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ABSTRACT This study proposes a low-complexity interpretable classification system. The proposed system
contains main modules including feature extraction, feature reduction, and classification. All of them are
linear. Thanks to the linear property, the extracted and reduced features can be inversed to original data,
like a linear transform such as Fourier transform, so that one can quantify and visualize the contribution of
individual features towards the original data. Also, the reduced features and reversibility naturally endure
the proposed system ability of data compression. This system can significantly compress data with a small
percent deviation between the compressed and the original data. At the same time, when the compressed data
is used for classification, it still achieves high testing accuracy. Furthermore, we observe that the extracted
features of the proposed system can be approximated to uncorrelated Gaussian random variables. Hence,
classical theory in estimation and detection can be applied for classification. This motivates us to propose
using a MAP (maximum a posteriori) based classification method. As a result, the extracted features and the
corresponding performance have statistical meaning and mathematically interpretable. Simulation results
show that the proposed classification system not only enjoys significant reduced training and testing time
but also high testing accuracy compared to the conventional schemes.

INDEX TERMS Classification, convolution neural network, data compression, feature extraction, feature
reduction, image recognition, linear transform, machine learning.

I. INTRODUCTION
Classification for multimedia has been studied and applied to
a variety of applications such as security, entertainment, and
forensics for years. The development of intelligent algorithms
for classification results in efficiency improvements, innova-
tions, and cost savings in several areas. However, classifica-
tion based on visual content is a challenging task because
there is usually a large amount of intra-class variability,
caused by different lighting conditions, misalignment, blur,
and occlusion. To overcome the difficulty, numerous feature
extraction modules have been studied to extract the most
significant features and the developed models can achieve
higher accuracy. Like those mentioned in [1] and [2], wise
dimension reduction methods are the keys to achieve higher
accuracy. Selecting a suitable classification module to handle
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the extracted features according to their properties is also
important. A good combination of feature extraction and
classification modules is the key to attain high accuracy in
image classification problems.

In general, classification models can be divided into two
categories: 1) convolutional neural networks (CNN) struc-
ture and 2) non-CNN based structure. The CNN structures
are in the mainstream [3]–[8], and they are usually stacked
up with several convolution layers, max-pooling layers, and
ReLU layers. Hence the depth of the structure can be deep
such as ResNet [8]. Due to the deep structure, CNN models
can extract the features well and achieve high accuracies.
However, CNN models usually share several disadvantages,
including mathematically intractable, irreversible, and time-
consuming. Most of the CNN models use handcrafted-based
feature extraction or backpropagation to train the convolution
layers which makes the models mathematically inexplicable
and time-consuming. In addition, the max pooling and ReLU
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layers are nonlinear, hence the structures become irreversible.
The above disadvantages increase the difficulty in designing
and adjusting suitable structures for various types of data
sources. Therefore, research has been conducted to design a
model which can be easily and fully interpretable mathemat-
ically like the second category introduced below.

Classification models using non-CNN based structures
are mainly built with two parts, feature extraction mod-
ules, and classification modules. To design a model which
is mathematically interpretable, several machine learning
techniques for feature extraction or classification have been
developed including various versions of principal compo-
nent analysis (PCA) [9]–[19], linear discriminant analysis
(LDA) [20]–[27], local geometric structure Fisher analysis
(LGSFA) [28], spatial-spectral hypergraph discriminant anal-
ysis (SSHGDA) [29], support vector machine (SVM), near-
est neighbor (NN), etc. For the feature extraction modules,
in [9]–[19] the authors used PCA; while in [20]–[27], the
authors used LDA to extract features from images. For the
classification modules, [10], [11], [15], [19] and [23] applied
the nearest neighbor classifier. On the other hand, [9] and
[22] utilized the SVM classifier. The combinations of feature
extraction and classification modules are generally nonlinear.
Thus to inverse or recover the extracted features to original
data is difficult.

Inversing the features to original data reveals important
information for classification. For instance, if certain sig-
nificant features are extracted and they result in high clas-
sification accuracy, one would be interested in visualizing
or quantifying these features in the original multimedia if
this is feasible. The reversibility is like Fourier series. One
can inverse individual Fourier series, quantify how they con-
tribute to the original signals and understand the importance
of individual series. Due to the difficulty of data reversibility
in most existing solutions, methods to compress data effi-
ciently dedicated for classification purposes have not been
well addressed yet.

Data compression for classification purposes leads to not
only less storage but also lower computational complexity.
For instance, in a classification problem, if the extracted fea-
tures can be reduced while the reduced features can achieve
satisfactory testing accuracy and the inversed images from
the reduced features still keep important characteristics of
the original images, one may store the reduced features
instead of all features. Also, the reduced features can be
used for classification to decrease computational complexity.
Furthermore, such data compression is interpretable because
it keeps the most significant features for classifications. It
is worth mentioning that the concept ‘‘compression’’ here
is different from that in the conventional compression tech-
niques such as JPEG 2000 and HEVC intra coding. Com-
pression for classification aims to compress data as well
as achieve high classification accuracy in verification stage.
On the other hand, the conventional compression methods
attempt to maintain visual recognition when compressing
data.

The contributions of this paper are itemized below:
• New architecture: We propose a learning architecture,
which can achieve high testing accuracy with low com-
plexity, for feature extraction and classification. The fea-
ture extraction module consists of cascaded PCAs with
truncated features and the classification module is the
MAP detector. The integration of the consecutive PCAs
and MAP detector makes this new proposed scheme
enjoy several advantages and the corresponding results
interpretable.

• Compression for classification: The proposed system
is linear and invertible. Hence data compression via
the system is possible. Thanks to the linear property
of the proposed system, the extracted features can be
inversed to original data to see insight into individual
features. Thus, it is like a linear transform, such as
Fourier transform, where both forward and backward
directions are feasible. The proposed system can also
significantly reduce the extracted features while it still
maintains high classification accuracy. As a result, data
compression for classification purposes is realizable via
the proposed system. From the simulation results, the
compression ratio is up to 45.51:1 with a testing accu-
racy of 97.61% for a face recognition problem. In addi-
tion, from the reconstructed images, one can interpret
what the extracted features look like, and these important
features for achieving good classification performance
are visualizable via this inversion process.

