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ABSTRACT The cloud radio access network (C-RAN) aims at migrating the traditional base station
functionality to a cloud-based centralized base band unit (BBU) pool, thereby providing a promising
paradigm for fifth-generation (5G) wireless systems. This results in a novel wireless architecture in which
mobile users communicate with the cloud via distributed remote radio heads (RRHs) as relays, through
two successive wireless links. The availability of accurate channel state information at the BBU pool
is a critical requirement in such systems. This paper addresses the channel estimation problem at the
terminals of a C-RAN using a two-way relay network (TWRN) model. To the best of our knowledge,
for the first time we introduce a cloud-based channel estimation algorithm implementation leveraging
cloud computing capabilities of virtualization and parallelization. By bridging the gap between cloud
computing and wireless communication, this work achieves a step towards the open problem of network
function virtualization (NFV) in C-RANs. Through a deep serial algorithm analysis, we are able to
utilize data decomposition as well as exploratory decomposition in order to achieve significant speedup,
which scales well with problem size. We assess the performance gains of our cloud-based algorithm via
extensive simulation experiments, and report almost 5× reduction in computation time as compared to the
state-of-the-art.

INDEX TERMS Distributed processing, parallelization, performance analysis, cloud radio access network,
two-way relay network, semi-blind channel estimation, multithreading.

I. INTRODUCTION
The demand for high-speed data applications, e.g.,
high-quality wireless video streaming, social networking,
machine-to-machine communication, Internet-of-Things and
unforeseen applications that can reasonably be expected to
materialize in the near future, necessitates a paradigm shift
from the current (4G) system to the fifth-generation (5G)
system [1]. One of the enabling technologies towards 5G is
known as the cloud radio access network (C-RAN), which
was first introduced by China Mobile in 2011 [2].

In C-RANs, the traditional base station functions are
decoupled into two parts: the remote radio heads (RRHs) and
the base band unit (BBU) pool implemented in a centralized
cloud server [3]. RRHs perform radio functions, including
frequency conversion, amplification, and analog/digital and
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digital/analog conversion, while the BBU pool acts as a dig-
ital unit implementing the base station functionality from
baseband signal processing to packet processing [4]. The
BBU pool is also known as Node C, a new communication
entity defined to converge the existing ancestral base sta-
tions and manage all accessed RRHs [5]. The BBU pool is
connected to the RRH via fronthaul links, where wireless
fronthaul links represent a cost-effective and flexible alter-
native to optical fibers. The RRHs are serving the mobile
users. Moving baseband processing and resource allocation
from the base stations to the cloud reduces the network cap-
ital and operational capital expenditure. Also, a cloud-based
BBU pool enables implementing network functionalities in
software on general purpose computing platforms, a con-
cept known as network function virtualization (NFV) [1].
Clearly, NFV adds flexibility and ease in deployment, main-
tenance and upgrade of network functions. Other advantages
of C-RANs include lower energy consumption and efficient
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large-scale cooperative processing [3]. A system model for a
C-RAN is shown in Fig. 1. For further details on C-RANs,
refer to [6] for a survey.

FIGURE 1. System Model of Cloud radio Access Network.

One of the most useful features of the cloud computing is
the direct access to massive computing resources [7]. Accord-
ingly, parallel implementations transparently may utilize the
high-performance resources of the cloud [8]–[11]. This work
seeks to address the implementation of network functional-
ities as cloud-based services while leveraging the following
capabilities of cloud computing:
• The ability to establish, reconfigure and tear down vir-
tual machines.

• The ability to configure virtual machines with multiple
cores, which gives rise to the implementation of network
functionalities with a high degree of parallelization.

As a step towards this goal, this paper addresses the prob-
lem of channel estimation in both cloud-to-RRH and RRH-
to-user wireless channels. Since the cloud (BBU pool) and
the mobile user can be regarded as terminals communicating
in both (downlink and uplink) directions using the RRH
as a relay, we use a two-way relay network [12] (TWRN)
model. This provides a spectrally efficient solution for bidi-
rectional communication between two terminals at twice the
communication rate of the conventional one-way relay net-
works. Both the amplify-and-forward (AF) and the decode-
and-forward (DF) relaying protocols have been considered in
TWRNs [12]. AF TWRNs are particularly appealing because
they require minimal processing at the relay (i.e., the RRH).
However, they also require highly accurate channel state
information at the terminals, both for coherent decoding, and
formitigating the effects of the inherent self-interference. The
problem of channel estimation for AF TWRNs continues to
attract considerable attention from researchers [13]–[16]. A
semi-blind solution to this problem has been proposed in [17]
that exploits both the transmitted pilots as well as the trans-
mitted data to improve the estimation performance. To further
enhance performance, as superimposed training at the relay is
also utilized. Extensive simulations showed that the algorithm
in [17] provides very high estimation accuracy, approaching

the theoretical limit, though at a nontrivial computational
cost.

