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ABSTRACT The Analytics companies enable successful targeted advertising via user profiles, derived from
the mobile apps installed by specific users, and hence have become an integral part of the mobile advertising
industry. This threatens the users’ privacy, when profiling is based on apps representing sensitive information,
e.g., gambling problems indicated by a game app. In this work, we propose an app-based profile obfuscation
mechanism, ProfileGuard, with the objective of eliminating the dominance of private interest categories (i.e.
the prevailing private interest categories present in a user profile). We demonstrate, based on wide-range
experimental evaluation of Android apps in a nine month test campaign, that the proposed obfuscation
mechanism based on similarity with user’s existing apps (ensuring that selected obfuscating apps belong
to non-private categories) can achieve a good trade-off between efforts required by the obfuscating system
and the resulting privacy protection. We also show how the bespoke (customised to profile obfuscation)
and bespoke++ (resource-aware) strategies can deliver significant improvements in the level of obfuscation
and (particularly bespoke++) in the use of mobile resources, making the latter a good candidate strategy in
resource-constrained scenarios e.g., for fixed data use mobile plans. We also implement a POC ProfileGuard
app to demonstrate the feasibility of an automated obfuscation mechanism. Furthermore, we provide insights
to Google AdMob profiling rules, such as showing how individual apps map to user’s interests within their
profile in a deterministic way and that AdMob requires a certain level of activity to build a stable user profile.

INDEX TERMS Privacy, targeted ads, mobile apps, obfuscation, user experience.

I. INTRODUCTION
Online user profiling for the purpose of targeted, personalised
advertisements has become an invaluable component of the
advertising industry. While in-browser information collec-
tion was the initial focus, in the mobile environment the
prevalence of apps has enabled further development of the
mobile-specific profiling and targeting. Within the mobile
advertising environment, companies such as Google Analyt-
ics for mobiles1 or Flurry2 collect a rich set of information
from the apps use [1], to target individuals with ads that will
result in sales and increase the revenues for all stakeholders in

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Desolda .
1Google Admob https://apps.admob.com
2Flurry Analytics https://www.flurry.com/analytics.html

the advertising ecosystem. However, from the user’s point of
view, the leakage of their personal information is considered
as a threat to privacy and all parties in the ecosystem need
to adhere to ethical and legal constraints in regards to user’s
data [2].

Prior research has addressed the prevalence of collecting
individual’s information and associated privacy threats [3]
including the extent of web tracking [4], information leakages
through inference attacks based on monitoring displayed ads
in browsing sessions [5], [6], ad library API calls [7], and
tracking user’s history through browser fingerprinting and
cookie syncing [8], [9]. In line with these, there are a number
of works on protecting the user’s privacy, by using techniques
such as obfuscating user data, proposed in different contexts,
e.g., for browsing [10] and location based services [11].
Privacy preserving advertising systems that utilise a mix of
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cryptography techniques and obfuscation mechanisms have
also been proposed, e.g., [12], [13]. However, we note that the
majority of prior works in private advertising systems have
focused on browser based ads [14]–[17] whereas only few
works address the in-app targeted ads, which is the primary
focus of our work [18].

In this paper, our main focus is on protecting individual’s
privacy within the mobile advertising system from both pro-
filing of specific attributes (selected as private), which the
analytics companies may use for targeted advertisements,
and ads targeting based on these attributes. We note that the
advertising companies usually groupmobile applications into
thematic categories (e.g., on Google Play store3 or the Apple
store4). Furthermore, the various items in a user profile,
derived from the use of installed apps (interests in Google’s
terminology), are also gathered in similar categories. Our
purpose is to obfuscate a selected interest category within
a profile along with the corresponding apps category, which
may be considered private by the user. For instance, the user
may not wish the categories of gaming or porn to be included
in their profile, as these would reflect heavy use of corre-
sponding (gaming and porn) apps. This would be of particular
relevance in common scenarios such as when a user uses a
business mobile device for private purposes. In this paper,
we extend our previous work [18] and present a mechanism
to deflect the attacks on privacy via app-based profiling and
the ad-based inference attacks. We provide the following
contributions.

We examine the profiling process used by amajor analytics
network i.e. Google AdMob, by investigating the relation
between the mobile app characteristics and the resulting
user profiles. We carry out wide-range experiments for a
period of over 9 months; based on our extensive experimental
results we show that the profile interest categories can be
predicted from the app categories with a high accuracy
of 81.4%, reflecting the dominating interests’ categories.
We moreover determine the broad profiling rules: that pro-
files are characterised by an aggregation of interests deter-
mined by use of individual mobile apps, that the mapping of
apps to sets of interests is deterministic and that it requires a
minimum level of activity (up to 72h) to build a stable user
profile.

We propose ProfileGuard, an app-based obfuscation
mechanism that, for a selected private interest category,
reduces the level of dominance of private interest category
in a user profile. We demonstrate, through a POC imple-
mentation, the feasibility of a fully automated obfuscation
system of ProfileGuard app, which installs and runs the
selected obfuscating apps. Two main obfuscation approaches
are considered: (a) based on most similar (obfuscating) apps
from any non-private app category, similar to the app-based
recommender systems; and (b) bespoke, which is customised
to the user’s profile interests (we also take another variant of

3Google Play store: https://play.google.com/store
4Apple App store: https://www.apple.com/ios/app-store/

this strategy, bespoke++, that takes into account the resource
use). In addition, the obfuscation system randomly chooses
apps from any non-private app category and compares with
other approaches. We demonstrate via experiments that the
similarity based strategy brings the best tradeoff between the
app cost and the reduction of threat to the privacy by reducing
the magnitude of dominance level of private interest category
in a user profile. Note that cost is measured by the number
of newly introduced obfuscating apps, which are required
to provide privacy protection for a selected private interest
category. For instance, based on similarity, a single obfuscat-
ing app decreases the dominance of a Comics category by
50% compared to a 33% decrease for random obfuscation
strategy. On the other hand, the bespoke and bespoke++
strategies provide an average of 48.1% improvement and a
low average app costof only 30% required for a non-private
category to become dominant in a profile. This compares
to 99% and 123% respectively for the similarity and ran-
dom based obfuscation strategies. We note, however, that
these strategies require the knowledge of mapping of apps
profiles to user profiles that presently requires significant
pre-processing overhead. We are planning for future work
to consider different ways for minimising this overhead by
evaluating approximate profile evaluation.

We evaluate the overhead introduced by running the
obfuscating apps. We show that there is a wide range of
the resulting overhead, both in the mobile device resources
like battery power, CPU and memory use and in the use of
communication resources. We show that, in line with the
lower number of apps required for obfuscation, the bespoke
and bespoke++ strategies have lower resource require-
ments. Additionally, the resource-aware bespoke++ strat-
egy can decrease the bandwidth overhead introduced by
similarity and random strategies by, respectively, 64% and
65% and by 57% compared to bespoke when a single
app is used for obfuscation. This is increased to 81%,
77% and 66% improvement compared to the same strate-
gies for complete obfuscation, demonstrating a significant
benefit to the user and a promising direction to further
explore.

Finally, we show the impact of proposed obfuscation
strategies on targeted ads. We demonstrate that user profiles
consist of awider range of interests from different interest cat-
egories and will result in a broader range of ads delivered to
the corresponding mobile user devices. This will also reduce
the level of ads targeting and the likelihood of ads-based
profile inference.

We organise this paper as follows: Section 2 presents
background on the ads ecosystem. In Section 3, we present
system model and describe various obfuscation strategies.
Section 4 presents details of the system evaluation and our
experimental setup.We present the experimental results using
different obfuscation strategies in Section 5. We further dis-
cuss the pros and cons of different approaches in Section 6.
Prior work is presented in Section 7 and our conclusions in
Section 8.
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FIGURE 1. The In-App advertising ecosystem and the information flow
between different parties.

II. BACKGROUND
This section presents background on the mobile advertis-
ing ecosystem. A representative in-app mobile advertising
ecosystem is shown in Figure 1, which comprises users,
the analytics components and the ad placement system. User
devices (shown in the left side of Figure 1) have a number
of apps installed; these are utilised by mobile users, with
specific use frequency and duration. We note that majority
of mobile apps include analytics SDKs that instantaneously
monitor user’s actions and send this information to the Ads
system network, for tracking user’s activities and for serving
ads [19]. The advertising system also comprises theAggrega-
tion Server, which aggregates user’s information sent by ad
analytics libraries, and theAds Placement Server that deliv-
ers ads within the mobile applications. An important entity
within the advertising ecosystem is the Analytics Server,
that develops user profiles (associated with specific mobile
devices and corresponding users) from the collected data.
This data relates to the usage of mobile apps and the success
of displayed ads. We note that user profiles comprise a num-
ber of interests, which specify the use of related apps, e.g.
games, business apps, etc. Examples of user profiles derived
through use of mobile apps include Google AdMob5 and
Flurry [20] (we note this is only visible to the app developers).
Targeted ads are served to mobile device users according

to their individual profiles. We note that other i.e., generic
ads are also served to diverse profiles according to the ad
network’s advertising strategy. However, in line with our
focus on targeting, in this work our primary interest is in the
targeted ads.

We consider two attack scenarios. First, the direct attack
where the Analytics network (in this work, we focus on
Google AdMob) legitimately derives user profiles. Second,
the indirect attack, involves a third party intruder; where the
ads traffic (sent in clear text [21] to mobile devices) is being
monitored, to infer user profiles based on the served targeted
ads. In both attack scenarios, the user is willing to receive

5The inferred Google AdMob profile can be accessed via the Google
Settings system app on Android devices.

relevant ads on selected topics of interest and is not opposed
to profiling in general; however, the user does not wish for
specific parts of their profile (considered private) (attributes)
to be known to the Analytics network or any other party, or to
be used for targeting.

III. USER PROFILE OBFUSCATION
Our aim is to obfuscate the user profile, so that an adver-
sary (either the analytics companies or an observer listening
in to the ad/control traffic) cannot determine the nature of
user’s specific (private) mobile applications, which produce
selected profile interests.

We accomplish the obfuscation using this ProfileGuard
system. The ProfileGuard system comprises of a bespoke
app that performs different tasks, such as, providing user pro-
filing information exchange, recommendations for specific
standard (obfuscating) apps, and the automated running of
obfuscating apps and the server that implements the obfus-
cating app selection. We first explain the system model to
describe the obfuscation methodology.

