many planes and inconspicuous features. The
normal distributions transform (NDT) [17] uses the normal
distribution of the points in a point cloud for registration with
high speed but low accuracy. Lu et al. [18] proposed an end-
to-end deep neural network model, which takes considerable
time to train but has good registration accuracy.

For point cloud registration, the registration accuracy and
running time are two important measurement criteria. The
registration accuracy is affected by the initial position, and
the registration time is correlated with the initial position
and the number of points in the point clouds. To solve the
problems with the above methods, a point cloud registration
method based on the grey wolf optimizer (GWO) algorithm
is proposed, denoted PCR-GW. It utilizes the centralization
method to solve the translation matrix. The ISS feature is
used to simplify the number of points in the point clouds.
The quadratic sum of the distances between corresponding
points is considered the fitness function, and the parameters in
the transformation matrix are solved by the GWO algorithm.
Therefore, a good initial position is provided for fine regis-
tration. Comparing the experimental results of this method
with those of the 4PCS, FPFH, and PSO algorithms, it is
shown that the algorithm in this article has better registration
accuracy and faster speed.

III. POINT CLOUD REGISTRATION
The main task of point cloud registration is to splice
the point clouds obtained from different angles to obtain
a more abundant and complete point cloud model.
Suppose the point cloud to be registered is P ={
pi | pi ∈ R3, i = 1, 2, 3, · · · , n

}
and the target point cloud is

Q =
{
qj | qj ∈ R3, j = 1, 2, 3, · · · ,m

}
. Point cloud registra-

tion estimates the transformation matrices R and T to make
the corresponding points in two-point clouds overlap as much
as possible [19]; that is, Q = P∗R+T+Ni.Ni is the vector of
the noise, and the equations of R and T are given as follows
(1) and (2), as shown at the bottom of the page, where δ, θ ,
and σ are the angles of rotation around the x, y, and z-axes,
respectively.

Due to the existence of partial superpositions and actual
error, the solution is carried out in a minimized form [20];
namely, the objective (fitness) function is:

F(R,T ) = min
n∑
i=1

||R ∗ pi + T − qi||
2, (3)

where qi is the corresponding point to pi.

R =

 cosθcosσ −cosθsinσ sinθ
cosδsinσ + sinδsinθcosσ cosδcosσ − sinδsinθsinσ −sinδcosθ
sinδsinσ − cosδsinθcosσ sinδcosσ + cosδsinθsinσ cosδcosθ

 (1)

T =
[
tx ty tz

]T
, (2)
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IV. PCR-GW METHOD
To obtain the optimal R and T matrices, point cloud regis-
tration based on the GWO algorithm is proposed for coarse
registration. First, the matrix T is solved by using centraliza-
tion, and then ISS is employed to obtain key points from the
P and Q point clouds. Finally, the GWO algorithm is used to
obtain the parameters of the rotation matrix according to the
defined fitness function. The specific algorithmflow is shown
in Table 1.

A. SOLVING FOR MATRIX T
In the coarse registration algorithm, the matrix T can be
solved by centralizing the point clouds. This removes the
translation error by moving the centers of mass of two-point
clouds to the same place. The T matrix can be formulated as:

T = Q̄− P̄, (4)

where Q̄ and P̄ represent the center-of-mass coordinates of
point clouds Q and P, respectively. At this point, the point
cloud transformation matrix is solved by finding the rotation
angles δ, θ , and σ , which makes the R matrix optimal.

B. SELECTING KEY POINTS
In actual conditions, the data contain a large number of noise
points. Selecting key points to simplify the point clouds
can reduce the computation of the algorithm. Several algo-
rithms can be applied to select the key points, such as the
rotational projection statistics (RoPS) feature [12] based on
deep learning, the ISS, and the signature of the histogram
of orientation (SHOT) feature [10]. For the ISS algorithm,
a key point can be determined by calculating the eigenvalue
of each point in the neighborhood covariance matrix. The ISS
descriptor can not only have a fast calculation speed but also
obtain chosen points with high repeatability [1].