• Good performance with low computational com-
plexity: The computational complexity of the proposed
scheme is significantly reduced due to the use of cas-
cade PCAs with dimension reduction andMAP detector.
Thus both the training and verification time of the pro-
posed system are only 1/700 and 1/100 of those using
AlexNet and Saak transform. To verify the classification
ability of the proposed system, we conduct experiments
in face recognition ‘‘who is this person?’’ We use the
dataset in [31], Labeled Faces in the Wild (LFW). LFW
is widely used by face recognition models like [3]–[6]
and [10]. Experiment results show that the proposed
scheme outperforms conventional systems in terms of
both testing accuracy and computational complexity.
Moreover, the training and testing time of the proposed
system is much faster than conventional schemes. In a
standard PC platform, two datasets with 2804 and 6592
images only take 0.7 and 1.7 seconds for training respec-
tively. Also, it takes less than 0.15 msec to recognize
the class of one image. The accuracy reaches 97.61%
for a 19-person dataset and 84.91% for a 158-person
dataset. Furthermore, thanks to the linear property, the
proposed system can inverse the reduced features to the
original image and the compression ratio is significant.
In our experiments, the proposed system can reduce the
number of features from 12288 to 270, a compression
ratio up to 45.51:1; at the same time, the average devi-
ation between the original and compressed images is
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FIGURE 1. The proposed linear classification system consisting of the preprocessing, feature extraction and reduction, and classification modules.

only 9.11%, and more importantly the testing accuracy
is 97.61% for the 19-person dataset and 84.91% for the
158-person dataset.

The outline of the remaining parts is organized as follow:
In Section II, we present the linear recognition model and
corresponding algorithms. In Sections III-IV, individual mod-
ules of the proposed system are explained in details, where
Section III explains the linear feature extraction module,
and Section IV introduces the linear classification module.
In Section V, we provide experimental results to show the
advantages of the proposed system. Conclusions and future
works are given in Section VI.

II. PROPOSED RECOGNITION MODEL AND METHODS
A block diagram of the proposed recognition model is shown
in Fig. 1, which consists of preprocessing, feature extraction
and reduction, and classification modules. The preprocessing
module handles the original defects of the dataset such as
noise, contrast, and brightness of the images. The preprocess-
ing module contains operations including object detection,
image processing, and data augmentation. It is an adjustable
module designed according to the dataset. The feature extrac-
tion module extracts the significant features out from the
dataset and has multiple stages. Each of the stages is a linear
transformation. Hence the transformation is invertible, and
the images can be reconstructed from the extracted features.
This point will become more clear later. After the feature
extraction module, features are reduced for data compres-
sion purpose and avoiding overfitting. Finally, the reduced
features are passed through the classification module, where
we propose to use linear discriminant classifier because we
find that a Gaussian statistical model can be assumed after
the proposed linear transformation. Because the proposed
system is linear and based on statistics, many results can

be explained and improved mathematically. Let us explain
individual modules more detailed in the following sections.

III. FEATURE EXTRACTION AND REDUCTION WITH
VARIABLE CUBOID SIZE
In this section, we introduce the feature extraction and reduc-
tion module, which is linear and hence both forward direction
(data to extracted features) and inverse direction (features to
original data) are feasible. This module can be regarded as a
consecutive PCA (Principal Component Analysis) with trun-
cation in each stage. The extracted features can be assumed
to be uncorrelated Gaussian random variables. Those points
are explained in the following subsections.

A. FORWARD DIRECTION
The proposed feature extraction module is a fast linear
data-driven feedforward transformation with low space com-
plexity. Referring to the block diagram in Fig. 1, let Q(n) ∈
RI×J be the nth preprocessed image of a size of I × J ,
where n = 1, 2, · · · ,N . Hence N is the total number of
the input images. In the testing phase, the value of N can
be one; while in the training phase, it has to be more than
one to find the transform kernels. Then, we feed all of the
preprocessed images into the multi-stage proposed scheme
and let the initial global cuboid G0(n) ∈ RI

0
×J0×K0

be Q(n),
where the superscript is the stage index and I0 = I , J0 = J
and K 0

= 1. Here, I and J are the global cuboid sizes
at the vertical and horizontal directions in the spatial plane
respectively, and K is the global cuboid size at the spectral
direction.

Assume that there are P stages. At each of stage,
we reshape the global cuboid into multiple non-overlapping
local cuboids, perform principal component analysis on indi-
vidual cuboids, collect the results, and reshape them into
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another global cuboid for the next stage. According to the
size of input images, one can adjust the side lengths of the
local cuboids in the vertical and horizontal direction at each
stage. Let the side lengths of the local cuboids in stage p be
lpi × l

p
j × l

p
k , where l

p
i , l

p
j are adjustable. The values of lpi , l

p
j

and lpk satisfy

P∏
p=1

lpi = I , Ip−1/lpi ∈ N , (1)

P∏
p=1

lpj = J , Jp−1/lpj ∈ N , (2)

lpk = K p−1. (3)

When the initial input and the side lengths lpi , l
p
j are given,

the input can be processed by the multi-stage scheme. The
dataflow and the dimension conversion at Stage p are shown
in Fig. 2 and also explained in Steps 1-3 below: The stage
index p is with increasing order, i.e., p = 1, 2, · · ·P.
Step 1. Global cuboid to several local cuboids. Let the

global cuboid of the nth image at Stage p − 1 be Gp−1(n)
with size Ip−1 × Jp−1 × K p−1. The global cuboid is cut into
several local cuboidsGp−1

i,j (n) with size lpi × l
p
j × l

p
k at stage p.

With the constraints of the local cuboid side lengths, one can
perfectly cut the global cuboid into Ip × Jp non-overlapping
local cuboids below

Gp−1(n)=


Gp−1

1,1 (n) Gp−1
1,2 (n) · · · Gp−1

1,Jp (n)

Gp−1
2,1 (n) Gp−1

2,2,:(n) · · · Gp−1
2,Jp (n)

...
...

. . .
...

Gp−1
Ip,1(n) Gp−1

Ip,2(n) · · · Gp−1
Ip,Jp (n)

 , (4)

where Ip = Ip−1/lpi and Jp = Jp−1/lpj . For instance, letting
the side lengths be 4. If the image at Stage p− 1 is with size
64× 64, the size becomes 16× 16 at Stage p.
Step 2. Principal component analysis to local cuboids

and feature reduction. The principal components are used
as the transform kernels. Principal component analysis (PCA)
is a statistical procedure that uses an orthogonal transforma-
tion to convert a set of possibly correlated observations into
linearly uncorrelated sets. When data vectors are projected
onto the principal components, the PCA coefficients have
larger variances which can help in separating data into various
classes.
First, we reshape the local cuboids Gp−1

i,j (n) to vectors
fpi,j(n) ∈ RV

p
, where V p is equal to the volume of the local

cuboid defined as

V p
= lpi × l

p
j × l

p
k , (5)

and the reshape operation is defined as

fpi,j(n) = reshape(Gp−1
i,j (n),V p, 1) ∈ RV

p
. (6)

Second, the principal components of the vectors fpi,j(n) are
calculated. The principal components are the eigenvectors of

FIGURE 2. The dataflow, reshape operations and dimensions of cuboids
between Steps p − 1 and p.

the covariance matrix of the data vectors. Let the mean for all
data vectors be f̄pi,j given by

f̄pi,j =
1
N

N∑
n=1

fpi,j(n). (7)