A. SYSTEM MODEL
A mobile app marketplace comprises a set ofAmobile apps,
that are usually (e.g., in Apple App store or in Google Play)
organised within8 categories. We represent a mobile app by
ai,j, i = 1, . . . ,Aj, where Aj is the number of apps that belong
to an app category 8j, j = 1, . . . , 8, where 8 the number of
various apps categories in the marketplace.

Each app ai,j =
{{
κm,i,j

}
: ai,j ∈ A

}
can be characterised

by keywords κm,i,j, derived e.g., from various characteristics
associated with an app described in the appmarketplace, such
as title and description of a apps etc. Here m = 1, . . . ,Mi,j,
where Mi,j is the number of keywords for app ai,j, i =
1, . . . ,Aj, j = 1, . . . , 8.
We characterise users by a combination of mobile apps

installed on their mobile device(s), consisting of a subset Sa of
app set A and their associated keywords. An Apps profile Ka
can therefore be defined as Ka =

{{{
κm,i,j

}
,8j

}
: ai,j ∈ Sa

}
.

Analytics companies (e.g., Google or Flurry) characterise
and profile users by defining a set of profile interests G,
i.e., characteristics that may be assigned to individual users.
We note that interests are commonly grouped into different
categories, with an interest gk,l , k = 1, . . . ,Gl , where Gl is
the number of interests that belong to an interest category9l ,
l = 1, . . . , 9. 9 is various interest categories defined by an
analytics company.

Profiling characterises the user by the combination of
their interests, i.e., by a subset Sg of the full interest set
G. An Interest profile Ig can therefore be defined as: Ig ={{
gk,l, 9l

}
: gk,l ∈ Sg

}
.

We focus on the interests derived from the use of installed
apps although we note that there are various types of infor-
mation may be used to generate user profiles. We presume
that there is a fixed mapping of Apps profile to an Interest
profile, defined by the mapping M , M :

{
Ka→ Ig

}
. This
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TABLE 1. List of notations.

also includes the mapping of app categories 8j to interest
categories 9l .
We define9p a private interest category that a mobile user

considers as private and wishes to protect. We assume that
there is a corresponding private app category 8p, defined by
M .

Furthermore, we describe the dominance ratio D as the
ratio of number of interests in a selected category 9p,{∣∣{gk,p}∣∣} and the maximum number of interests in any of
the other categories 9l present in a user profile. We note that
D > 1 indicates that a private interest category is dominant
in a user profile, i.e., the profile has the largest number of
corresponding interests.

D = min({|{gk, p}|}/{|{gk, l}|}) :

∀9l 6= 9p, gk,l ∈ Sg (1)

The aim of the proposed obfuscation mechanism is to gen-
erate a new obfuscated profile I ′g by reducing the dominance
ratio of a selected private category 9p in a user profile Ig.
We achieve this by installing and using selected obfuscating
apps So, in addition to the original set of apps (Sa), resulting
in an obfuscated app set S ′a. Table 1 summarises the notations
used in this paper. We define various strategies for selecting
obfuscating apps in the following sub-section.

B. OBFUSCATION STRATEGIES
We describe the following profile obfuscation strategies to
select candidate apps. We note that all the obfuscation strate-
gies select the candidate obfuscation apps from categories
other than the category 8p, which correspond to the pro-
file (private) category that the user is protecting 9p. We state
that the user is protecting any number of private interests
categories9p, p = 1, · · · , � and� is the number of different
interests categories that are private to the user.

1) SIMILARITY BASED STRATEGY
This strategy selects the candidate obfuscating apps based on
a similarity metric. The obfuscating set So consists of apps
with highest similarity to the currently installed apps in Sa.

We calculate the set Ssimo for a single obfuscating app and the
private app categories8p corresponding to the private interest
categories 9p as:

Ssimo =


ao←

∣∣sim(ai,p, aq,r )∣∣max :

∀r = 1,8; ∀p = 1, �; ai,p ∈ Sa;
aq,r /∈ Sa; 8r 6= 8p

 (2)

The utility (defined in Section III-C) is the major moti-
vation for the use of similarity by taking into consideration
that the potential obfuscating apps may be of real interest to
the user. We calculate the similarity based on app keywords
using the tf−idf (cosine similarity) metric [22]. Note that this
strategy is not metric-specific while other similarity metrics
can also be utilised.

We represent κm,i,p and κm,i,r as the set of app keywords
respectively in ai,p and ai,r . Let t and d be a particular key-
word respectively in κm,i,p and κm,i,r , then the term frequency,
i.e. frequency of a particular keyword t in d , is tft,d . The
inverse document frequency of t ∈ κm,i,p within d can be
calculated as idft = log N

dft
, where N is the set of apps

keywords and dft is the document frequency i.e. the number
of apps keywords that contain t . Hence, the tf-idf can be
calculated as tf − idft,d = tft,d × idft . Consequently the score
for κm,i,p can be calculated as:

score
(
κm,i,p, d

)
=

∑
t∈κm,i,p

tf − idft,d (3)

The similarity score is calculated for the entire set of
private interest categories i.e. p = 1, · · · , �.

2) BESPOKE STRATEGY
We assume that the mapping M of Apps profile (we take
the apps keywords and categories) to an Interest profile is
available for individual apps. Practically, we conduct a series
of tests to derive the user profile interests for specific apps
(Section IV presents experimental results for selected apps).
Following, we select as the obfuscation candidate apps that
generate (known) interests, which belong to categories that
are already present in the set of interests from a specific user
Interest profile Sg. Assuming a single obfuscating app along
with the private app categories 8p (and the corresponding
private interest categories 9p) we calculate obfuscating apps
using bespoke strategy as:

Sbeso =

 ao← aq,r :
∀r = 1,8; ∀p = 1, �; gk,r /∈ 9p;

gk,r ∈ Sg; aq,r /∈ Sa

 (4)

To achieve the complete obfuscation (i.e. have D < 1
for the private category), we select multiple obfuscation
candidates:

Sbeso =


ao← aq,r :
∀r = 1,8; ∀p = 1, �; gk,r /∈ 9p;

gk,r ∈ Sg; aq,r /∈ Sa; aq,r /∈ Sbeso

 (5)
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3) BESPOKE++ STRATEGY
Building on the bespoke strategy approach, we make a further
assumption that the resource overhead Ri,j of individual apps
ai,j is known. I.e., that the pre-processing experiments to
generate mapping of apps to interests include characterising
the use of resources like bandwidth consumption, CPU and
memory use (we will address resource consumption in detail
in Section III-C). From the candidate set of bespoke apps,
as per Equation 5, we select the candidate obfuscating apps
that would generate the lowest amount of resource overhead:

Sbes++o =

{
ao←

∣∣Rq,r (aq,r)∣∣min : aq,r ∈ S
bes
o

}
(6)

4) RANDOM STRATEGY
Finally, for the random strategy we randomly select the can-
didate apps, however still with the awareness of user privacy.
This strategy chooses apps from any non-private app category
8j 6= 8p.

Srndo =

{
ao← aq,r :
∀p = 1, �; aq,r /∈ Sa; 8r 6= 8p

(7)

C. EVALUATION METRIC
We define the evaluation metrics used to calculate the utility
and app cost of obfuscation in order to compare various
obfuscation strategies for selecting obfuscation apps. Addi-
tionally, to assist in the refining and implementation of the
bespoke++ strategy, we define the app resource overhead,
introduced when they are used for obfuscation.

There are few research works related to obfuscation of
browser based profiling; the authors in [23] define the utility
as the success rate for the removal of private query tags.
Similarly for rating systems, the proposed utilitymetric is the
level of suppression of original user preferences [24]. Cost
is commonly defined as the ratio of obfuscating to original
data [23].

1) UTILITY
We define utility based on two components: first, from the
effectiveness of privacy protection viewpoint, we use as met-
ric the level of reduction Rp of dominance ratio D of a
selected private category 9p in a user profile, achieved by
obfuscation, with Rp = D′/D. Here D′ is the new dominance
ratio resulting from using apps in S ′a.
Next, we introduce the notion of usability of the obfuscat-

ing app. The usability relates to the probability that a user
would actually use this app, rather than just install and run it
for the purpose of privacy protection. Considering the com-
mon use of similarity in recommender systems to suggest [25]
e.g., an app that a user is likely to be interested in, we define
the usability Us of an app ao, in regards to a user with a
specific Apps profile, as the ratio of similarity between this
app and any of the apps in the original set of installed apps
Sa and the maximum similarity of any other app from A, not

present in Sa and apps from the same set:

Us = min

(
sim

(
ao, ai,p

)
sim

(
aq,r , ai,p

)) :
ai,p ∈ Sa, aq,r /∈ Sa (8)

Combining the two, the total utility can then be calculated
as: UT = α · Rp + β · Us.
The magnitude of weighting factors α and β can be tuned

by the obfuscating mechanism (e.g., as part of user prefer-
ences). We note that the similarity based strategy is targeting
high Us, although it limits the app choices to non-private
app categories.

2) COST AND RESOURCE OVERHEAD
Although the cost and overhead could be considered as equiv-
alent terms in the context of introducing new activities (a set
of new apps) that result in spent time and resources, for the
sake of clarity we use two separate terms.

We define app cost C as a metric that relates to the
reduction of the overall user’s time available to the original
(non-obfuscating) apps. In the basic scenario where, on the
average, the usage of all apps is uniformly distributed within
a time period, this is equivalent to the ratio of the number of
obfuscating apps in So, that need to be installed and used to
achieve privacy protection, and the size of the original app set
Sa. Cost is therefore defined as C = |So|/|Sa|.
We consider the app resource overhead R, to be the

overall use of resources by the obfuscating apps. For each
app ai,j, there will be a corresponding overhead Ri,j, com-
prising broadly of communication Rcomi,j , computing Rcmpi,j , and
battery consumption overheads Rbi,j.

Ri,j = Rcomi,j + R
cmp
i,j + R

b
i,j (9)

We experimentally evaluate various components of the
overall overhead R in Section IV-E. To simplify the
bespoke++ strategy implementation, we only consider
the communication overhead Rcomi,j of apps, when selecting
the obfuscating apps under this strategy.

D. ProfileGuard: THE OBFUSCATING SYSTEM
The ProfileGuard system implements our proposed
obfuscation mechanism. Various components are presented
in Figure 2. A user installs and runs the ProfileGuard
app in order to protect a specific aspect of their profile; this
approach is similar to the existing app recommender systems,
such as AppBrain [26]. This app acquires the information
about existing apps installed on a user’s device, to interact
with the user in regards to the selection of private attributes to
be protected; it also receives the list of candidate obfuscating
apps and presents them to user and can be used to install and
run the selected obfuscating apps. The Obfuscation engine
(i.e. server) calculates the user profile, based on the installed
apps and derives the set of obfuscating apps, according to
specific obfuscation strategy.