First, the K closest neighboring points of pi are searched in
the K-D tree. After that, the neighboring points larger than
a specified radius are eliminated by the radius constraint.
Finally, the neighboring point set {pj} of pi is obtained. Then,
the covariance matrix of point pi is produced as follows:

cov (pi)=
∑
|pi−pj|<r

wij
(
pi−pj

) (
pi−pj

)T/ ∑
|pi−pj|<r

wij. (5)

Wij is a weight parameter that is inversely proportional to the
distance from pj to pi.

The eigenvalues λ1i , λ
2
i , and λ3i of the matrix are

obtained from Formula. (5), where the values of λi are
sorted in descending order. If Formula. (6) can be satis-
fied, then the point can be preserved. ε1 and ε2 are the
thresholds.

λ2i
/
λ1i
≤ ε1,

λ3i
/
λ2i
≤ ε2 (6)

C. GWO ALGORITHM
The grey wolf optimizer (GWO) algorithm is a swarm intel-
ligence algorithm proposed by Mirjalili et al. [21]. The

algorithm simulates the collective hunting behavior of grey
wolves. When finding prey, they track, encircle, and then
attack the prey to obtain food. The wolves are divided into
four levels, denoted α, β, γ , and ω, where α is at the highest
level and is the leader of the wolves; β wolves rank second
only to α and assist α in decision-making; γ wolves obey the
commands of α and β; ω wolves are the lowest level, and
there are many of them. α, β and γ wolves are all selected
from the ω wolves.

1) THE REASON TO CHOOSE GWO
The GWO algorithm is regarded as one of the most promising
swarm intelligence algorithms and is used to solve problems
in various fields, such as power dispatch problems [22],
estimates of landslide susceptibility [23], and forecasts of
consumption [24]. With the wide use of the GWO algorithm,
there are also many improved algorithms, such as the random
walk grey wolf optimizer (RW-GWO) [25] and chaotic grey
wolf optimization (CGWO) [26], which greatly promote the
development of the GWO algorithm.

Compared with the PSO algorithm, salp swarm algorithm
(SSA), artificial bee colony (ABC) algorithm, and other algo-
rithms [27], this method has fewer parameters and faster
convergence. Its convergence factor can adjust adaptively
to consider global and local search capabilities. We com-
pared the GWO algorithm with the classical PSO algorithm
and the latest SSA algorithm. Several optimization functions
are selected to evaluate the performance of the algorithms,
as shown in Figure 2. The results show that GWO has a better
convergence performance and global search capability than
the other algorithms.

2) MATHEMATICAL MODEL
To mathematically model the wolves, we consider defining
the optimal solution as α and the suboptimal solution and
third best solution as β and γ . The other feasible solutions
in the solution space are denoted as ω. The model describing
how wolves track the prey after discovery is proposed as
follows:

ED = EC◦ EXp (t)− EX (t) (7)
EX (t + 1) = EXp (t)− EA◦ ED. (8)

Formula (7) indicates the distance between an individual
and the prey, while Formula (8) represents the update of the
individual according to the target position. ◦ represents the
Hadamard product operation. EXp (t) represents the position
of the prey, EX (t) is the position of an individual wolf, and t is
the number of iterations. EA and EC are expressed as coefficient
vectors:

EA = a(2Er1 − 1) (9)
EC = 2Er2, (10)

where a represents the convergence factor, which linearly
decreases from 2 to 0 as the number of iterations increases.
Er1 and Er2 are random vectors in [0, 1].
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FIGURE 2. Optimization results of the function. The left figure in each pair shows the parameter space, and the right figure shows the convergence curve.