The covariance matrix Rp
i,j is then calculated using

Rp
i,j =

1
N

N∑
n=1

(fpi,j(n)− f̄pi,j)(f
p
i,j(n)− f̄pi,j)

T . (8)

Then we find the V p eigenvectors Ap
i,j of R

p
i,j, where each

column of Ap
i,j, denoted by [Ap

i,j]v, is the vth eigenvector
of Rp

i,j, and v = 1, 2, · · · ,V p. Also, let the corresponding
eigenvalues of Rp

i,j be epi,j. Hence [Ap
i,j]v are the principal

components of fpi,j(n). Third, the computational complex-
ity of eigenvalues and eigenvectors is O(n3), which is the
main complexity in implementation. Hence we propose to
reduce the PCA coefficients according to the PCA property
to reduce the complexity for later stages. Here, we select
the K p (K p

≤ V p) eigenvectors (principal components)
corresponding to the K p largest eigenvalues, which also have
the largest variances and are considered to have significant
discriminative ability. Since the eigenvalues are equal to the
variances that a vector projected onto its eigenvectors, this
operation preserves the principal components corresponding
to the largest variances. More specifically, one can find the
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set of indices T corresponding to the K p largest eigenvalues
defined as

T = {t | [epi,j]t are theK
p largest eigenvalues} ∈ RK

p
. (9)

Once the set T is found, the principal components can be
reduced accordingly. Then the transform kernels Bpi,j after
principal component reduction can be obtained by

Bpi,j = [Ap
i,j]T ∈ R

V p×Kp
. (10)

Forth, we project the vectors fpi,j(n) onto the transform kernels
(reduced principal components) and obtain the PCA coeffi-
cients gpi,j(n) defined as

gpi,j(n) = Bp Ti,j f
p
i,j(n) ∈ R

Kp
. (11)

Step 3. Reshape PCA coefficients and form another
global cuboid Gp(n). We then reshape all the PCA coeffi-
cients obtained in Step 2 to place the coefficient vectors in
the spectral direction using the following procedure:

gpi,j,:(n) = reshape(gpi,j(n), 1, 1,K
p). (12)

Combining all gpi,j,:(n), where i = 1, 2, · · · , Ip and j =
1, 2, · · · , Jp, global cuboid Gp(n) for next stage can be
formed given by

Gp(n) =


gp1,1,:(n) gp1,2,:(n) · · · g

p
1,Jp,:(n)

gp2,1,:(n) gp2,2,:(n) · · · g
p
2,Jp,:(n)

...
...

. . .
...

gpIp,1,:(n) g
p
Ip,2,:(n) · · · g

p
Ip,Jp,:(n)

 , (13)

whereGp(n) ∈ RI
p
×Jp×Kp

. The vertical and horizontal direc-
tion dimension conversion of global cuboids from Stage p−1
to Stage p can be written as

Ip = Ip−1/lpi , (14)

Jp = Jp−1/lpj . (15)

Stop criterion. The whole process is stopped when the
final stage, Stage P, is approached, and the global cuboids
GP(n) ∈ R1×1×K

P
is obtained.

At the final stage, one can obtain the final PCA coefficients
given by

GP(n) = gP1,1,:(n) ∈ R
1×1×KP

, (16)

where KP is normally set to a number that can avoid over-
fitting or underfitting in classification experiments so as
to achieve high accuracy. Also, since we reduce the PCA
coefficients after each stage, KP is much smaller than the
number of the original image pixels (I × J ). As a result, there
is no growth but significant reduction in space complexity
throughout the whole process. Note that the space complexity
doubles at each stage for the system in [9]. Then the global
cuboid at the final stage can be reshaped to obtain the feature
vector x(n):

x(n) = reshape(GP(n),KP, 1), (17)

FIGURE 3. The dimension conversion of the global cuboid through stages.
Sp and inv(Sp) are the forward and inverse of the proposed scheme
between stage p and (p − 1), respectively.

where x(n) is called the feature vector, which is obtained
from the PCA coefficients at the final stage, and is used to
determine the class of the input images later in classification
component.

B. GAUSSIAN APPROXIMATION OF FEATURES
We find that the statistics of individual features can be
approximated by Gaussian distribution. The histograms of
some randomly picked samples are shown in Fig. 4, in which
Gaussian approximation well matches the histograms.

In addition to this dataset, we have also verified various
datasets and observed similar Gaussian approximation results
of the proposed system.

We find that the extracted features in the proposed sys-
tem can be approximated to uncorrelated Gaussian random
variables. It is worth pointing out that the Gaussian approxi-
mation result was also observed in [9]. The Gaussian approx-
imation result endues the proposed system and the extracted
features statistical meaning. Hence classical estimation and
detection theory can be applied to the proposed system for
classifying the data [30]. This motivates us to use the concept
of maximum a posteriori (MAP) to detect the class of input
images. Therefore for every input image, there is a probability
that this image belongs to each class. The detected class is the
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FIGURE 4. Gaussian approximation of the extracted features in the proposed system. (a) Feature No. 12, (b) Feature No. 55,
(c) Feature No. 72, (d) Feature No. 90 from inputs which belong to class 5.

one that has the maximum probability. Since every class has
a probability for the input data, one can also determine top
candidate classes for the data and develop more sophisticated
algorithms to refine the classification results.

C. INVERSE DIRECTION
Since the proposed scheme is a linear transformation, both
forward and inverse transformations can be conducted. The
inverse transformation is to reconstruct the feature vector
x(n) at the final stage to the preprocessed image Q(n). We
elaborate on the inverse transformation in the following steps:
Now the stage index p is with decreasing order, i.e., p =
P,P− 1, · · · , 1.
Step 1. Reshape the PCA coefficients back to vectors

gpi,j(n). This is a simple inverse procedure of (12) given by

gpi,j(n) = reshape(gpi,j,:(n),K
p, 1). (18)

Step 2. Project the the vectors onto the inverse trans-
form kernel. Referring to (11), the inverse kernel of Bp Ti,j is
simply its pseudo-inverse matrix. Hence the backward result
of this step can be easily obtained by

fpi,j(n) = (Bp Ti,j )
pinvgpi,j(n), (19)

where (Bpi,j
T )pinv is the pseudo-inverse matrix of Bpi,j

T .
Step 3. Reshape fpi,j(n) back to the local cuboids. Refer-

ring to (6), this step is given by

Gp−1
i,j (n) = reshape(fpi,j(n), l

p
i , l

p
j , l

p
k ). (20)

Step 4. Form global cuboid and take PCA coefficients.
The method to collect the local cuboids to form global cuboid
is the inverse of (4), and the method for taking the PCA
coefficients for the previous stage is the inverse of (13).