In this paper, we propose a parallel implementation of
the semi-blind two-way relay channel estimation algorithm
proposed in [17]. Our goal is to leverage the increased com-
putational resources available to the cloud, in order to provide
a practical real-time implementation. Up to date, automated
tools fail to exploit efficient parallelization opportunities or
identify the true dependency among different tasks of a serial
algorithm. Automated tools such as OpenMP [18] can only
parallelize naive parallel loops. Despite the iterative nature of
the semi-blind two-way relay channel estimation algorithm,
a considerable level of loop carried dependency does exist.
This makes the parallelization process challenging and non-
trivial. Through a deep serial algorithm analysis, we are able
to utilize data decomposition as well as exploratory decom-
position in order to achieve significant speedup, which scales
well with problem size. Our parallel algorithm allows an
efficient utilization of the cloud computing resources. This
moves us one step towards the cloud-based implementation of
the communication algorithms, facilitating more centralized
and efficient decision making and resource allocation [19].
In light of the above, the contribution of this work can be
summarized as follows.

• To the best of our knowledge, for the first time we
address the implementation of TWRN channel estima-
tion as a cloud-based service. To this end, we leverage
the cloud computing capabilities of virtual machines and
multiple computing cores to devise an efficient parallel
implementation of the algorithm.

• We investigate via extensive simulations the perfor-
mance gains of the proposed parallel implementation
of our algorithm. In fact, we are able to achieves up to
5× reduction in computation time as compared to the
state-of-the-art.

The remainder of this paper is organized as follows.
Related work is discussed in Section II. Section III pro-
vides an overview of the channel estimation algorithm under
consideration. Section IV describes the proposed parallel
two-way relay channel estimation. The details of the imple-
mentation setup, as well as quantitative evaluation and numer-
ical results are presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK
In this section, we review the literature related to C-RAN
research in general, as well as the literature on channel esti-
mation efforts for C-RANs in particular.

C-RAN research work has been subject to considerable
interest in the recent wireless communication literature. For
example, the study in [4] reported on C-RAN fronthaul
compression, medium access control, resource allocation and
standardization efforts. The study [3] reported on signal com-
pression and radio resource allocation. The study in [20]
addressed RRH selection, beamforming and power control.
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The study in [21] looked into resource scheduling and power
control. The studies in [22] and [23] addressed routing prob-
lems in the fronthaul network, jointly with compression in
[22], and jointly with precoder design in [23]. The study
in [24] addressed the problem of interference mitigation in
C-RANs by applying rate-splitting and common message
decoding. The study in [25] addressed the problem of source
coding/compression at the transmitter and channel decoding
at the receiver of a C-RAN. The study in [26] addressed
the problem of energy-efficient user association in C-RANs.
Furthermore, the study in [27] considered the problem of
downlink secure beamforming in C-RANs. None of the
above studies, however, considered the details of implement-
ing network functionalities in the cloud. The existence of
a BBU pool implemented in the cloud was only a general
assumption. In fact, it has been reported in [3] that NFV
is still an open problem in C-RANs, and that the state-of-
the-art is to implement network functions on dedicated and
application-specific hardware.