In an actual situation, the position of the prey is unknown,
so we choose the best knowledge of the prey (obtained by
an α, β, or γ wolf) to update the positions of all the other
wolves (ω wolves) using Formulas (11) and (12). We regard
the solution space of the fitness function as the range of the
wolves. Since the T matrix has been obtained by Formula (4),
we can conclude that the solution space is the value range
of the three rotation angles, according to Formulas (3) and
(1). Three group optimal angles of the fitness function are
saved as the positions of α, β and γ wolves, and the remaining
feasible solutions represent the positions of ω wolves. The
positions of ω wolves are updated according to the positions
of α, β and γ wolves, and the specific update method is as
follows:

EDα = EC◦1 EXα (t)− EX (t)
EDβ = EC◦2 EXβ (t)− EX (t)
EDγ = EC◦3 EXγ (t)− EX (t) . (11)

EDα , EDβ and EDγ represent the distances between α, β and γ
and the current position of ω, respectively, and EXα(t), EXβ (t),
and EXγ (t) are the positions of α, β, and γ .

EX1 = EXα (t)− EA◦1 EDα
EX2 = EXβ (t)− EA◦2 EDβ
EX3 = EXγ (t)− EA◦3 EDγ

EX (t + 1) =
EX1 + EX2 + EX3

3
(12)

EX1, EX2, and EX3 are the effects on the location of ω due to α,
β, and γ , respectively. EX (t + 1) is the updated position of ω.

In the process of capture, the convergence factor and
parameter A gradually decrease. When

∣∣∣EA∣∣∣ > 1, the wolves

are searching within the region; when
∣∣∣EA∣∣∣ < 1, the wolves

launch an attack. That is, the convergence factor controls the
search capability of the wolves. EC is a random vector that
contains random values in [0, 2], representing the random
interference of the prey position.

∣∣∣ EC∣∣∣> 1 indicates that ran-
dom interference is large, which leads to a strong stochastic
disturbance and guarantees a higher possibility of outputting
a locally optimal solution.

3) MATHEMATICAL PROCEDURE OF THE ALGORITHM
The main procedure of the GWO algorithm is as follows:

1) Initialize the wolf population by initializing multiple
groups of rotation angles randomly;

2) Initialize the parameter vectors EA and EC;
3) Obtain the fitness functions of all the wolves;
4) Select three solutions with the best fitness as the α, β

and γ wolves;
5) Update the positions of all ω wolves and EA and EC;
6) Stop if the iteration threshold is reached; otherwise,

return to step (3).

V. EXPERIMENTAL RESULTS
To evaluate the performance of the PCR-GW algorithm,
the bunny, dragon, and armadillo models of the Stanford
University Computer Graphics Laboratory [2] are selected.
Our method is compared with 4PCS, the algorithm based
on FPFH, and the method based on the PSO algorithm.
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TABLE 1. The pseudocode of PCR-GW.

During the experiment, we defined a performance index to
evaluate each algorithm, which includes the running time and
registration error. The operating environment of the exper-
iment includes an Intel Core-i5 CPU with 6 GB memory
and aWindows 10 operating system. The algorithm proposed
and its contrasted algorithms are all applied with MATLAB.
MATLAB 2017b is used for compiling and registering the
point cloud models.

A. PARAMETER SETTINGS
In our algorithm, some parameters need to be defined in the
key point selection module and the parameter solution mod-
ule. The values of these parameters should be set reasonably
because they play an important role in the performance of the
algorithm. In the key point selection module, we conducted
several experiments based on the information in previous
research and the actual situation. The appropriate parameters
are set as follows: the number of neighborhood points K= 6,
the neighborhood radius r = 0.005, ε1 = 0.7, and ε2 = 0.4.

After the key points are selected, the GWO algorithm is
applied to solve the parameters of the rotation matrix. The
population size and number of iterations in the algorithm
exert a direct influence on the algorithm performance. Overly
large or small populations can lead to a low operating effi-
ciency for the algorithm. In addition, a small number of
iterations will result in the early maturity of the algorithm.
Therefore, we designed a set of experiments to find the most
suitable parameters.