Conduct Steps 1-4 for all P stages, the initial global cuboid
Ĝ0(n) can be reconstructed. Due to the energy loss from the
eliminated features, image processing is needed for reducing
the reconstruction loss. First, we compensate the energy loss
using a brightness gap h(n) defined as

h(n) =
1
I · J

I∑
i=1

J∑
j=1

([Q(n)]i,j − [Ĝ0(n)]i,j). (21)

Second, we apply histogram equalization to enhance the con-
trast and fix the range span as well. The histogram equal-
ization was widely used, see e.g., [32] and [33]. Histogram
equalization helps the pixel value to be evenly distributed
within the range and thus enhances the contrast of images.
Here, we adopt the classic histogram equalization method,
which uniformly distributes the pixel value in accordance
with the CDF of the pixel value. In our case, like most
image recognition cases, the pixel values are floating numbers
within 0 and 1, [Ĝ0(n) + h(n)] ∈ [0, 1]. Therefore, we can
formulate the process as,

Q̂(n) = 1 · cdf(Ĝ0(n)+ h(n)), (22)

where Q̂(n) is the recovered image with a slight loss that we
finally obtained.

In Fig. 5, we provide an example using an image from the
testing dataset that will be introduced in Sec. V later. The
original features of the image in the red layer is 4096, and
we recover the image using only 90 features. In row (a), the
red layer of the original image and its histogram are shown.
In row (b), we show the recovered image without any image
processing Ĝ0(n) and we can see the image is darker than
the original one and the contrast is poor, though one can
still recognize the image. In row (c), the brightness has been
compensated by adding h(n) defined in (21). Hence the mean
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FIGURE 5. (a): Original image and its histogram. (b): Recovered image
without any image processing. (c): Recovered image after adding
brightness. (d): Recovered image after adding brightness and histogram
equalization.

of the histogram shifts. In row (d), we show the recovered
image Q̂(n) using (22). One can see that no matter from the
image or its histogram, they are the closest to those in row
(a). Thus the image processing in (21) and (22) really helps
when recovering images from reduced few features.

When KP < (I × J ), reconstructing images from the
reduced features can be regarded as a lossy data decompres-
sion. Such data compression and decompression are mean-
ingful for data classification. More specifically, if only KP

most significant features are needed to achieve a target clas-
sification performance, one can simply store the data set with
KP features instead of (I×J ) features because both have com-
parable classification performance. Namely, we only store the
topKP significant features x(n) ∈ RK

P
, instead of the original

data Q(n) ∈ RI×J . Such a concept may be used to reduce
the data size and computational complexity in classification
algorithms. The compression ratio r with feature reduction
can then be written as

r =
I × J
KP . (23)

The examples in Fig. 5 (a) and (d) thus have a compression
ratio of 4096 : 90 = 45.51 : 1.

IV. LINEAR DISCRIMINANT CLASSIFIER
After the feature extraction, the features can be fed into
the classifier, which is introduced here. As discussed
in Sec. III-B, the features can be approximated to be

uncorrelated Gaussian random variables. Hence classical the-
ory in estimation and detection can be used and the resulting
performances have theoretical explanations. Now we have
the reduced feature vector x(n) and would like to deter-
mine which class it belongs to. To solve such a problem,
classical maximum a posteriori (MAP) estimator provides a
good reference. In the area of machine learning and pattern
recognition, this concept is usually called linear discriminant
analysis (LDA), which finds a linear combination of features
that can separate two or more classes. Here we combine the
two concepts, LDA and MAP estimator to design the linear
discriminant classifier introduced as follows:

First, let y(n) be the output of the classifier, which is the
class that x(n) belongs to, and Cm be Class m. The MAP
estimator is given by

y(n) = arg max
m=1···M

P(Cm|x(n)), (24)

where M is the number of classes. The posterior probability
is defined as

P(Cm|x(n)) =
P(x(n)|Cm)P(Cm)

P(x(n))
, (25)

where P(x(n)) is written as

P(x(n)) =
M∑
m=1

P(x(n)|Cm)P(Cm). (26)

Since P(x(n)) is a constant for all classes, one can ignore
the denominator in (25). As for the numerator in (25), since
we consider the input features are multivariate Gaussian dis-
tributed, the priori probability can be written as

P(Cm) =
nm
N
, (27)

where nm is the number of training images which are with
class m, and N =

∑M
m=1 nm is the number of all training

images. The mean of xm(n) is defined as

µm =
1
nm

nm∑
n=1

xm(n), (28)

and the covariance matrix 6m is defined as

6m =
1
nm

nm∑
n=1

(xm(n)− µm)
T (xm(n)− µm), (29)

where xm(n), n = 1, 2, · · · , nm, are the feature vectors belong
to class m.

In the linear discriminant classifier, we need a common
covariance matrix so as to keep the likelihood function linear.
In this work, we propose to use the pooled covariance matrix
6 as the common matrix. The pooled covariance matrix is
defined as

6 =

M∑
m=1

nm
N
6m. (30)
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The likelihood function P(x(n)|Cm) for multivariate Gaussian
random variables is then given by

P(x(n)|Cm)

=
1√

(2π)KP
|6|

exp
(
−
1
2
(x(n)−µm)

T6−1(x(n)−µm)
)
,

(31)

where recall that KP is the number of reduced features.
To simplify the calculation, referring to (25), we take the

natural logarithm, and ignore the denominator of the posterior
probability function P(Cm|x(n)), i.e.,

y(n) = arg max
m=1···M

lnP(x(n)|Cm)P(Cm), (32)

The term lnP(x(n)|Cm)P(Cm) can be rewritten as

lnP(x(n)|Cm)P(Cm)

= ln(
1√

(2π )KP
|6|

)

−
1
2
(x(n)T6−1x(n)− 2µTm6

−1x(n)+ µTm6
−1µm)

+ ln(
nm
N

). (33)

From (30), since the covariance is common, ln( 1√
(2π )KP |6|

)

and − 1
2x(n)

T6−1x(n) can be ignored. Then the remaining
term can be written in a linear form consisting of a weight
wm and a bias term bm for an individual class given by

µTm6
−1x(n)−

1
2
µTm6

−1µm+ln(
nm
N

)=wmx(n)+bm, (34)

where the term wm = µTm6
−1 is the weight and the term

bm = − 1
2µ

T
m6
−1µm+ln(

nm
N ) is the bias. Finally, the classifier

can be written in a linear equation form as follows:

y(n) = arg max
m=1···M

wmx(n)+ bm . (35)

We summarize the proposed scheme for training and test-
ing including the linear transformation of feature extraction,
feature reduction and linear discriminant classifier in respec-
tively in Algorithms 1 and 2.

V. EXPERIMENTAL RESULTS
In this section, the experiment results are provided to show
the performance of the proposed classification system.