143822 VOLUME 8, 2020
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FIGURE 2. ProfileGuard obfuscating system includes the ProfileGuard
app client and the obfuscation engine (server) components.

To forward the list of the installed apps to the server
(the ProfileGuard Obfuscating Engine), the client starts a
Thread by opening a Socket (SERVER_ADDRESS,
SERVER_PORT) with the corresponding server details.
Using this socket the client writes this data, using
BufferedWriter. The Obfuscating Engine then selects
the obfuscating apps, according to one of the strategies
presented in Section III-B, and forwards the list of apps to
the client. Each app is displayed to the user as a link to the
Google Play store, by invoking the startActivity(new
Intent(Intent.ACTION_VIEW,
Uri.parse(“market://details?id=”
+appPackageName))). The description, i.e., the
activity name (the app to be installed) is specified using
appPackageName function, and is provided using the
Intent class.

The obfuscating apps are then run using the function
startActivity, in a loop comprising all (obfuscating)
apps, in a singgle Thread and for a specified amount of
time required to generate new profile interests in the ad
system. The Intent is set with the ComponentName and the
execution of all obfuscating apps is stopped using the same
Thread.

We envisage that ProfileGuard would be active when the
phone is not in use (although the current POC does not
implement scheduling, we have verified that this is feasi-
ble). The performance can be enhanced by scheduling these
activities to only when the phone is being charged (so that to
reduce energy costs) and is in Wi-Fi coverage (to help reduce
the bandwidth overhead). To improve efficiency, the client
may also keep track of the set of originally installed apps,
the obfuscating apps suggested by the Obfuscating Engine,
the set of installed apps, and the obfuscating apps that were
suggested by the Obfuscating Engine but were not installed
by the client.

IV. EXPERIMENTAL EVALUATION: SETUP AND
OBSERVATIONS
In this section, we outline the methodology used to evaluate
the proposed obfuscation strategies, considering both their
utility and resource overhead. We start with an overview
of the experimental setup along with the collected datasets.
First, we investigate the rules for building user profiles. Next,
we demonstrate the degree of private information revealed

by the unprotected user profiles. Subsequently, we discuss
the resource use measurement methods and further provide
insights into resource-usage by various apps.

A. EXPERIMENTAL SETUP: PROFILING AND ADS
Among the initial goals of this study is to gather insights
about specific rules used by the advertising companies to
establish the Interest profile entries in addition to the temporal
evolution of different profiles. We note that the profiling
rules are proprietary to the advertising companies; however,
there are previous studies that establish the relevance of
app-based profiling (and hence ads targeting, since mobile
apps send targeting information to ad networks [27], [28])
to the mobile ads ecosystem. In our present work, we focus
on Google AdMob since it is the leading market in mobile
user profiling and mobile advertising. However, we note that
our methods can be readily applied to other ad or analytics
networks. Recall that, our focus is exclusively on profile
interests derived from the usage of mobile apps in the Apps
profile.

For evaluating app based profiling rules and other experi-
mentations, we randomly select 27 different apps categories
from Google Play store. We note that the mobile apps in
Google Play store are classified into 34 categories (e.g.,
Entertainment, Business, etc). Frits, we select top 100 free
apps from randomly chosen 27 categories and further nar-
rowing down this selection to 10 highest ranked apps from
selected categories. We had to make sure that these apps
receive ads (we detail the relevance of ads to building of
Google profile in Section IV-B).

Google profile interests6 are also hierarchically grouped
under 25 interest categories with 2042 specific interests.
We run a series of profiling experiments in order to determine
temporal Interest profile evolution and further demonstrate
the mapping of Apps profile categories to Interest profile
categories. For these experiments, we install the full set
of 100 apps from a selected category on test phones; we use
a subset of 10 apps from this set, one at a time, where each
app is run for a period of approximately 2.4 hours within any
24h testing period.

We use an automated app for all the experimentation dis-
cussed in this section, which enables all the communication
between a PC and connected Android devices through the
use of the Android Debug Bridge.7 Furthermore, all the
ads (including the control traffic communicated for track-
ing/profiling/personalisation purposes) traffic was collected
using tcpdump [29] and saved to a local database during
the entire experimentations. Correspondingly, before start-
ing each experiment we reset the profile8 to ensure that
Interest profile is only resulting from the currently installed
and used apps. Similarly, in parallel, we also run a set of

6Google profile interests are listed in https://adssettings.
google.com/authenticated?hl=en, displayed under the ‘Ad personalization’.

7developer.android.com/tools/help/adb.html
8The profile is reset by using the ‘Reset advertising ID’ option in the

Google settings system app.
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phones with the same app configuration, but with ‘Opt-out of
interest-based ads’ setting enabled in Google settings system
app. This was done in order to have a base reference for both
generated user profile and received ads. We manually check
the profile on each of the phones in 6h intervals (note this
cannot be automated). We run the profiling experiments for
all the app categories for 24 hours a day and for 5 months;
we use 10 smartphones due to practical limitations of the
experimental environment.

We note that the collected app traffic is also used to calcu-
late the resource usage, as detailed in Section IV-D.
We use a second (mapping) experimental setup in which

we only select a single mobile app from an app category
and run it (in an automated way) for a period of up to 96h.
The purpose of these experimentations is to calculate the
mapping of specific App profile to Interest profile so that
the contribution of individual app can be determined in an
Interest profile. During the experiments, we reset each test
phone before running any experiment, similarly, we per-
formmanual profile verification every 6h. These experiments
resulting in Interest profile for the 270 highest ranked apps
(that also receive ads) have taken around 3 months to com-
plete. We note that findings from these experiments also help
us in selecting obfuscating apps for the bespoke obfuscation
strategy.

Finally, we run a series of obfuscation experiments to verify
the extent of profile obfuscation for selected obfuscation
strategies. This process results in the evolution of Interest
profile with the new subset S ′a comprising a combination of
the original apps set Sa (used for profiling experiments) and
the obfuscating set So. In line with the profiling experiments,
we run each app, in succession, from S ′a for a total of 24h/|S

′
a|

in any 24h period. Recall, as detailed in Section IV-B, that
apps must have activity for a minimum time duration in order
to generate interests within the Interest profile. We make it
sure that we run apps from S ′a for a sufficient time period in
order to achieve the desired outcome.

We collect the following dataset from the above
experiments respectively containing the snapshots of
Interest profiles taken in 6h intervals for: (a) multiple
apps from a single category i.e. we call this dataset
a multiapp-profile; (b) individual apps from
all categories i.e. singleapp-profile (c) the
set of apps containing a mix of multiple apps from
individual categories and a single obfuscating app i.e.
obfuscated-oneapp and (d) as, previous, but for
multiple obfuscating apps i.e. obfuscated-complete.
Likewise, following datasets contain all the data and control
traffic collected from the same experimental configurations:
multiapp-traffic, singleapp-traffic, obfus-
cated-oneapp-traffic and obfuscated-comp-
lete-traffic. Overall, we run these experiments for a
period of 9.5 months and using a total of 2700 apps, which
resulted in 140 collected profile interests and 246657 ads.

In addition, we collect data related to apps and Google
profile interests, which we use for analysis of user profile

protection strategies. The first dataset comprise of the top
100 apps from each category of Google Play store, including
all keywords and apps categories. The second dataset includes
the 2042 Google profile interests.

It is important to note that we perform all our experiments
in a single geographical location. However, we believe that
this methodology or the findings of this study are not com-
promised since the user profiling mechanism is unrelated to
locations. On the other hand, the volume and diversity of ads
pool are related to geographical areas. However, our focus is
to analyse the delivered ads only in regards to profile interests
based (i.e. targeted advertising) targeting and we focus on the
differences resulting from profile changes.

B. INSIGHTS ON PROFILING RULES AND APP USE
THRESHOLD
In this section, we outline our observations about the devel-
opment of user Interest profiles, based on app characteristics
and usage.

We note that all the apps in an Apps profile (i.e. installed
in a specific mobile device) do not necessarily contribute to
the profile.9 This is due to the fact that every mobile app does
not come with the AdMob SDK i.e. to receive ads, in order
to generate one or more interests. We verify this via testing
1200 apps selected from a subset of 12 randomly chosen
apps categories, for duration of 8 days. We note the resulting
Interest profiles from running these apps on all the test phones
indicating ‘‘unknown’’ interests. Additionally, we note that
the Google analytics generates the Interest profiles in a deter-
ministic way, i.e. after a certain period of activity, specific
apps will always generate selected (identical) interests. Simi-
larly, we note that the resultant Interest profile from the use of
multiple apps is an aggregation (union) of individual interests
for entire set of apps.

In addition, we note that the profiling process requires a
minimum level of activity from one or more apps in order to
generate an interest(s) in an Interest profile. Our experimental
evaluations indicate that the mobile apps need to be active
within of 24h, with a minimum activity of about 1.5h for
individual apps. We also have observed, in regards to tem-
poral evolution of user profiles, that in some cases additional
interests are added to the profile in subsequent 72h period.
For this we run a similar experiment with a number of apps
for 8 days. However, after 4 days of the profile evolution,
it becomes stable and it does not result in any changes with
additional app activity.

We now evaluate the mapping M between the app cate-
gories inApp profile and interest categories of Interest profile.
To do this, as defined by Google, we first unify both types of
categories and then experimentally evaluate how this map-
ping is carried out in practice. Table 2 presents the resulting
matches form the original lists of Google Play app’s cate-
gories to Google interest’s categories. We note that 11 apps

9The full list of installed apps on an Android based phone is included in
the library.db file /data/data/com.android.vending/databases/library.db.
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TABLE 2. Mapping of Google Play store apps categories to Google
interest categories.

categories can be directly matched to top level interest cate-
gories by comparing category names (e.g., Business app cat-
egory with Business & Industrial interest category). Further,
13 apps categories directly matches to a lower category in
the interest category hierarchy; an additional 10 categories
are listed as second and additional three categories as third
hierarchical level of interest categories. We manually map
three app categories to interest categories i.e. Medical to
Science, Widgets to Computers & Electronics and Lifestyle
to Beauty & Fitness. We note that the Medical app category
is only challenging category for finding a match, as this
is clearly considered as potentially private when defining
profiling categories. For this, we consider Science to be the
closest match as it includes anatomy - although this only
covers a small part of Medical topics, we believe that this
mapping minimises the likelihood of false positives.