The vital problem of channel estimation in C-RANs has
been explored in a number of works [28]–[33]. The authors
of [28] proposed a training-based sequential minimum-
mean-squared error scheme with segmented training for
C-RANs employing AF relaying. Training-based channel
estimation for C-RANs employing full-duplex AF relaying
was explored in [29], where a combination of least-squares
and maximum-likelihood techniques were employed for
joint channel estimation and self-interference suppression.
In [30], channel estimation was considered in conjunction
with cluster formation, where individual C-RAN clusters
were formed by the RRHs and joint channel estimation and
cluster formation was performed using semi-blind estima-
tion with a likelihood function that combines both pilots
and data symbols. The likelihood function was maximized
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm as in [17]. Semi-blind channel estimation for Uplink
C-RANs was also studied in [31]. Focusing on estimation at
the RRHs, maximum-likelihood estimation was adopted and
the semi-blind likelihood function was again maximized iter-
atively using the BFGS algorithm. The authors of [32] con-
sidered C-RANs operating overmillimeter-wave frequencies,
and equipped with lens antenna arrays. A channel estimation
algorithm was proposed that exploits the energy focusing
property of lens antenna arrays. The authors of [33], con-
sidered joint channel estimation and user activity detection
in C-RANs, proposing an algorithm based on variational
Bayesian inference that exploits user activity sparsity and
signal spatial sparsity.

To the best of our knowledge, however, none of the exist-
ing works on C-RAN channel estimation have developed
parallel implementations that seek to exploit the computa-
tional capabilities of the cloud. Parallel processing can play
an important role in providing real-time implementations of
wireless communication algorithms by dividing a problem
into multiple sub-problems that can be handled in differ-
ent cores/processing units. Although several studies have

exploited the parallelization capabilities of the graphics pro-
cessing units (GPUs) to speed up signal detection/decoding
algorithms for wireless receivers [34]–[36], only a small num-
ber of works have so far explored parallel implementations of
channel estimation. In [37], a GPU implementation was used
to accelerate least squares channel estimation and demodula-
tion for large scale antenna systems. We note, however, that
channel estimation algorithms considered in [37] do not apply
to C-RANs and are not compatible with the semi-blind esti-
mation strategy that we adopt in work. Semi-blind estimation
is both more accurate and more computationally demanding
as compared to [37], and is often implemented using iterative
algorithms as done in [30] and [31].

III. TWO-WAY RELAY CHANNEL ESTIMATION
A. BACKGROUND
Our proposed parallelization targets the semi-blind channel
estimation algorithm developed in [17]. This algorithm yields
highly accurate channel estimates for TWRNs operating
under frequency-selective fading conditions, where orthogo-
nal frequency division multiplexing (OFDM) was adopted to
combat the multipath phenomenon. The algorithm is based
on the semi-blind estimation strategy, which utilizes both
pilot and data samples to obtain the most accurate estimation.
The transmitted data is incorporated into the log-likelihood
function, and the resulting maximum likelihood estimator
reduces to a nonlinear minimization problem, which was
solved numerically using an iterative quasi-Newton method.

In this section, we provide a summary of the communi-
cation system model and the channel estimation algorithm
in its conventional serial implementation. This is necessary
in order to understand the computational requirements of the
algorithm, the inherent data dependency, and the significance
of the proposed parallelization techniques.

The communication system under consideration is an AF
TWRN with two source nodes, T1 and T2, and a single
relaying node R, operating in frequency-selective channel
conditions, shown in Fig. 2. In the context of cloud radio
access networks, the terminal T1 represents the BBU pool,
while the relay represents the RRH and the terminal T2
represents the user end (UE). To counter the effects of the

FIGURE 2. OFDM-based two-way relay network with superimposed
training at the relay [17].
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frequency selective fading, OFDM transmission with N sub-
carriers is used. Each round of data exchange between T1 and
T2 consists of two phases. In the first phase, both terminals
simultaneously transmit an OFDM frame toR. In the second
phase, an amplified version of the received frame is broad-
casted byR to both terminals.

The more practical scenario of non-reciprocal channels is
considered. The L1 × 1 vector h1 and the L3 × 1 vector g1
represent the baseband channel from terminals T1 and T2 to
R, respectively, while the L2 × 1 vector h2 represents the
channel fromR to T1. The purpose of the channel estimation
algorithm is to acquire estimates of these three vectors. This
task is critical from the communication perspective for the
sake of successful recovery of transmitted data.

FIGURE 3. Structure of the OFDM frame transmitted by the terminals [17].

As shown in Fig. 3, each of the OFDM frames transmitted
by the terminals consists of one pilot block andK data blocks.
Moreover, a single OFDM block (whether pilot or data)
consists of N time-domain symbols and a cyclic prefix (CP)
of appropriate length, which is inserted at the beginning of
the block to avoid inter-block interference (see Fig. 3).