A. DATASET AND HARDWARE
Labeled Faces in the Wild (LFW) is a well known academic
test set for face verification [3]. There are two datasets used in
the experiments. For the first data set, 158 classes are selected
from the whole dataset which has more than 6 images for
training and 2 images to testing per class. For the second
data set, 19 classes are selected out of the 158 classes in the
first data set, which has more than 30 images for training
and 10 images for testing. Table 1 details the size of the
two datasets both for training and testing. Moreover, the data

Algorithm 1 Training Process

Require: N preprocessed training images Q(n) ∈ RI×J .
Local cuboid spatial sizes lpi × l

p
j , and global cuboid size

at spectral direction K p at stage p for p = 1, 2, · · · ,P.
Ensure: Transform kernels Bpi,j. Weight wm and bias bm.

Remaining indices T .
1: Initialization: G0(n) = Q(n). Let global cuboid size be
I0 × J0 × K 0, where I0 = I , J0 = J and K 0

= 1.
- - - - - - - - - - - Feature Extraction - - - - - - - - - - -

2: for p = 1 : P do
3: Form local cuboids Gp−1

i,j (n) using (4) and reshape
them to vectors fpi,j(n) using (6).

4: Ip = Ip−1/lpi and Jp = Jp−1/lpj
5: for i = 1 : Ip do
6: for j = 1 : Jp do
7: Find K p transform kernels (reduced PCs) Bpi,j

using eigenvector-based method in (9) and (10).
8: Project fpi,j(n) onto B

p
i,j to obtain PCA coefficients

gpi,j(n) using (11).
9: Reshape gpi,j(n) to g

p
i,j,:(n) to form global cuboid

Gp(n) using (13).
10: end for
11: end for
12: end for
13: Obtain final PCA coefficients gPi,j,:(n) at the final stage

and reshape them to feature vector x(n).
14: For colored images, repeat 1-15 for each primary color

layer, and cascade all features to a vector x(n).
- - - - - - - Linear Discriminant Classifier - - - - - - -

15: Feed x(n) and labels into the Linear Discriminant Classi-
fier, and obtain weight wm and bias bm.

TABLE 1. Dataset details.

sets for training and testing are completely separated. Intel(R)
Core(TM) i7-8700CPU and 16GB RAM is used to conduct
the experiments.

B. IMAGE PREPROCESS
Firstly, the face is detected and the background of the image
is blacked via an open-source python file [34]. Then all the
images are resized to 64 × 64. An overview of the images
after the face detection operation and resizing is shown in
Fig. 6. Secondly, the training images are augmented. The
reason is that in the first dataset, there are some classes that
have only 6 images for training, which is insufficient to train a
good model. Also, some faces do not face the same directions
as shown in Fig. 6. Therefore, we augment the training images
by flipping the images horizontally and make the number of
images doubles. Thirdly, we separate the three primary colors
of images into R, G, B 3 layers and then equalize the 3 layers
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Algorithm 2 Testing Process

Require: TheN preprocessed testing image(s)Q(n) ∈ RI×I .
Local cuboid spatial sizes lpi × l

p
j same as Algo. 1. Trans-

form kernels Bpi,j. Weight wm and bias bm. Remaining
indices T .

Ensure: The classification accuracy.
1: Initialization: G0(n) = Q(n). Let global cuboid size be
I0 × J0 × K 0, where I0 = I , J0 = J and K 0

= 1.
- - - - - - - - - - - Feature Extraction - - - - - - - - - - -

2: for p = 1 : P do
3: Repeat Steps 3-4 in Algo. 1.
4: for i = 1 : Ip do
5: for j = 1 : Jp do
6: Read transform kernels Bpi,j.
7: Repeat Steps 8-9 in Algo. 1.
8: end for
9: end for

10: end for
11: Repeat Step 13-14 in Algo. 1.

- - - - - - - Linear Discriminant Classifier - - - - - - -
12: Use the classifier in (35) to estimate which class the nth

image belongs to.
13: Use label(s) to check the classification accuracy.

FIGURE 6. An overview of images after face detection and resizing.

of histogram individually. This step enhances the contrast of
images and enable the separation of the three primary color
layers.

After preprocessing, the training data are passed through
the proposed system, and Algorithm 1 is used to process the
data.
Experiment 1 (Testing Accuracy as Functions of Various

Numbers of Features):As discussed in Sec. III-C, the number
of features id reduced from (I×J ) toKP to avoid overfitting in
training classifier, where I × J = 4096 for one primary color
layer in the experiments. For designing a face recognition
model, the main goal is to achieve high testing accuracy, and
thus KP is decided mainly according to the testing accuracy.
Let the local cuboid sizes be set as (l1i , l

1
j , l

1
k ) = (8, 8, 1),

(l2i , l
2
j , l

2
k ) = (4, 4, 16), (l3i , l

3
j , l

3
k ) = (2, 2, 64), which

is a 3-stage scheme. Table 2 shows the testing accuracy
corresponding to 8 different numbers of features. Several

TABLE 2. Testing accuracy as functions of various numbers of features.

observations are summarized: First, more features do not nec-
essarily lead to better testing accuracy. This is because more
features may result in overfitting problem and hence feature
reduction is needed. Second, for both datasets, the best testing
accuracy occurs when KP

= 90 for one primary color layer
and a total of 270 features for three layers. Consequently, the
compression ratio is 1 : 45.5, which is a significant reduction
of data size.
Experiment 2 (Testing Accuracy and Computations as

Functions of Various Local Cuboid Sizes): In this experiment,
three sets of variable local cuboid sizes are used to figure out
efficient local cuboid sizes. Efficiency considers the compu-
tational speed and testing accuracy. The computational speed
depends on the dimension of the dataset. Therefore, we target
to reduce the dimension while maintaining good testing accu-
racy. Thus, a good local cuboid size should be determined for
achieving high testing accuracy with low computations. We
consider the following three settings of local cuboid sizes:
Setting 1: There is one stage with (l1i , l

1
j , l

1
k ) = (64, 64, 1).