Figure 3 shows the relationship, results of our profiling
experiments based on the multiapp-profile dataset,
between the Interest profiles and (generated from) the Apps
profiles. It can be observed that the interests in Interest pro-
files contain a matching category in majority of cases (81.4%)
showing a direct threat to the user privacy. We also observe
that only 5 categories do not have direct matches. Therefore,
in the remainder of this paper, this mapping is being used to
evaluate both the impact of obfuscation and the threats to the
privacy, under the assumption that a user wishes to keep a
selected interest (and app) category private.

C. PRIVACY EXPOSURE VIA UNPROTECTED PROFILES
In this section we show comprehensive results of profil-
ing experiments (using the multiapp-profile dataset),
demonstrating the dominance of profiling categories that
match the selected interest categories in an Interest profile.
Figure 4(a) shows the number of unique interests and the
number of interests in specific categories, for all app interest
categories. As an example, it can be noted that the Interest

FIGURE 3. Relation between apps characteristics and Google interests:
black denotes a category match, grey that an interest from a
non-matching category is present in the profile.

profile generated by Games apps category results in seven
unique interests, among which, one belongs to Internet &
Telecom and 6 to Games interest categories. Overall, during
the profiling experiments, we capture 140 interests including
78 unique interests belonging to 20 (out of 24) Google interest
categories. Furthermore, we observe that Arts & Entertain-
ment and Computer & Electronics interest categories con-
tribute in the majority of the Interest profile i.e. respectively
in 21.9% and 19.3%. Following, this is followed by Internet
& Telecom, Reference, and Games categories being close to
10% while the remainder of interest categories being repre-
sented by between 1-4%.

Figure 4(b) presents the dominance ratio D of selected
interest categories (matching to app category) assuming all
categories are chosen private. It can be observed that an
average value of D = 1.35, which is quite broad across all
categories. The critical value of D > 1 (which indicates that
a private category is dominant in an Interest profile) is present
in 37% of categories, with a further 31% having D = 1.
This is consistent with the results presented in Figure 3,
which again indicates a high level of threat to user privacy
from the presence of private interests in the matching private
categories. The Games category has the highest privacy con-
cerns with higher dominance ratio and could justifiably be
considered as private.

In the following sub-section, we will describe the method-
ology used for resource utilisation experiments.

D. RESOURCE USE EXPERIMENTS
To evaluate the communication overhead, we utilise the
traffic collected during the experiments as described in
Section IV-A.
We rely on the Android SDK10 utilities to automate

our measurements for computing and battery consumption
overheads. E.g., to calculate the current CPU usage when any

10https://developer.android.com/studio
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FIGURE 4. Unique Interests (a) and Dominance Ratio (b) of all Interest Profiles based on their respective apps Profiles.

single app is running, we execute the appropriate command
(adb shell top -m 10) within the Process p
= Runtime.getRuntime().exec(“command”).
To evaluate the computing overhead, we consider both the
CPU use and storage space consumption.

The storage space consumption can be partitioned into
installation storage space, the size of the internal data
size i.e. storage used for apps’ files, settings, accounts,
databases, etc., and the cache storage i.e. temporary
stored data, such as images, downloaded from the Inter-
net. We use the PackageStats package to obtain var-
ious static values as defined within this package; we use
codeSize, dataSize, and cacheSize respectively for
calculating the app’s installation, data, and cache storage
consumption.

Finally, for Battery consumption, we use adb shell
dumpsys battery | grep level to capture the cur-
rent battery status. This is displayed by initiating the
startActivity() of the Intent utility of the android
SDK. To measure the power consumption for each app,
we first charge the mobile battery to full (100%) and run
the app for one hour, while accessing the Wi-Fi network.
Although, in a real life scenario, users are likely to utilise
apps (equally) on a mobile network, our interest is in the
overhead of obfuscating apps that we envisage (as per
Section III-D) would be used over Wi-Fi to reduce the over-
head costs.

E. INSIGHTS ON RESOURCE USE
The communication overhead of the obfuscating apps is gen-
erated by both the app’s core functionality and by the ad
related traffic. As reported by prior work [30], and in line
with our experimental results, ads are a major contributor to
this overhead. Therefore, we approximate the overall commu-
nication cost by the traffic generated by ads.
From the bandwidth use point of view, ads traffic can be

characterised by the ad refresh rate (although technically this
is the inter-arrival time between two consecutive ads, it is

TABLE 3. Various ad-related messages and objects and their average size
in bytes.

referred to as the rate in AdMob11), the number of objects
contained in an ad and the size of these objects. Table 3
shows a summary of various ad-related objects and messages,
derived by analysing the traffic log files. We note that the
average size of an ad is 16KBs and that the ad contains,
on the average, 8-10 objects (images, javascript files etc). The
average number of request/response messages for each ad is
between 30-35.

It is important to note that the ad refresh rate for any
selected app is deterministic; this is configured by the devel-
oper at the time of registering the app on the app market (i.e.
Google Play store). The range of supported values is between
12-120 seconds and our experimental results indicate that the
ad refresh rates vary between 20-60 seconds, with values
of 20, 30, 45 and 60 seconds being adopted by, respectively,
36%, 47%, 15% and 2% of all apps. Practically, as the ad
sizes do not vary widely, the communication overhead for
the bespoke++ strategy described in Section III-B3 can be
minimised by selecting the obfuscating apps that have the
maximum overall ad refresh rate (while conforming to other
bespoke criteria).
Figure 5 shows the cumulative distribution of the band-

width used by apps (the outer graph) along with the prob-
ability density function (inner graph). The bandwidth use
shown is for a total of 2.5 hours of running each app selected

11https://apps.admob.com

143826 VOLUME 8, 2020



I. Ullah et al.: Protecting Private Attributes in App Based Mobile User Profiling

FIGURE 5. Bandwidth consumption (MB) calculated for ads by the apps
during experiments.

as per Section IV-A. We note that the apps with lower ad
refresh rates i.e. 20 and 30 seconds, use between 3MB and
5.5MB bandwidth in the measured time period; these apps
represent around 70% of all apps used in our experiments.
The remaining 30% of apps (with ad refresh rates of 45 and
60 seconds) utilise between 0.5MB and 2.5MB bandwidth.
The PDF of network bandwidth consumption (inner graph
in Figure 5), shows that the 26.30% of the apps have a high
4–4.5MB bandwidth use.

We now evaluate the computing overhead of tested apps.
The measured CPU use varies, although not widely, across
different apps: the CPU-intensive apps such as those from
the Games category use between 25% to 30% of the full
CPU; less-interactive apps such as inkpad12 use between
15% to 20%.

We note that the app functionality is closely related to
the storage space requirements: e.g., a language transla-
tion app will consume less installation storage space than
the data storage space, as it needs to save library files
(in data storage), so that a user can do an offline trans-
lation without accessing the Internet. Similarly, the Face-
book app would consume more data storage space since
it has to store different settings, user accounts, group set-
tings etc. On the other hand, a Google maps app would
use more cache storage space due to the requirement to
e.g., save searched places. Representative apps with differ-
ent combinations of storage space requirements are shown
in Table 4.

Figures 6(a) through 6(c) show the distribution of different
types of storage space along with the PDF of apps having
different storage space requirements (inner graph in each
of the sub-figures of Figure 6). We can observe, from the
Figure 6 (a) (inner graph), that about half (54%) of the apps
have a low storage space use, i.e. are in the bin of 0.5MB to
10MB. On the other hand, only 1.48% of the apps require
relatively high storage of 50–60MB. Similar observations
can be made about the other two types of storage overhead,

12https://play.google.com/store/apps/details?id=com.workpail.inkpad.
notepad.notes

TABLE 4. Apps with the different combination of storage spaces.

as per Figures 6 (b) and 6 (c). Overall, we can observe
that the majority of apps use a low(er) amount of storage
space; e.g., 80%, 97%, and 98% of all apps belong to the
lowest storage space consumption bins, i.e. 0.5MB - 20MB,
0.01MB - 20MB, and 0.01MB - 10MB respectively for instal-
lation, data, and cache storage spaces.

The battery consumption measured in our experiments
shows a relatively low variation between various apps, with
between 30% to 40% of the total battery (100%) being used
by each app during the measurement period.

We will further evaluate the consumption of resources by
selected obfuscation strategies in Section V-D.

V. PERFORMANCE OF OBFUSCATION STRATEGIES
In this section, we provide detailed investigation over the
effectiveness of ProfileGuard in obfuscating user profiles
through various candidate obfuscating strategies, described in
Section III i.e. similarity, bespoke, bespoke++, and random.
For this, we focus on 12 interest categories (and the corre-
sponding app categories) without loss of generality, which
we consider to be private: Comics, Games, Entertainment,
Health & Fitness, Media & Video, Medical, Music & Audio,
Shopping, Photography, Sports, Travel & Local, and Social.
For the obfuscation experiments, as detailed in Section IV-A,
same original set of apps Sa are used from the profiling exper-
iments (belonging to a single private category), whereas we
choose the obfuscation apps So from the remaining 2600 apps
in non-private categories.

We note that the private categories of Social and
Travel & Local (see Figure 4(b)) have a dominance ratio
D = 0. Therefore, although we perform the experiments for
the sake of completeness, we only show the interest categories
introduced by obfuscation, rather than the new D values.
We use various metrics, defined in Section III-C, to assess

different obfuscating strategies. As discussed the utility is
the reduction of dominance ratio D, Rp, and usability Us,
demonstrating the likelihood that the user would be interested
in an obfuscating app. The utility is vastly dependent on
α and β i.e. weight coefficients, therefore we compare its
components separately rather than its combined effect. Recall
that the cost C is the increase in number of apps and is directly
related to the number of obfuscating apps. Following, we first
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FIGURE 6. Storage space used by the apps for: (a) installation; (b), data (b); and (c) cache.

demonstrate the minimum cost case i.e. when only one app is
used for obfuscation, subsequent, the multi-app cost case i.e.
targeting a change in dominating interest category.