B. THE ESTIMATION ALGORITHM
The unknown channel parameters to be estimated are col-
lected into the vector θ , [hT1 ,h

T
2 , g

T
1 ]
T . The inputs

to the algorithm consist of the vector y, which represents
the received pilot-carrying signal at T1 and the vectors
z1, . . . , zK , which represent the received data carrying signal.
The exact form of these vectors can be found in [17].

The channel estimation algorithm was developed using
the Gaussian maximum likelihood estimation strategy. Under
this assumption, estimates of h1, h2 and g1 are obtained
through the following minimization

{ĥ
(s)
1 , ĥ

(s)
2 , ĝ

(s)
1 } = argmin

h1, h2, g1
F(θ ), (1)

where

F(θ ) , log |C| + (y− µ)HC−1(y− µ)

+K log |Q| +
K∑
k=1

(zk − µk )
HQ−1(zk − µk ). (2)

In the above objective function, µ and C represent the mean
vector and covariance matrix of y, respectively, while µk and

Q represent the mean vectors and covariance matrix of the
vectors z1, . . . , zK .

The above objective function is nonconvex, and the solu-
tion was obtained iteratively using the BFGS method [38].
This is one of the most popular quasi-Newton methods and is
known for its robustness and efficiency. Backtracking line-
search was employed to find the step size at each itera-
tion [39]. BFGS with backtracking linesearch coupled with
proper initialization results in performance that is very close
to the theoretical bound, which indicates that convergence to
the global minimum occurs most of the time. The algorithm
is summarized in Algorithm 1 below.

Algorithm 1 Semi-Blind Estimation
Inputs: y, z1, . . . , zK.
Initialize:
θ̂
(0)

, [<{ĥ1},<{ĥ2},<{ĝ1},={ĥ1},={ĥ2},={ĝ1}]
T.

R−10 = βI2N.
Repeat until convergence:
1. Obtain the search direction:

1k = −R−1k ∇F(θ (k)).
2. Find step size t using backtracking
linesearch.
3. Update the estimate:

θ̂
(k+1)

= θ̂
(k)
+ t1k.

4. Set uk = t1k, vk = ∇F(θ̂
(k+1)

)−∇F(θ̂
(k)
).

5. Update the inverse Hessian
approximation:

R−1k+1 = R−1k +

(
uTk vk+v

T
k R
−1
k vk

)
ukuTk(

uTk vk
)2 −

R−1k vkuTk +ukv
T
k R
−1
k

uTk vk
.

The downside, however, is that there is nontrivial com-
putational burden until convergence is achieved. This is our
motivation for proposing a parallel implementation that will
significantly reduce of the algorithm convergence time.

Before delving into the proposed parallel implementation,
it is important to identify the computational bottlenecks of
the algorithm. The main tasks that affect the computational
complexity of the BFGS procedure are: 1) the computa-
tion of the gradient, 2) the computation of the step size
through linesearch and 3) the evaluation of the approximate
inverse-Hessian update. The computation of the gradient and
the step size are the computationally dominant task, both of
which are performed once in each iteration of the algorithm.
A substantial number of mathematical operations is involved
in computing the gradient, while the linesearch is itself an
iterative procedure that requires repeated evaluation of the
objective function. It is worthwhile to explore these two steps
in more detail, as they will be the focus of our parallelization
in the next section.

C. COMPUTATION OF THE GRADIENT
The computation of the gradient involves evaluating the
derivatives of the objective function in Eq. (2) with respect
to all the channel parameters. Let θi be the ith element of the
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vector θ of channel parameters, where i = 1, . . . ,L1 + L2 +
L3. The gradient∇F(θ ) is an (L1+L2+L3)×1 vector1 whose
ith element is the partial derivative ∂F (θ )

∂θ∗i
which is given by

∂F(θ )
∂θ∗i

= tr
[
C−1

∂C
∂θ∗i

]
+ K tr

[
Q−1

∂Q
∂θ∗i

]
−
∂µ

∂θ∗i
C−1(y− µ)+ (y− µ)H

∂C−1

∂θ∗i
(y− µ)

−

K∑
k=1

∂µHk
∂θ∗i

Q−1(zk − µk )

+

K∑
k=1

(zk − µk )
H ∂Q

−1

∂θ∗i
(zk − µk ) (3)

where

∂C−1

∂θ∗i
= −C−1

∂C
∂θ∗i

C−1 (4)

and

∂Q−1

∂θ∗i
= −Q−1

∂Q
∂θ∗i

Q−1. (5)

Hence, to compute the gradient we need first to compute the
terms µ,µ1, . . . ,µK , C

−1, Q−1 as well as the differential
terms ∂C

∂θ∗i
, ∂Q
∂θ∗i

, ∂µ
∂θ∗i

and ∂µk
∂θ∗i

for i = 1, . . . ,L1 + L2 + L3 and
k = 1, . . . ,K .