Setting 2: There are 2 stages with (l1i , l
1
j , l

1
k ) = (4, 4, 1),

(l2i , l
2
j , l

2
k ) = (16, 16, 1). Setting 3: There are 3 stages with

(l1i , l
1
j , l

1
k ) = (8, 8, 1), (l2i , l

2
j , l

2
k ) = (4, 4, 16), (l3i , l

3
j , l

3
k ) =

(2, 2, 64). Setting 4: There are 6 stages with (l1i , l
1
j , l

1
k ) =

(2, 2, 1), (l2i , l
2
j , l

2
k ) = (2, 2, 1), (l3i , l

3
j , l

3
k ) = (2, 2, 1),

(l4i , l
4
j , l

4
k ) = (2, 2, 2), (l5i , l

5
j , l

5
k ) = (2, 2, 8), (l6i , l

6
j , l

6
k ) =

(2, 2, 32). Here, recall that lpk = K p−1 and can be set for
individual stages. Also we let KP

= 90, the same setting
as that in Experiment 1. Thus we can obtain 270 features
totally from three primary color layers. The cuboid sizes of
individual Settings are listed in Table 3. The results are shown
in Table 4. Observed from the table that Settings 3 achieves
the best accuracy for both datasets. Also, Setting 3 has a
lower computational complexity than that in Settings 1 and
4. Hence, Setting 3 is a good setting for the experiments.
Some interesting results are also addressed here. First, Set-
ting 1 has the largest computational complexity since this
setting only has one stage and the data is not segmented
into local cuboids. Consequently the computations for eigen-
vectors and eigenvalues dominate the complexity. Moreover,
although Setting 2 can achieve low computational time, its
testing accuracy is far worse than other settings, because the
PCA coefficients are seriously eliminated after the first stage,
and much information is lost due to this. Hence, the cuboid
sizes should be properly determined, like what we have done
for Setting 3.
Experiment 3 (Performance With Multiple Candidates):

Following Experiments 1 and 2, we show all the images
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TABLE 3. The cuboid sizes of individual settings.

TABLE 4. Testing accuracy and computations as functions of various local cuboid sizes.

FIGURE 7. All the 11 incorrectly recognized images from the 19-classes
dataset. There are some problematic images boxed in red and blue
rectangles. If they are eliminated, the accuracy can reach 98.5%.

that are incorrectly recognized from the 19-classes testing
dataset in Fig. 7. We see that there are some problematic
images which are marked with red and blue rectangles. In the
images with red rectangles, the faces are covered by hands;
while in the image with a blue rectangle, the error actually
came from image preprocessing (face detection operation).
When we eliminate those problematic images or select a
better face detection operation, the testing accuracy can be
improved from 97.6% to 98.5%. Similarly, in Fig. 8, we dis-
played the incorrectly recognized problematic images from
the 158-classes testing dataset. Some of them are seriously
affected by sunglasses, hands, and even other’s shoulder.
When we exclude these errors, the accuracy improves from
84.9% to 86.5%.

Additionally, because the proposed scheme classifies the
images using aMAP-like estimator, for each image the classi-
fier outputs the individual probabilities for individual classes
that this image belongs to. Hence it is possible to determine
several candidates with the highest probabilities that one
image belongs to. Refined and improved algorithms can be
developed to determine the best decision from the candidates
with the highest probabilities. It is worth mentioning that
some classifiers cut space into regions and do not have the
cluster center in advance, such as SVM. Such schemes need
to pay more effort if more candidates are to be selected. Here
we show the testing accuracy of top-3 and top-5 candidates.
The accuracy for 158-class dataset reaches 91.32%when hav-
ing top-3 guesses, and 93.39% when having top-5 guesses.
Moreover, the accuracy for 19-class dataset reaches 99.35%
when having top-3 guesses, and 99.57% when having top-5
guesses. The CDFs of top guesses are shown in Fig. 9.

FIGURE 8. All the incorrectly recognized problematic images from the
158-classes dataset. If these unavoidable errors are eliminated, the
accuracy can reach 86.3%.

FIGURE 9. The CDF of top-X guesses for both testing datasets. The
accuracies of both datasets reach above 90% when having top-3 guesses,
99.35% for the 19-class dataset and 91.32% for the 158-class dataset.

Experiment 4 (Image Reconstruction Using Various Num-
bers of Features): In this experiment, we reconstruct images
from various numbers of features. The reasons are two folded.
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TABLE 5. Compression ratios.

The first one is to see how many features are sufficient
to reconstruct the original images from a point of view of
data compression. The second reason is to see what fea-
tures and why they are eliminated in the original images. In
Experiments 1 and 2, we see using full features may lead
to overfitting problem. By reversing the images from the
reduced features, the corresponding results can also be used
to explain what may lead to overfitting problem and what are
the important features of the original images that can be used
to mostly distinguish images from different classes. Here,
we recover images from 12288 (full features), 9000, 6000,
3000, 270 features which respectively have 4096, 3000, 2000,
1000, 90 features for recovering one primary color layer. To
compare the recovery result, we use the percent deviation
(mean square error) to calculate the loss defined as

l=

√∑I0
i=1

∑J0
j=1

∑K0

k=1

(
[Q̂(n)]i,j,k − [Q(n)]i,j,k

)2
I0 × J0 × K 0 . (36)

Table 5 shows the corresponding percent deviations and com-
pression ratio. It is observed that using more features does not
necessarily lead to a small percent deviation due to overfitting
issue. In addition, reconstructing images from 270 features
has a very high compression ratio and a satisfactory low
percent deviation. Note that the deviation for 12288 is very
small but nonzero due to the accumulated computational error
of multiple stages in the platform.

Let us see how the recovered images look like. Fig. 10,
shows some reconstructed sample images. Row (a) are the
samples recovered from full 12288 features and the average
percent deviation is 1.7226e-04%, which proves that we can
recover the image losslessly from full features. Row (b) are
the samples recovered from 9000 features and the average
percent deviation is 5.48%. Rows (c) and (d) are the sam-
ples recovered from 6000 and 3000 features and the aver-
age percent deviations are 12.41% and 15.51% respectively.
Observing that as the reduced features increase in this level,
the deviations grow higher. Also in rows (c) and row (d),
the reconstructed images contain certain insignificant details
which look like noises. As a result, the reconstruction quality
and the testing accuracy are poor due to overfitting as we can
see in the previous example in Table 2. When the number of
features reduces to 270, however, in row (e), we see that the
insignificant details disappear and the effect just like passing
the images through a smoothing process. Consequently, the
deviation is only 9.11% which is even lower than row (c) and
row (d). This result also reflects that 270 features are suitable

FIGURE 10. Some image recovery samples. (a) are the samples of
recovery images recovered from 12288 features, the percent deviation is
1.7226e − 04%. (b) to (e) are recovered from reduced features, and the
numbers of features are 9000, 6000, 3000, 270, the percent deviations are
5.48%,12.41%,15.51%,9.11%.

for training the classifier since they grasp most of the signif-
icant information of an image and avoid overfitting occurred
as using 6000 and 3000 features.