A. MINIMUM APP COST CASE: PROFILE OBFUSCATION
WITH A SINGLE APPLICATION
Figure 7 shows obfuscated Interest profiles achieved by the
four obfuscation strategies. In order to compare, we also
include the original Interest profile, for the 12 selected private
categories. The effect of introducing a single obfuscating
app can be easily observed, it changes majority of categories
in newly constructed Interest profiles. As discussed earlier,
the objective of bespoke strategy is to introduce interests in
the already existing interest categories in original profiles,
excluding the private category. An additional benefit of the
bespoke++ strategy is to lower the overhead introduced
by the obfuscating apps. Figure 7 shows a similar perfor-
mance of the bespoke and bespoke++ strategies. For exam-
ple, when either of the strategies is applied to the Comics
profile, it increases the number of interests in Computers &
Electronics (which is the existing category in the original
profile) by one and two, respectively with the bespoke and
bespoke++ strategies (we note that minor differences in the
performance of these strategies are due to the overlap in
the profile interests of a number of apps). We note similar
change in newly constructed Interest profiles due to single
obfuscating app chosen by the random and similarity based
strategies, e.g., the similarity based strategy introduces two
new interests from Computers & Electronics interest’s cat-
egory to the Games profile. Finally, note that the entire set
of interests from original profile are present in the respective
obfuscated profiles. This confirms our earlier findings that
introducing a new app can either add a new interest to the
profile or leave it unchanged.

Table 5 presents the statistics for usability metric, Us, for
four obfuscating strategies. It can be observed that the simi-
larity strategy achieves higher score than the other strategies,
which indicates that it is highly probable that users would
utilise the suggested obfuscating applications. As demon-
strated in our earlier experiments, there is a minimum level
of activity required for apps to create an entry in an Interest
profile. Hence, it naturally follows that the similarity based

TABLE 5. Average and standard deviation (St. dev.) values for
usability Us, for single-app and complete obfuscation.

strategy will have a greater chance at achieving obfuscation.
Another interesting fact is to observe that both the bespoke
and bespoke++ strategies have slightly lower usability than
random strategy. It can be due to the fact that the former two
strategies focus on choosing obfuscating apps that generate
interests belonging to interest categories that are already
present in the Interest profile, without taking into consider-
ation whether the app may be of interest to the user.

Figure 8 shows the comparison of dominance ratio D for
private interest categories present in both obfuscated and
original profiles.

It can be observed that all the obfuscating strategies achieve
a reduction in dominance ratio Rp for all but one of the
Interest profiles (Music & Audio for the random strategy).
In some instances, we note a substantial reduction in D,
such as, all strategies achieve a 50% reduction for Comics.
Furthermore, we observe an additional 17% in reduction of
dominance ratio in two categories i.e. Comics and Music &
Audio, using the bespoke++ strategy as compared to bespoke
strategy.

In summary, we note that introducing a single obfusca-
tion app can potentially achieve a notable change in both
the overall structure of Interest profile and its dominance
ratio. However, the level of perturbation achieved with a
single app is not sufficient to modify the profile so that
new dominant categories emerge, i.e. to achieve complete
obfuscation.

B. COMPLETE OBFUSCATION
For complete obfuscation, we recursively select obfuscating
apps according to a specific strategy, as an example for
similarity based strategy, we select the obfuscating apps in
descending order i.e. starting with highest similarity value.
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FIGURE 7. Comparison of unique number of interests in the original and obfuscated interest profiles (|So| = 1).

FIGURE 8. Comparison of Dominance Ratio D of original and obfuscated interest profiles when |So| = 1;
note the reduction Rp is shown on top of the bars for each category.

We then experimentally derive new Interest profile until any
non-private category becomes dominant. Figure 9 shows the
results of the obfuscated profiles for all strategies including
the original profile for comparison purposes, after complete
obfuscation is achieved. We observe significant differences
between the obfuscated and original profiles. We note that
after the complete obfuscation the originally dominant inter-
est categories are still present, since it adds up to the original
profile and profile entries are not removed, however they
are no longer dominant. For example, the similarity based
strategy changes the dominant interest category for Comics
profile from Arts & Entertainment to Computers & Electron-
ics, which is an already existed interest category in the origi-
nal profile. Similarly, the bespoke and bespoke++ strategies
only dominates to the already present interest categories,
as per their design (see Section III-B), the other two strategies

can create interests from new categories. As an example,
the similarity based strategy introduces interests from two
new categories i.e. Computer & Electronics andArts &Enter-
tainment, in the obfuscated Health & Fitness profile. In some
cases, we notice that entirely new interest category becomes
dominant, which did not exist in the original profile. For
instance, after obfuscation with both similarity and random
strategies, the dominant interest category in theGames profile
changes from Games to Computer & Electronics.

Table 5 presents the statistical results for the usability
metric for both the single-app and complete obfuscation. Note
that the usability metric for similarity based strategy and for
single-app obfuscation is considerably higher than for other
strategies. It shows that this strategy has the greatest chance
to succeed as the obfuscating apps recommended by this
strategy would more likely be utilised by the users.
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FIGURE 9. Comparison of unique number of interests in the original and obfuscated interest profiles (complete
obfuscation); note the values of cost C are shown on top of the bars for each category.

TABLE 6. Comparison of unique ads received by the original and
obfuscated profiles.

Figure 9 also includes the values of costC , on the top of the
bars for each category. We can observe that the costs for the
random and similarity based strategies are similar, while the
bespoke and bespoke++ strategies consistently incur similar
or lower costs, i.e., relative increase in the number of apps.

C. IMPACT ON ADS
The advertising companies utilise the user profiles created
by ad analytics for targeted advertising, as is also shown
by our work [27]. In this section, the impact of proposed

obfuscating strategies is quantified based on received targeted
ads using the ad traffic captured in our experiments (see
Section IV-A).We calculate this by considering the similarity
between unique ads served to the original and obfuscated
profile, using the Jaccard Index J (A,B) = |A∩B|

|A∪B| ; where A and
B are the sets of unique ads received by respective profiles.

Table 6 presents results for all strategies for the subset
of nine private categories in the obfuscation experiments for
both the single-app and complete obfuscation. We observe
a consistent increase in number of received unique ads,
by obfuscated profiles, for all suggested profiles and obfus-
cation strategies. The complete obfuscation results in sub-
stantial increase in number of unique ads i.e. more than
100% increase. It is also consistent with the increased num-
ber of interests generated in specific user profiles, gener-
ating a richer basis for targeted advertising. For instance,
both bespoke and bespoke++ strategy, on average, introduce
an additional 9.9 interests, random strategy an additional
12 interests and similarity strategy 11.7, compared to the
average number of original 6 interests. Similarly, we note that
there is a proportional increase in the number of unique ads,
which is highest for the random (339%), followed by 304%
for similarity based, 165% for the bespoke strategy, and 77%
for the bespoke++ strategy. Note that apps introduced with
the bespoke++ strategy have (by strategy design) the lowest
number of unique ads (this is also reflected in the overhead,
which we will discuss in Section V-D).

D. RESOURCE USE IMPROVEMENTS
For evaluating the resource overhead generated by obfus-
cating apps, we use the experimental setup described in
Section IV-A, (2.5 hours of activity is captured for each app).

1) COMMUNICATION OVERHEAD
Table 7 shows the bandwidth utilised by the obfuscating
apps under different obfuscating strategies. We can observe
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TABLE 7. Bandwidth consumption (MB) by obfuscating apps calculated
for various obfuscation strategies; for single-app (left) and complete
(right) Obfuscations.

that for single-app obfuscation, the obfuscating apps utilise
an average of 3.60MB bandwidth of data (for ad related
activity) with the random strategy, followed by, respectively,
3.50MB, 2.97MB, and 1.26MB for similarity, bespoke and
bespoke++ strategies. For complete obfuscation, there is a
significantly higher difference in the bandwidth use, with,
respectively, 16.88MB, 13.88MB, 9.67MB and 3.25MB od
data used by obfuscating apps under the random, similarity,
bespoke and bespoke++ strategies. Although it is not sur-
prising that the bespoke and bespoke++ strategies benefit
from their (by design) customised app selection mechanisms,
it is interesting to note the relevance of bespoke++ strat-
egy to reduction of resource use. Compared to the similar-
ity strategy it delivers a 64% improvement and a smaller
but still significant improvement of 57% over the bespoke
strategy.

2) COMPUTING OVERHEAD
We note that the CPU usage of the obfuscating apps can be
clustered according to high-resource consuming apps, such
as game apps, with the usage in 25% to 30% and with the
low-resource usage apps with theCPU usage in between 15%
to 20%. Furthermore, the Table 8 shows the various storage
spaces for various obfuscating strategies under the single-
app complete obfuscations. Recall that these storage spaces
depend on the behaviour of apps in terms of storing tem-
porary files i.e. cache, the apps settings/databases/accounts
etc. data, and the actual apps’ files i.e. installation stor-
age sizes. We can observe that, on average, the obfuscating
apps consume 12.15MB, 14.76MB, 13.11MB, and 10.87MB
respectively under the similarity, bespoke, bespoke++, and
random strategies. Similarly, these statistics under the com-
plete obfuscation are 125.95MB, 85.18MB, 78.53MB, and
128.85MB of used installation storage space. We can also
observe that the installation storage space is the dominant
factor, significantly higher than the cache and data space
needed. Note that various statistics under the complete obfus-
cation, given for various app’s categories and for different
storage types, are the sum of the storage spaces consumed
by all the obfuscating apps used for the complete obfuscation.
We farther note, among the three types of storage spaces, that

the cache and data take less storage spaces compared to the
installation storage space.

3) BATTERY CONSUMPTION
We now evaluate the battery consumption by the apps under
different obfuscation strategies using single-app and com-
plete obfuscation. Table 9 shows the battery consumption for
different obfuscation strategies. We observe that the average
battery consumption for single-app obfuscation ranges from
31% to 33% of the total battery (i.e. 100% of full charge),
while this is increased to up to 40% with the complete obfus-
cation. This is in line with the higher number of apps used for
complete obfuscation.

VI. DISCUSSION
The use of privacy apps is very much dependent on the users’
motivation towards preserving their privacy. In recent times,
both with public and in the regulatory environment, there
has been an enormous increase in privacy awareness. This
has been motivated by the exposure of mass surveillance
activities [31] and by unintentional leaks of datasets with
personal records. Hence, there is an increased interest in
the adoption of personal (bespoke) privacy tools. The Pro-
fileGuard is considered to be consistent with the growing
number of app recommender and personalisation systems,
however, with an emphasis on not only suggesting apps of
interest to the users, but also enabling privacy protection.
The results achieved with the ProfileGuard using similarity
based strategy, presented in Section V, suggest that it can
reduce, on the average, the dominance ratio of a private
interest category by 46.3% with a single-app. Furthermore,
it ensures that the recommended apps are of actual use to the
individuals, with a good usability of 43.1% lower similarity
than the best app from those considered in the Google Play
apps set. We plan for more complex recommender system
approaches in future work.