We used the Happy Buddha model that appears at the
beginning of this article, taking the population size and the
number of iterations as the variables in conducting the exper-
iment. The root-mean-square error (RMSE) is used as the
measurement standard and is given as follows:

RMSE =

√√√√ 1
Np

Np∑
i=1

∥∥R ∗ pi + T − qi∥∥. (13)

Np is the number of key points chosen from P. RMSE is
the mean distance of the corresponding points between two

VOLUME 8, 2020 143379



Y. Feng et al.: Point Cloud Registration Algorithm Based on the GWO

TABLE 2. RMSE values of parameters (mm).

FIGURE 3. Registration results of the algorithms. From left to right are the original model, FPFH algorithm, 4PCS algorithm, PSO algorithm, and PCR-GW
algorithm. (a) is the bunny model. (b) is the dragon model. (c) is the armadillo.

point clouds, which is a classic method of point cloud reg-
istration. As the registration effect is the most concerning
part, a parameter value corresponding to a small RMSE is
preferred. Table 2 shows the RMSE values of the different
parameters. The horizontal parameters in the table correspond
to the population size N, and the vertical parameters corre-
spond to the number of iterations t.

According to Table 2, the final result remained at 1.3 mm
and increased and decreased as the parameters changed.
Considering that excessively large numbers of iterations and
population sizes will slow down the computational speed,
we should select the minimal parameters in the range of
stable results. The information in Table 2 shows that when the
population number N = 20 and the number of iterations t =
300, the accuracy can reach 1.3 mm. Although the accuracy is
good when N= 35 and t= 500, considering that the accuracy
changes relatively little but the time cost increases quickly,
we still choose to set the initial population size to 20 and the
number of iterations to 300.

B. RESULT ANALYSIS
Popular point cloud algorithms, including the registration
algorithm based on FPFH features, 4PCS, and the PSO algo-
rithm for parameter optimization, are selected to compare
with the PCR-GW algorithm. The results indicate that the
PCR-GW method performs well for the data set. The regis-
tration results are shown in Figure 3.

1) REGISTRATION ACCURACY EVALUATION
To evaluate the performance of each algorithm, the RMSE is
used. Each experiment is repeated five times, and then the
average RMSE is calculated to ensure the accuracy of the
experiment. The RMSE values of the various algorithms are
shown in Table 3. By comparing the errors of the various algo-
rithms, it can be seen that all the above algorithms can provide
good initial positions. Furthermore, PCR-GW outperforms
the other three algorithms, and it provides a better position
for fine registration. The registration of the PSO algorithm is
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TABLE 3. The RMSE of the algorithms (mm).

TABLE 4. The runtime of the algorithms (s).

also good, while the registration position error of the 4PCS
algorithm is relatively large.

2) TIME PERFORMANCE ANALYSIS
The runtime is an important index to measure the perfor-
mance of algorithms. The average runtimes of the four algo-
rithms are shown in Table 4. The runtimes of the algorithms
show that PCR-GW takes less time than the same type of PSO
algorithm. Compared with 4PCS, PCR-GW takes slightly
more time but has more advantages given its accuracy. Due to
the iterative process, our algorithm is not outstanding among
all algorithms in terms of time; we will address this in future
research.

VI. CONCLUSION
In this article, a point cloud registration algorithm based on
the grey wolf optimizer (GWO) is proposed, and the key
points are selected according to the ISS feature to simplify
the point cloud. After that, the parameters in the transforma-
tion matrix are solved by the GWO algorithm to obtain the
registration results. In this article, multiple experiments are
conducted according to theoretical and practical experience
to find the most appropriate parameters. The GWO algorithm
effectively balances the global and local optimization abilities
and can obtain the optimal value within a short time. Through
comparison with other algorithms, it is shown that PCR-GW
can obtain accurate registration results and ensure operational
efficiency. In the future, we will focus on decreasing the
runtime of the iteration process. (1) We can add machine
learning to the process of finding the corresponding points
(qi and pi). (2) We plan to optimize the method that finds the
α, β, and γ wolf in each iteration. (3) We will consider using
a more efficient fitness function.
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