Moreover, from the top and bottom samples of the first
column in Fig. 10, the glasses disappear in the reconstructed
image from the reduced 270 features. This implies that the
proposed scheme can remove redundancy that is irrelevant or
unimportant to classification. To see this point more clearly,
Fig. 11 shows more reconstructed images from the 270 fea-
tures. Observed from the figure that glasses and fingers dis-
appear. That is, significant features extracted by the proposed
scheme would be the information about face structures, not
those disturbing objects like glasses and fingers. Therefore,
when we reconstruct the images from a suitable amount of
features, the disturbing items should disappear. From a view-
point of data compression, the compressed data is dedicated
to achieving better classification performance. This effect
may be treated as ‘‘feature filtering’’ of the proposed system
in classification.
Experiment 5 (Comparisons Between Conventional and

Proposed Schemes): In this experiment, we compare the pro-
posed system with the AlexNet and the Saak transform in [9].
The same preprocessed training and testing images are used.
We apply the AlexNet provided by Matlab. The CNN model
is trained using exactly the same layers as those in AlexNet.
Moreover, considering the hardware, we allow that the CNN
provided by Matlab uses GPU to speed up, and the proposed
scheme only uses CPU. The GPU that CNN uses is NVIDIA
GeForce GTX 1050 Ti. For the Saak transform, 600 features
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TABLE 6. Alexnet vs. Saak transform vs. Proposed recognition model.

FIGURE 11. The image recovery method eliminates disturbing objects.
The top image originally has fingers in front of the man’s chin and
disappears after recovered. The middle and the bottom images both have
glasses at first but disappear after recovered.

are used, which can achieve its best accuracy. The result is
shown in Table 6. We see that the proposed model achieves a
better accuracywhile the whole computational time including
training and testing is only around one seven hundredths of
that with CNN.

VI. CONCLUSION AND FUTURE WORK
We have proposed a linear classification system that can
inverse the extracted and reduced features to original data,
and achieve data compression for classification purposes as
well. Experimental results show that the proposed system
outperforms the conventional classification schemes in terms
of not only computational complexity but also testing accu-
racy. From the viewpoint of data compression, the proposed
system compresses the data in a way beneficial for classi-
fication purposes. That is, when the images are recovered
from the reduced features via the proposed system, several
unimportant feature redundancies for classifications such as
glasses and covered hand on the faces are naturally filtered
out.We call this effect feature filtering.When the compressed
data is used for classification, the testing accuracy is high
while the recovered images can still achieve a small percent
deviation as well. The nice properties including linearity,
reversibility, achieving data compression and feature filtering
have made the proposed system worth further investigation.
The solutions to develop sophisticated algorithms to refine
the detection results among top guesses, and to efficiently
utilize the advantages of data compression for classification

are still open. Moreover, based on the experimental results,
there are some limitations of the proposed system. First, the
current image size is 64×64, algorithms for larger dimension
images can be developed and tested. Furthermore, this is a
linear classification system. Experimental results have shown
that this scheme achieves remarkable classification accuracy
and low complexity in face recognition. However, for data
sets that are highly nonlinear, the performance may degrade.
Hence, developing schemes that achieve good performance
for nonlinear data sets while they can still keep the nice
properties including invertibility, low complexity, and high
compression ratio for classification will be visited in the
future work.

REFERENCES
[1] F. Luo, L. Zhang, B. Du, and L. Zhang, ‘‘Dimensionality reduction

with enhanced hybrid-graph discriminant learning for hyperspectral image
classification,’’ IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8,
pp. 5336–5353, Aug. 2020, doi: 10.1109/TGRS.2020.2963848.

[2] F. Luo, L. Zhang, X. Zhou, T. Guo, Y. Cheng, and T. Yin, ‘‘Sparse-adaptive
hypergraph discriminant analysis for hyperspectral image classification,’’
IEEE Geosci. Remote Sens. Lett., vol. 17, no. 6, pp. 1082–1086, Jun. 2020,
doi: 10.1109/LGRS.2019.2936652.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, ‘‘FaceNet: A unified embed-
ding for face recognition and clustering,’’ in Proc. IEEEConf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 815–823.

[4] H. Wang, J. Hu, and W. Deng, ‘‘Compressing Fisher vector for robust face
recognition,’’ IEEE Access, vol. 5, pp. 23157–23165, Sep. 2017.

[5] J. Lu, V. E. Liong, X. Zhou, and J. Zhou, ‘‘Learning compact binary face
descriptor for face recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 10, pp. 2041–2056, Oct. 2015.

[6] C. Ding and D. Tao, ‘‘Robust face recognition via multimodal deep face
representation,’’ IEEE Trans. Multimedia, vol. 17, no. 11, pp. 2049–2058,
Nov. 2015.

[7] B.-C. Chen, C.-S. Chen, and W. H. Hsu, ‘‘Face recognition and retrieval
using cross-age reference coding with cross-age celebrity dataset,’’ IEEE
Trans. Multimedia, vol. 17, no. 6, pp. 804–815, Jun. 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[9] C.-C. J. Kuo and Y. Chen, ‘‘On data-driven saak transform,’’ 2017,
arXiv:1710.04176. [Online]. Available: http://arxiv.org/abs/1710.04176

[10] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, ‘‘PCANet:
A simple deep learning baseline for image classification?’’ IEEE Trans.
Image Process., vol. 24, no. 12, pp. 5017–5032, Dec. 2015.

[11] Z. Lihong and G. Zikui, ‘‘Face recognition method based on adaptively
weighted block-two dimensional principal component analysis,’’ in Proc.
3rd Int. Conf. Comput. Intell., Commun. Syst. Netw., Jul. 2011, pp. 22–25.

[12] I. Dagher and R. Nachar, ‘‘Face recognition using IPCA-ICA algorithm,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 6, pp. 996–1000,
Jun. 2006.

[13] S. Rajendran, A. Kaul, R. Nath, A. S. Arora, and S. Chauhan, ‘‘Comparison
of PCA and 2D-PCA on Indian faces,’’ in Proc. Int. Conf. Signal Propag.
Comput. Technol. (ICSPCT ), Jul. 2014, pp. 561–566.

[14] R. He, B.-G. Hu, W.-S. Zheng, and X.-W. Kong, ‘‘Robust principal com-
ponent analysis based on maximum correntropy criterion,’’ IEEE Trans.
Image Process., vol. 20, no. 6, pp. 1485–1494, Jun. 2011.

[15] H. M. Ebied, ‘‘Feature extraction using PCA and Kernel-PCA for face
recognition,’’ in Proc. 8th Int. Conf. Informat. Syst. (INFOS)., May 2012,
pp. MM-72–MM-77.

VOLUME 8, 2020 143973

http://dx.doi.org/10.1109/TGRS.2020.2963848
http://dx.doi.org/10.1109/LGRS.2019.2936652


T.-W. Tseng et al.: Interpretable Compression and Classification System: Theory and Applications

[16] X. Xiao and Y. Zhou, ‘‘Two-dimensional quaternion PCA and sparse
PCA,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 7,
pp. 2028–2042, Jul. 2019.

[17] Y. Pei, ‘‘Linear principal component discriminant analysis,’’ in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (IEEE SMC), vol. 28, Oct. 2015,
pp. 2108–2113.