The second issue relevant to the user is resource use -
we demonstrate that this can be significantly reduced by
selecting the bespoke++ strategy. During the total time of our
experiments (6 months) we have repeatedly built user profiles
based on the app categories (see Section IV andwhile the time
to establish a profile was consistent (24 hours, regardless of
the number of tested apps), the time required for an app to
register in the user profile was less so. The absolute values
for resource use, presented in Sections IV and V, for our
experiments where each app was utilised for 2.5 hours, indi-
cate a relatively large resource (e.g. bandwidth) use. On the
average, it ranges between close to 17MB with random to
around 3MB with bespoke++ strategy, to achieve complete
obfuscation. This increases the level of motivation for using
the bespoke++ strategy, particularly for users whomay be on
a fixed data use mobile plan. We note that AdMob or other
advertising companies may change the profiling rules (and
often do). E.g., the user profile onAndroid phones is currently
(as of July 2015) derived from both the mobile app and the
browsing use, so a combination of app based and browser
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TABLE 8. Installation, data, and cache storage space taken by the obfuscating apps for single-app (above) and complete (below) obfuscation.

TABLE 9. Battery consumption (%) by obfuscating apps calculated for
single-app (left) and complete (right) obfuscation.

based obfuscation may be needed to completely obfuscate the
full mobile profile (although our methodology would still be
applicable to app-based profiling, which is the topic of this
paper).

Considering the number of different options, we envisage
that the ProfileGuard system app (discussed in Section III-D)
would enable users to make an informed choice while select-
ing obfuscating apps, indicating (with every recommended
app) the level of preference for usability, resource use, and
privacy protection along with the their expected levels for all
parameters.

On a system level, for a specific selection strategy, we con-
sider the level of effort required by the obfuscation system
engine in order to select the candidate obfuscation apps.
From a practical point of view, the similarity based strat-
egy has a comparable level of implementation effort to
the recommender system apps like AppBrain [26], and we
note that this is higher than for a random strategy, it is

arguablymanageable. For the bespoke and bespoke++ strate-
gies there is a trade-off, where the level of pre-processing
required before these strategies can be effectively applied,
based on a rich set of diverse apps, can be balanced with
the resource use (and other) savings delivered by these
strategies.

We note that, to implement the bespoke strategy, it requires
a significant effort to derive the Interest profile for individ-
ual apps, if done manually. Additionally, we believe that it
would be difficult to collect this information voluntarily while
motivating users in a crowdsourcing environment, as it the
requirement is to run a selected app in isolation (starting
with already reset Google profile) and the profile needs to be
manually checked and recorded. However, an approximation
of the profile could be derived (and this process automated)
based on the app category and keywords, using the interest
mapping approach outlined in Section IV-B. We note that
this would incur a penalty in profile accuracy, which needs
to be evaluated in future work. Obtaining the ad frequency
to estimate the bandwidth use for the bespoke++ strategy
would be a relatively simple task, that could be automated on
the mobile devices and crowdsourced (e.g., the ProfileGuard
app could perform a short test to capture the ad request traffic
and subsequently forward this to the back end, for inclusion
in the database).

Considering the utility, the app cost and resource use for
all strategies, we believe that the similarity based strategy
has the best overall potential for implementation in a real
world obfuscation system. As a second choice, this should
be augmented with the bespoke++ strategy for a resource
constrained mobile user.
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VII. RELATED WORK
Privacy threats resulting from collecting individual’s online
data have been extensively investigated in the literature, with
a number of works [32]–[39] demonstrating how it is possible
to infer user’s undisclosed private information such as age,
gender, relationship status, etc. from their online data. In [34],
the authors analysed client-side browsing history of 250K
users andwere able to infer various personal attributes includ-
ing age, gender, race, education and income. The extent
of data collection and the related privacy treats were first
investigated in [3]. Specific information leakage through
ad library APIs was presented in [7], while further works
including [5] and [6] demonstrate the potential for infer-
ence attacks based on (captured) ads from user’s browsing
sessions.

Researchers have evaluated how users’ history can
be tracked with browser fingerprinting and cookie
syncing [8], [9], the extent of web tracking [4], [40]–[42],
user tracking on multiple devices [43], privacy implications
using active and passive learning approaches [2], and how
third party tracking services leak information [44]. Another
work utilizes Oracle’s Bluekai registry to investigate user
profiling process by simulating web browsing sessions
based on the updates posted to Reddit [45]. A second study,
based on a large-scale measurement, evaluates the extent
of privacy leakage in location-based mobile advertising
services [46]. The authors further implement a mechanism
for obfuscating the location data in real-time, which disrupts
the targeted mobile ads. Studies have shown that the profiling
for online advertisements is largely biased [47] and often
not correct [48], [49] causing many users feel uncomfortable
with being profiled [50] and requesting more control over
their data [51].

We note that the majority of prior works on privacy protec-
tion in advertising systems have focused on browser based
ads [14]–[17], [52], [53] while only a small body of work
addresses in-app targeted ads, which is the primary focus of
our work [18]. A number of proposals advocate the use of
locally (either in the browser of the mobile device) derived
user profiles, where user’s interests are generalised and/or
partially removed (according to user’s privacy preferences),
before being forwarded to the server or an intermediary that
selected the appropriate ads to be forwarded to the clients.
The privacy requirements are also, in a number of prior works,
considered in parallel with achieving bandwidth efficiency
for ad delivery, by using caching mechanisms [12], [54], [55].

The simplest and straightforward privacy protection mech-
anism is to anonymise data by masking or removing specific
data fields (direct identifiers) that expose personal infor-
mation. In the context of targeted advertising, the removal
of direct identifiers includes user IDs (replacing them with
temporary IDs) or mechanisms to hide used network address
(e.g., using TOR [56]). The PBooster [15], an anonymisation
scheme for web browsing history, protects user’s privacy
by anonymising users’ browsing history by first inferring
relevant links and then adding those links to the browsing

history. However, if only the most obvious anonymisation is
applied without introducing additional (profiling and target-
ing oriented) features, the ad networks ecosystem would be
effectively disabled.

The second group of privacy mechanisms uses obfuscation
techniques. A large body of research work focuses on generic
noisy techniques, starting with [57] who have proposed the
approach of adding random values to data, generated inde-
pendently of the data itself, from a known e.g., the uniform
distribution. Subsequent publications (e.g., [58]) improve the
initial technique, however other research work [59] has iden-
tified the shortcomings of this approach, where the added
noise may be removed by data analysis and the original
data (values) recovered.
Generalisation and noisy approaches have been recently

analysed and compared in [60], [61], demonstrating the
advantage of noisy techniques. A novel noisy technique for
privacy preserving personalisation of web searches is also
recently proposed [61]. In this work, the authors use Bloom
cookies that comprise a noisy version of the locally derived
profile. This version is generated by using Bloom filters [62],
an efficient data structure; they evaluate the privacy ver-
sus personalisation trade-off. Another approach generalises
potentially identifying user data (e.g., gender, ZIP code),
referred to as quasi-identifiers (QIDs), by grouping them into
a broader category that includes a specific minimum number
of users (e.g., locations into post codes) [63], [64]. This
approach is applied in practice in most ad networks by intro-
ducing a minimum group size for targeted ads (see e.g. [65]),
however, this (traditional) approach has been demonstrated as
inadequate by a number of research works (e.g., [66]), where
anonymised private information was linked to other publicly
available data, resulting in private data exposure.
Differential privacy [67] is a noisy technique that provides

an unconditional privacy guarantee, assuming any compu-
tational power, or externally available information to the
attacker attempting to break privacy and derive information
about users. A number of prior works use differential privacy
in the context of profiling and advertising. The authors in [68]
propose a system for differentially private statistical queries
by a data aggregator, over distributed users data. A proxy
(assumed to be honest-but-curious) is placed between the
analyst (aggregator) and the clients and secure communica-
tions including authentication and traffic confidentiality are
accomplished using TLS [69].

The SplitX system [70] also provides differential privacy
guarantees and relies on intermediate nodes, that forward and
process the messages between the client that locally stores
their (own) data and the data aggregator. Further examples
include works proposing the use of distributed differential
privacy [71], [72]. We note that above approaches may render
targeted advertising to be ineffective as they introduce noise
to the user profile. While our approach relies on modifying
the user profile, we do so in a calculated manner with the
aim of reducing the dominance of selected private user profile
interest categories.
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Additionally, cryptographic solutions can be used to pro-
vide part of the system functionality. They are commonly
used in conjunction with obfuscation, e.g., in [71], [72] or
generalisation [13]. [71] combines differential privacy with
a homomorphic cryptosystem. Chen et al. [68] uses crypto-
graphic mechanism to combine client-provided data (modi-
fied in accordance with differential privacy). They utilise a
probabilistic Goldwasser-Micali cryptosystem [73]. In their
subsequent work [70], the authors use an XOR-based crypto-
mechanism to provide both anonymity and unlinkability to
analysis (queries) of differentially private data distributed
on user’s devices (clients). Adnostic [13] uses a combina-
tion of homomorphic encryption and zero-knowledge proof
mechanisms to enable accounting and billing in the adver-
tising system in a (for the user) privacy pre- serving way.
Effectively, the user is protected as neither the publisher
(website that includes the ads) or the advertisers (that own
the ads) have knowledge about which users viewed spe-
cific ads. A web-based advertising system based on Private
Information retrieval was first proposed by Juels [74], where
they use information-theoretic (threshold) PIR in an honest-
but-curious multi-server architecture. Finally, a cryptogra-
phy technique, mixing [75], [76] is also commonly used
as part of anonymisation [74], [77], where mix servers are
used as intermediaries that permute (and re-encrypt) the
input.

We note that the previously proposed in-browser and in-
app private advertising systems protect the full user profile
and advocate the use of novel mechanisms that necessitate
re-designing of some parts or all of the current advertising
systems (although some, e.g., Adnostic [13] can operate in
parallel with the existing systems). Our proposal focuses on
the protection of selected attribute(s) and does not require
any changes to the current ad networks; i.e., it enables stan-
dard profiling and targeted advertising, however based on
attributes that the user does not consider private.

VIII. CONCLUSION
We propose to directly obfuscate the mobile app based pro-
filing by introducing obfuscating apps. We demonstrate that
the similarity based strategy can achieve a good level of
obfuscation of both the profiles and correspondingly received
ads, which can be viewed as a version of an app recommender
system. We also show how a resource-aware strategy can be
used to further enhance the performance of the obfuscating
system, by reducing the use of bandwidth and other mobile
resources. In future work, our plan is to further investigate
various factors that could influence the acceptability of an
app-based obfuscation system in a real world environment.