The computation of the terms C−1 and Q−1 can be done
more efficiently by noticing that both C−1 and Q−1 are
circulant matrices. An N ×N circulant matrixW whose first
column is w can be expressed asW = FHdiag(w̃)F, where w̃
is the N -point Fast Fourier Transform (FFT) of w and F is the
N × N normalized discrete Fourier transform (DFT) matrix
whose (p, q)th entry is 1/

√
Ne−2π (p−1)(q−1)/N . Hence,

the matrix inversion operation to obtain C−1 and Q−1 can
be replaced by matrix multiplication and the FFT operation.
In particular, it can be shown that

C−1 = FHdiag(ṽ1)−1F, (6)

where v1 is the N × 1 vector whose ith element is

v1i = σ 2(A2|h̃2i|2 + 1), (7)

and h̃2i is ith element of the vector h̃2, the N -point FFT of h2.
Similarly,

Q−1 = FHdiag(ṽ2)−1F. (8)

The detailed expressions for the differential terms ∂C
∂θ∗i

, ∂Q
∂θ∗i

,
∂µ
∂θ∗i

, ∂µk
∂θ∗i

are not included due to the space limitations, as there
are three different expressions for each term depending on
the range of i. In particular, there is a set of differential
expressions that work for i = 1, . . . ,L1, another set of
expressions for i = L1 + 1, . . . ,L1 + L2 and finally another

1The gradient can equivalently be calculated in the real domain, in which
case it will contain the same information but the dimension will be 2(L1 +
L2 + L3)× 1.

for i = L1 + L2 + 1, . . . ,L1 + L2 + L3. The reason is that in
the first case θi is an element of the channel vector h1, while
in the second it is an element of h2 and finally in the third it is
an element of g1. We note also that the terms µ,µ1, . . . ,µK ,
C−1, Q−1, v1 and v2 are needed for the computation of the
differential terms, and thus have to be computed first.

For better understanding of the computational require-
ments of the gradient computation, we show in Table 1
the number of mathematical operations (complex multi-
plications and additions) involved in obtaining the terms
µ,µ1, . . . ,µK , C

−1, Q−1, v1 and v2. Table 2 shows the
number of computations required to compute the ith element
of the gradient (depending on value of i), assuming the avail-
ability of the terms listed in Table 1.

TABLE 1. Number of mathematical operations for obtaining the common
terms of the gradient evaluation.

D. COMPUTATION OF THE STEP SIZE
The step size t is calculated using backtracking line-
search. Let θ̂

(k)
be the current estimate during the k-th iter-

ation of the BFGS algorithm. This estimate is updated by
taking a step of size t in the designated search direction,
given by 1k = −R−1k ∇L(θ̂

(k)
), where R−1k is the current

approximation of the inverse Hessian matrix. Backtracking
linesearch works as outlined in Algorithm 2 below.

Algorithm 2 Backtracking Linesearch

Inputs: y, z1, . . . , zK , θ̂
(k)
,∇F(θ̂

(k)
).

Parameters: α ∈ (0, 0.5), β ∈ (0, 1).
Search Direction: 1k
Initial Step Size: t := 1
while F(θ̂

(k)
+ t1k ) > F(θ̂

(k)
)+ αt1T

k∇F(θ̂
(k)
)

t := βt

It can be shown that the number of operations required
for a single iteration of the While Loop in the linesearch is
N 2(6K + 14)+ (4K + 25)N + 1.

In the following section, we introduce an efficient paral-
lel implementation of the compute-intensive semi-blind esti-
mation algorithm, including the calculation of the gradient
and step-size. Again, this parallelization is motivated by the
5G paradigm, where communication functionalities will be
implemented in software in a centralized, cloud-based BBU
pool.
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TABLE 2. Number of operations for obtaining the i th element of the gradient.