[18] J. Xu, M. Li, J. Fan, X. Zhao, and Z. Chang, ‘‘Self-learning super-
resolution using convolutional principal component analysis and ran-
dom matching,’’ IEEE Trans. Multimedia, vol. 21, no. 5, pp. 1108–1121,
May 2019.

[19] Y. Choi, T. Tokumoto, M. Lee, and S. Ozawa, ‘‘Incremental two-
dimensional two-directional principal component analysis (l(2D)2PCA)
for face recognition,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2011, pp. 1493–1496.

[20] X. Jiang, ‘‘Linear subspace learning-based dimensionality reduction,’’
IEEE Signal Process. Mag., vol. 28, no. 2, pp. 16–26, Mar. 2011.

[21] C. Liu and H. Wechsler, ‘‘Gabor feature based classification using the
enhanced Fisher linear discriminant model for face recognition,’’ IEEE
Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.

[22] F. Ye, Z. Shi, and Z. Shi, ‘‘A comparative study of PCA, LDA and kernel
LDA for image classification,’’ in Proc. Int. Symp. Ubiquitous Virtual
Reality, Jul. 2009, pp. 51–54.

[23] Z. Zeng and P. Huang, ‘‘Palmprint recognition using Gabor feature-
based two-directional two-dimensional linear discriminant analysis,’’ in
Proc. Int. Conf. Electron. Mech. Eng. Inf. Technol., vol. 4, Aug. 2011,
pp. 1917–1921.

[24] C. Xiang and D. Huang, ‘‘Feature extraction using recursive cluster-based
linear discriminant with application to face recognition,’’ IEEE Trans.
Image Process., vol. 15, no. 12, pp. 3824–3832, Dec. 2006.

[25] T.-K. Kim and J. Kittler, ‘‘Locally linear discriminant analysis for
multimodally distributed classes for face recognition with a single
model image,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3,
pp. 318–327, Mar. 2005.

[26] S. Ji and J. Ye, ‘‘Generalized linear discriminant analysis: A unified frame-
work and efficient model selection,’’ IEEE Trans. Neural Netw., vol. 19,
no. 10, pp. 1768–1782, Oct. 2008.

[27] M. H. Siddiqi, R. Ali, A. M. Khan, Y.-T. Park, and S. Lee, ‘‘Human facial
expression recognition using stepwise linear discriminant analysis and
hidden conditional random fields,’’ IEEE Trans. Image Process., vol. 24,
no. 4, pp. 1386–1398, Apr. 2015.

[28] F. Luo, H. Huang, Y. Duan, J. Liu, and Y. Liao, ‘‘Local geometric structure
feature for dimensionality reduction of hyperspectral imagery,’’ Remote
Sens., vol. 9, no. 8, p. 790, Aug. 2017, doi: 10.3390/rs9080790.

[29] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, ‘‘Feature learning
using spatial-spectral hypergraph discriminant analysis for hyperspectral
image,’’ IEEE Trans. Cybern., vol. 49, no. 7, pp. 2406–2419, Jul. 2019,
doi: 10.1109/TCYB.2018.2810806.

[30] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[31] University of Massachusetts Amherst. Labeled Faces in the Wild.
Accessed: Jul. 2018. [Online]. Available: http://vis-www.cs.umass.edu/
lfw/#information

[32] N. Senthilkumaran and J. Thimmiaraja, ‘‘Histogram equalization for image
enhancement using MRI brain images,’’ in Proc. World Congr. Comput.
Commun. Technol., Feb. 2014, pp. 80–83.

[33] J.-H. Han, S. Yang, and B.-U. Lee, ‘‘A novel 3-D color histogram equaliza-
tion method with uniform 1-D gray scale histogram,’’ IEEE Trans. Image
Process., vol. 20, no. 2, pp. 506–512, Feb. 2011.

[34] Dlib. Shape Predictor 68 Face Landmarks. Accessed: Jul. 2018. [Online].
Available: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.
bz2

TZU-WEI TSENG was born in Taipei, Taiwan,
in 1994. He received the B.S. degree in electrical
and computer engineering, and the M.S. degree in
electrical and control engineering from National
Chiao Tung University (NCTU), Taiwan, in 2017
and 2019, respectively. He is currently with Qual-
comm Inc. His research interest includes machine
learning for image recognition.

KAI-JIUN YANG received the B.S. degree in
electrical engineering from Tamkang University,
Taipei, Taiwan, in 1999, the M.S. degree in elec-
trical engineering from the University of South-
ern California, CA, USA, in 2001, and the
Ph.D. degree in electrical and control engineering
from National Chiao-Tung University, Hsinchu,
Taiwan, in 2018. From 2001 to 2009, he was
with Trendchip Technologies (now EcoNet Inc.)
and developed DMT-xDSL chipsets. Since 2009,

he has been prototyping various signal processing, communication, and AI
processors on FPGA and IC at Information and Communications Research
Laboratories, Industrial Technology Research Institute, Hsinchu.

C.-C. JAY KUO (Fellow, IEEE) received the B.S.
degree from National Taiwan University, Taipei,
Taiwan, in 1980, and the M.S. and Ph.D. degrees
from the Massachusetts Institute of Technology,
Cambridge, in 1985 and 1987, respectively, all in
electrical engineering. He is currently the Director
of the Multimedia Communications Laboratory
and a Distinguished Professor of electrical engi-
neering and computer science at the University of
Southern California, Los Angeles. He has coau-

thored about 300 journal articles, 950 conference papers, and 14 books. His
research interests include digital image/video analysis and modeling, mul-
timedia data compression and communication, and biological signal/image
processing. He is a Fellow of the American Association for the Advancement
of Science (AAAS) and The International Society for Optical Engineers
(SPIE).

SHANG-HO (LAWRENCE) TSAI (Senior Mem-
ber, IEEE) was born in Kaohsiung, Taiwan.
He received the Ph.D. degree in electrical
engineering from the University of Southern
California, CA, USA, in 2005. From 1999 to 2002,
he was with Silicon Integrated Systems Corpora-
tion, where he was involved in the VLSI design
for DMT-ADSL systems. From 2005 to 2007,
he was withMediaTek Inc., where he was involved
in the VLSI design for MIMO-OFDM systems

and standard specifications for the IEEE 802.11n. In 2007, he joined the
Department of Electrical Engineering, National Chiao Tung University,
where he is currently a Professor. He was a Visiting Fellow with the
Department of Electrical Engineering, Princeton University, in 2013. His
research interests include signal processing for communications, statistical
signal processing, and signal processing for VLSI designs. Hewas a recipient
of the Government Scholarship for Overseas Study from the Ministry of
Education, Taiwan, from 2002 to 2005. He has been on the Editorial Board
of the IEEE Signal Processing Repository, since 2018.

143974 VOLUME 8, 2020

http://dx.doi.org/10.3390/rs9080790
http://dx.doi.org/10.1109/TCYB.2018.2810806