REFERENCES

[1] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, ‘‘A study of Android
application security,’’ in Proc. USENIX Secur. Symp., 2011, p. 2.

[2] L. I. Labrecque, E. Markos, and A. Darmody, ‘‘Addressing online behav-
ioral advertising and privacy implications: A comparison of passive versus
active learning approaches,’’ J. Marketing Edu., 2019.

[3] B. Krishnamurthy, D. Malandrino, and C. E. Wills, ‘‘Measuring privacy
loss and the impact of privacy protection in Web browsing,’’ in Proc.
3rd Symp. Usable Privacy Secur. (SOUPS), New York, NY, USA, 2007,
pp. 52–63.

[4] A. Karaj, S. Macbeth, R. Berson, and J. M. Pujol, ‘‘WhoTracks
.Me: Shedding light on the opaque world of online tracking,’’ 2018,
arXiv:1804.08959. [Online]. Available: http://arxiv.org/abs/1804.08959

[5] A. Chaabane, G. Acs, and M. A. Kaafar, ‘‘You are what you like! Infor-
mation leakage through users’ Interests,’’ in Proc. 19th Netw. Distrib. Syst.
Secur. Symp., Feb. 2012, pp. 1–15.

[6] C. Castelluccia, M.-A. Kaafar, and M.-D. Tran, ‘‘Betrayed by your ads!
Reconstructing user profiles from targeted ads,’’ in Proc. Privacy Enhanc-
ing Technol. Symp. Springer, 2012, pp. 1–17.

[7] T. Book and D. S. Wallach, ‘‘A case of collusion: A study of the interface
between ad libraries and their apps,’’ in Proc. 3rd ACM Workshop Secur.
Privacy Smartphones Mobile Devices (SPSM), 2013, pp. 79–86.

[8] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz,
‘‘The Web never forgets: Persistent tracking mechanisms in the wild,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2014,
pp. 674–689.

[9] M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson, ‘‘Tracing infor-
mation flows between ad exchanges using retargeted ads,’’ in Proc. 25th
USENIX Secur. Symp. (USENIX Secur.), 2016, pp. 481–496.

[10] V. Toubiana, L. Subramanian, and H. Nissenbaum, ‘‘TrackmeNot: Enhanc-
ing the privacy of Web search,’’ CoRR, vol. abs/1109.4677, 2011.

[11] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati,
and P. Samarati, ‘‘Location privacy protection through obfuscation-based
techniques,’’ in Proc. 21st IFIP Work. Conf. Data Appl. Secur., 2007,
pp. 47–60.

[12] S. Guha, B. Cheng, and P. Francis, ‘‘Privad: Practical privacy in online
advertising,’’ in Proc. 8th USENIX Conf. Netw. Syst. Design Implement.
Berkeley, CA, USA: USENIX Association, 2011, p. 13.

[13] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas, ‘‘Adnostic: Privacy preserving targeted advertising,’’ in
Proc. NDSS. Reston, VA, USA: Internet Society, 2010, p. 23.

[14] K. Kenthapadi, T. T. L. Tran, M. Dietz, T. Greason, and I. V. Koeppe,
‘‘Random noise based privacy mechanism,’’ U.S. Patent 15 703 834,
Mar. 14, 2019.

[15] G. Beigi, R. Guo, A. Nou, Y. Zhang, and H. Liu, ‘‘Protecting user privacy:
An approach for untraceable Web browsing history and unambiguous
user profiles,’’ in Proc. 12th ACM Int. Conf. Web Search Data Mining,
Jan. 2019, pp. 213–221.

[16] O. Starov and N. Nikiforakis, ‘‘Privacymeter: Designing and developing
a privacy-preserving browser extension,’’ in Proc. Int. Symp. Eng. Secure
Softw. Syst. Springer, 2018, pp. 77–95.

[17] N. Laoutaris and J. Blackburn, ‘‘Method, a device and computer pro-
gram products for protecting privacy of users from Web-trackers,’’
U.S. Patent 10 110 633, Oct. 23, 2018.

[18] I. Ullah, R. Boreli, S. S. Kanhere, and S. Chawla, ‘‘ProfileGuard: Privacy
preserving obfuscation for mobile user profiles,’’ in Proc. 13th Workshop
Privacy Electron. Soc. (WPES), AZ, USA, 2014, p. 10.

[19] S. Han, J. Jung, and D. Wetherall, ‘‘A study of third-party tracking by
mobile Apps in the wild,’’ Tech. Rep. UW-CSE-12-03-01, 2011.

[20] [Online]. Available: https://www.flurry.com
[21] T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli, ‘‘Information leakage

through mobile analytics services,’’ in Proc. 15th Workshop Mobile Com-
put. Syst. Appl. (HotMobile), 2014, pp. 1–6.

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval, vol. 1. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[23] J. Parra-Arnau, D. Rebollo-Monedero, and J. Forné, ‘‘A privacy-preserving
architecture for the semantic Web based on tag suppression,’’ in Trust,
Privacy and Security in Digital Business. Springer, 2010, pp. 58–68.

[24] J. Parra-Arnau, D. Rebollo-Monedero, and J. Forné, ‘‘A privacy-protecting
architecture for collaborative filtering via forgery and suppression of rat-
ings,’’ inData PrivacyManagement and Autonomous Spontaneus Security.
Springer, 2012, pp. 42–57.

[25] X.Xia, X.Wang, X. Zhou, andB. Liu, ‘‘Evolvingmobile app recommender
systems: An incremental multi-objective approach,’’ in Future Information
Technology. Springer, 2014, pp. 21–27.

[26] [Online]. Available: https://www.appbrain.com
[27] I. Ullah, R. Boreli, M. A. Kaafar, and S. S. Kanhere, ‘‘Characterising user

targeting for in-App mobile ads,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2014, pp. 547–552.

143834 VOLUME 8, 2020



I. Ullah et al.: Protecting Private Attributes in App Based Mobile User Profiling

[28] S. Nath, ‘‘MAdScope: Characterizing mobile in-App targeted ads,’’ in
Proc. 13th Annu. Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2015,
pp. 59–73.

[29] [Online]. Available: https://www.tcpdump.org
[30] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger,

K. Papagiannaki, H. Haddadi, and J. Crowcroft, ‘‘Breaking for
commercials: Characterizing mobile advertising,’’ in Proc. ACM Conf.
Internet Meas. Conf., 2012, pp. 343–356.

[31] [Online]. Available: http://www.theguardian.com/world/the-nsa-files
[32] H. A. Schwartz, J. C. Eichstaedt, M. L. Kern, L. Dziurzynski,

S. M. Ramones, M. Agrawal, A. Shah, M. Kosinski, D. Stillwell,
M. E. P. Seligman, and L. H. Ungar, ‘‘Personality, gender, and age in the
language of social media: The open-vocabulary approach,’’ PLoS ONE,
vol. 8, no. 9, Sep. 2013, Art. no. e73791.

[33] M. Kosinski, D. Stillwell, and T. Graepel, ‘‘Private traits and attributes are
predictable from digital records of human behavior,’’ Proc. Nat. Acad. Sci.
USA, vol. 110, no. 15, pp. 5802–5805, Apr. 2013.

[34] S. Goel, J. M. Hofman, and M. I. Sirer, ‘‘Who does what on the Web:
A large-scale study of browsing behavior,’’ in Proc. 6th Int. AAAI Conf.
Weblogs Social Media, 2012, pp. 1–8.

[35] J. Otterbacher, ‘‘Inferring gender of movie reviewers: Exploiting writing
style, content and metadata,’’ in Proc. 19th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), 2010, pp. 369–378.

[36] J. Schler, M. Koppel, S. Argamon, and J. W. Pennebaker, ‘‘Effects of
age and gender on blogging,’’ in Proc. AAAI Spring Symp., Comput.
Approaches Analyzing Weblogs, vol. 6, 2006, pp. 199–205.

[37] B. Bi, M. Shokouhi, M. Kosinski, and T. Graepel, ‘‘Inferring the demo-
graphics of search users: Social data meets search queries,’’ in Proc. 22nd
Int. Conf. World Wide Web (WWW), 2013, pp. 131–140.

[38] J. J.-C. Ying, Y.-J. Chang, C.-M. Huang, and V. S. Tseng, ‘‘Demographic
prediction based on users mobile behaviors,’’ Mobile Data Challenge,
vol. 2012, pp. 1–4, Jun. 2012.

[39] I. Ullah, B. G. Sarwar, R. Boreli, S. S. Kanhere, S. Katzenbeisser, and
M. Hollick, ‘‘Enabling privacy preserving mobile advertising via private
information retrieval,’’ in Proc. IEEE 42nd Conf. Local Comput. Netw.
(LCN), Oct. 2017, pp. 347–355.

[40] F. Roesner, T. Kohno, and D. Wetherall, ‘‘Detecting and defending against
third-party tracking on the Web,’’ in Proc. 9th USENIX Conf. Netw. Syst.
Design Implement.Berkeley, CA,USA:USENIXAssociation, 2012, p. 12.

[41] S. Schelter and J. Kunegis, ‘‘On the ubiquity ofWeb tracking: Insights from
a billion-pageWeb crawl,’’ J. Web Sci., vol. 4, no. 4, pp. 53–66, Mar. 2018.

[42] L. Sweeney, ‘‘Discrimination in online ad delivery,’’ 2013,
arXiv:1301.6822. [Online]. Available: http://arxiv.org/abs/1301.6822

[43] J. Brookman, P. Rouge, A. Alva, and C. Yeung, ‘‘Cross-device track-
ing: Measurement and disclosures,’’ Proc. Privacy Enhancing Technol.,
vol. 2017, no. 2, pp. 133–148, Apr. 2017.

[44] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,
A. Narayanan, and E. W. Felten, ‘‘Cookies that give you away:
The surveillance implications of Web tracking,’’ in Proc. 24th Int. Conf.
World Wide Web (WWW), 2015, pp. 289–299.

[45] M. Degeling and J. Nierhoff, ‘‘Tracking and tricking a profiler: Automated
measuring and influencing of Bluekai’s interest profiling,’’ in Proc. Work-
shop Privacy Electron. Soc. (WPES), 2018, pp. 1–13.

[46] B. Hu, Q. Yan, and Y. Zheng, ‘‘Tracking location privacy leakage of
mobile ad networks at scale,’’ in Proc. IEEE INFOCOM-IEEE Conf.
Comput. Commun. Workshops (INFOCOMWKSHPS), Apr. 2018, pp. 1–2,
doi: 10.1109/INFCOMW.2018.8406986.

[47] A. Datta, M. C. Tschantz, and A. Datta, ‘‘Automated experiments on ad
privacy settings,’’ Proc. Privacy Enhancing Technol., vol. 2015, no. 1,
pp. 92–112, Apr. 2015.

[48] E. Spyromitros-Xioufis, G. Petkos, S. Papadopoulos, R. Heyman, and
Y. Kompatsiaris, ‘‘Perceived versus actual predictability of personal infor-
mation in social networks,’’ in Proc. Int. Conf. Internet Sci. Springer, 2016,
pp. 133–147.

[49] T. Theodoridis, S. Papadopoulos, and Y. Kompatsiaris, ‘‘Assessing the
reliability of Facebook user profiling,’’ in Proc. 24th Int. Conf. World Wide
Web (WWW Companion), 2015, pp. 129–130.

[50] B. Ur, P. G. Leon, L. F. Cranor, R. Shay, and Y. Wang, ‘‘Smart, useful,
scary, creepy: Perceptions of online behavioral advertising,’’ in Proc. 8th
Symp. Usable Privacy Secur. (SOUPS), 2012, p. 4.

[51] W. Melicher, M. Sharif, J. Tan, L. Bauer, M. Christodorescu, and
P. G. Leon, ‘‘(Do Not) track me sometimes: Users’ contextual preferences
for Web tracking,’’ Proc. Privacy Enhancing Technol., vol. 2016, no. 2,
pp. 135–154, Apr. 2016.

[52] H. Yoo, S. Yao, L. Sun, and X. Du, ‘‘Using machine learning to
address customer privacy concerns: An application with click-stream
data,’’ Tech. Rep. SSRN 3314787, 2019.

[53] D. Sánchez and A. Viejo, ‘‘Privacy-preserving and advertising-friendly
Web surfing,’’ Comput. Commun., vol. 130, pp. 113–123, Oct. 2018.

[54] A. J. Khan, K. Jayarajah, D. Han, A. Misra, R. Balan, and S. Seshan,
‘‘Cameo: A middleware for mobile advertisement delivery,’’ in Proc. 11th
Annu. Int. Conf. Mobile Syst., Appl., Services, 2013, pp. 125–138.

[55] H. Haddadi, P. Hui, and I. Brown, ‘‘MobiAd: Private and scalable mobile
advertising,’’ in Proc. 5th ACM Int. Workshop Mobility Evolving Internet
Archit. (MobiArch), 2010, pp. 33–38.

[56] R. Dingledine, N. Mathewson, and P. Syverson, ‘‘Tor: The second-
generation onion router,’’ Tech. Rep., 2004.

[57] R. Agrawal and R. Srikant, ‘‘Privacy-preserving data mining,’’ ACM SIG-
MOD Rec., vol. 29, no. 2, pp. 439–450, 2000.

[58] A. Evfimievski, J. Gehrke, and R. Srikant, ‘‘Limiting privacy breaches
in privacy preserving data mining,’’ in Proc. 22nd ACM SIGMOD-
SIGACT-SIGART Symp. Princ. Database Syst. (PODS), 2003,
pp. 211–222.

[59] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar, ‘‘On the privacy
preserving properties of random data perturbation techniques,’’ in Proc.
3rd IEEE Int. Conf. Data Mining, Nov. 2003, pp. 99–106.

[60] E. Balsa, C. Troncoso, and C. Diaz, ‘‘OB-PWS: Obfuscation-based pri-
vate Web search,’’ in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 491–505.

[61] N.Mor, O. Riva, S. Nath, and J. Kubiatowicz, ‘‘Bloom cookies:Web search
personalization without user tracking,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2015, pp. 1–15.

[62] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[63] P. Samarati and L. Sweeney, ‘‘Generalizing data to provide anonymity
when disclosing information (abstract),’’ in Proc. 17th ACM SIGACT-
SIGMOD-SIGART Symp. Princ. Database Syst. (PODS), vol. 98, 1998,
p. 188.

[64] L. Sweeney, ‘‘K-anonymity: A model for protecting privacy,’’ Int.
J. Uncertainty, Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557–570,
Oct. 2002.

[65] T. Chen, A. Chaabane, P.-U. Tournoux, M. Kaafar, and R. Boreli, ‘‘How
much is too much? Leveraging ads audience estimation to evaluate public
profile uniqueness,’’ in Proc. Privacy Enhancing Technol. Symp. (PETS),
2013, pp. 225–244.

[66] A. Narayanan and V. Shmatikov, ‘‘Robust de-anonymization of large
sparse datasets,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2008,
pp. 111–125.

[67] D. Cynthia, ‘‘Differential privacy,’’ in Proc. 33rd Int. Colloq. Automata,
Lang. Program. (ICALP), 2006, pp. 1–12.

[68] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, ‘‘Towards statistical
queries over distributed private user data,’’ in Proc. NSDI, vol. 12, 2012,
p. 13.

[69] T. Dierks, ‘‘The transport layer security (TLS) protocol version 1.2,’’
Tech. Rep., 2008.

[70] R. Chen, I. E. Akkus, and P. Francis, ‘‘Splitx: High-performance private
analytics,’’ SIGCOMM Comput. Commun. Rev., vol. 43, pp. 315–326,
Aug. 2013.

[71] V. Rastogi and S. Nath, ‘‘Differentially private aggregation of distributed
time-series with transformation and encryption,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2010, pp. 735–746.

[72] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song, ‘‘Privacy-
preserving aggregation of time-series data,’’ in Proc. NDSS, vol. 2, 2011,
pp. 1–17.

[73] O. Goldreich, S. Micali, and A. Wigderson, ‘‘How to play ANY mental
game,’’ in Proc. 19th Annu. ACM Conf. Theory Comput. (STOC), 1987,
pp. 218–229.

[74] A. Juels, ‘‘Targeted advertising. . . and privacy too,’’ in Topics in
Cryptology—CT-RSA 2001. Springer, 2001, pp. 408–424.

[75] D. L. Chaum, ‘‘Untraceable electronic mail, return addresses, and
digital pseudonyms,’’ Commun. ACM, vol. 24, no. 2, pp. 84–90,
Feb. 1981.

[76] Y. Desmedt and K. Kurosawa, ‘‘How to break a practical mix and design
a new one,’’ in Advances in Cryptology—EUROCRYPT 2000. Springer,
2000, pp. 557–572.

[77] M. Backes, A. Kate, M. Maffei, and K. Pecina, ‘‘Obliviad: Provably secure
and practical online behavioral advertising,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2012, pp. 257–271.

VOLUME 8, 2020 143835

http://dx.doi.org/10.1109/INFCOMW.2018.8406986


I. Ullah et al.: Protecting Private Attributes in App Based Mobile User Profiling

IMDAD ULLAH received the Ph.D. degree in
computer science and engineering from The Uni-
versity of New South Wales (UNSW) Sydney,
Australia. He is currently an Assistant Profes-
sor with the College of Computer Engineer-
ing and Sciences, PSAU, Saudi Arabia. He has
served in various positions of Researcher at
UNSW, Research Scholar at National ICT Aus-
tralia (NICTA)/Data61 CSIRO Australia, NUST,
Islamabad, Pakistan, and SEEMOO TU, Darm-

stadt, Germany, andResearchCollaborator at the SLACNational Accelerator
Laboratory, Stanford University, USA. He has research and development
experience in privacy preserving systems including private advertising and
crypto-based billing systems. His primary research interest includes privacy
enhancing technologies; he also has interest in the Internet of Things,
blockchain, network modeling and design, network measurements, and
trusted networking.

ROKSANA BORELI received the Ph.D. degree
in communications from the University of Tech-
nology, Sydney, Australia. She has over 20 years
of experience in communications and networking
research and in engineering development, in large
telecommunications companies (Telstra Australia,
Xantic, NL) and research organizations. She has
served in various positions of Engineering Man-
ager, Technology Strategist, Research Leader of
the Privacy Area of Networks Research Group,

National ICT Australia (NICTA)/CSIRO Data61, and CTO in a NICTA
spinoff 7-ip. Her primary research focus is on the privacy enhanc-
ing technologies; she also maintains an interest in mobile and wireless
communications.

SALIL S. KANHERE (Senior Member, IEEE)
received the M.S. and Ph.D. degrees from Drexel
University, Philadelphia. He is currently a Pro-
fessor of computer science and engineering with
UNSW Sydney, Australia. He has coauthored a
book titled Blockchain for Cyberphysical Sys-
tems His research interests include the Inter-
net of Things, cyberphysical systems, blockchain,
pervasive computing, cybersecurity, and applied
machine learning. He is a Senior Member of the

ACM, an Humboldt Research Fellow, and an ACM Distinguished Speaker.
He serves as the Editor in Chief of the Ad Hoc Networks journal and as
an Associate Editor of the IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT, Computer Communications, and Pervasive and Mobile Com-
puting. He has served on the organizing committee of several IEEE/ACM
international conferences.

SANJAY CHAWLA received the Ph.D. degree
from the University of Tennessee, Knoxville,
USA, in 1995, under Professor Suzanne Lenhart.
He is currently a Professor of pattern and data
mining with the School of Information Tech-
nologies, University of Sydney. He served as the
Head of School, from 2008 to 2011. His inter-
ests straddle data mining, machine learning, and
spatial data management. His research work has
appeared in leading data mining journals and con-

ferences including ACM TKDD, Machine Learning, IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, DMKD, ACM SIGKDD, IEEE ICDM,
SDM, and PAKDD. He is an Associate Editor of the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERINGand serves on the editorial board of
Data Mining and Knowledge Discovery. He served as a Program Co-Chair
of PAKDD 2012.

TARIQ AHAMED AHANGER is currently an
Associate Professor with the Department of Infor-
mation Systems, College of Computer Engineer-
ing and Sciences, Prince Sattam Bin Abdulaziz
University. He has authored over 40 refereed arti-
cles. His interests include the Internet of Things,
cybersecurity, and artificial intelligence.

USMAN TARIQ received the Ph.D. degree in
information and communication technology in
computer science from Ajou University, South
Korea. He is a skilled Research Engineer. He has
strong background in ad hoc networks and network
communications. He experienced in managing and
developing projects from conception to comple-
tion. He has worked in large international scale and
long-term projects with multinational organiza-
tions. He is currently attached with Prince Sattam

BinAbdulaziz University as anAssociate Professor with the College of Com-
puter Engineering and Science. His research interests span networking and
security fields. His current research is focused on several network security
problems: botnets, denial-of-service attacks, and IP spoofing. Additionally,
he is interested in methodologies for conducting security.

143836 VOLUME 8, 2020