IV. PARALLEL TWO-WAY RELAY CHANNEL ESTIMATION
The development of an efficient parallel processing algorithm
for a complex compute-intensive module involves many
steps, and is affected by many factors. The dependency anal-
ysis of the major tasks of the serial algorithm, the exploration
of the possible maximum level of concurrency, the decom-
position methods (data, tasks, recursion etc.), the granularity
of decomposition, the parallel system architecture (shared
vs. distributed memory system), and the parallel program-
ming paradigm (multithreading vs. message passing) are the
key factors affecting the net speedup to be achieved. Deep
data/task dependency analysis is the starting point to iden-
tify the concurrency level along with the relative computa-
tion load per computation task/sub-task. The analysis would
start with the abstract coarse-grain level major tasks and
would proceed deeper and deeper in identifying sub-tasks
up till the per-instruction level of execution. The finer the
decomposition would go, the smaller the computation tasks
be and the higher the achieved concurrency level is. With
higher level of concurrency and finer grain level of task
decomposition, we would achieve more opportunities for
parallel processing. However, the implementation overhead
would be the cost paid. The larger the number of Processing
Elements (PEs) used cooperatively to complete some com-
putation task, the higher the overhead added. This can be
explicit communication overhead in the distributed memory
system due to themessage passing communication among the
PEs, or it can be implicit synchronization of multiple threads
sharing the same memory subsystem. Hence, a top-down
approach is themost efficient one to parallelize complex com-
putation tasks. In subsection IV-A, we utilize this approach
for the data/task dependency analysis. Then, we propose a
parallel processing algorithm for each of the major subtasks
of the two-way relay channel estimation.

A. DEPENDENCY ANALYSIS
The semi-blind estimation algorithm from a top computation
level is demonstrated through the flow chart in Fig. 4.We only
highlight the major components that are critical to the calcu-
lations. The flowchart shows the flow of data dependency.
First, a group of arrays are initialized: (1) the received signal
array denoted as rx_sig, (2) the self interference array denoted
as self _intrf , and (3) the initial channel estimates denoted
as init_est . It is worth noting that array rx_sig represents
the received signal vectors y, z1, . . . , zK (each of size N ×
1), array self _intrf represents the self-interference vectors
s1k , k = 1, . . . ,K (each of size N × 1), and array init_est
represents the initial estimates ĥ1, ĥ2 and ĝ1 (of sizes L1×1,

FIGURE 4. Serial semi-blind estimation algorithm.

L2 × 1 and L3 × 1, respectively). These initialized arrays
are the inputs for the function obtain_semi_blind_estimates
(oSB), which returns the semi-blind estimates after conver-
gence. Then, the current gradient (curr_grad) of the objective
functionF(θ̂ ) at the location of init_est is calculated through
the function obtain_gradient (ogr), which has as inputs the
current estimates (curr_est , initially set as init_est), rx_sig,
self _intrf . The search direction 1k is obtained based on the
gradient and the approximate Hessian (approx_Hess). The
purpose of the iterations is to search for the best semi-blind
channel estimates. The threshold grad_thresh is used to iden-
tify convergence.

A loop-carried dependency in each iteration of re-
calculation of the asymptotically converging semi-blind esti-
mate prevents parallelization across the loop iterations.
In each iteration, two dependent steps are performed. In the
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first step, the appropriate step_size t is obtained using the
function backtracking_linesearch (BLS), and used along with
the search direction (search_dir)1k to update curr_est . Then
the updated curr_est is used to calculate a new curr_grad
via the ogr function, and the search direction is updated.
The true dependency shown indicates lack of parallelization
across those two tasks.

B. PARALLEL GRADIENT
To further elaborate on the breakdown of the tasks of ogr we
show its flowchart in Fig. 5. We can discriminate between
two main computation tasks in that function. In Task A: µ̂,
ỹ , FH (y − µ), z̃k , FH (zk − µk ), v1, C

−1, v2, Q−1

are calculated given specific arrays for rx_sig and self _intrf
and the estimate input_est provided by the caller function as
described in the previous flowchart in Fig. 4. Hence, Task
A can be even decomposed to two subtasks, Task A(p1) and
Task A(p2), as shown in Fig. 6. Each of these calculations
can be performed independently, however, we should check
their relative time significance to gain any benefit from that
parallelism. Finer grain parallelization is possible for Task A
with its two subtasks. However, the computational complex-
ity analysis performed in Section III does not indicate high
computation cost (7% relative to the total execution time) to
motivate further decomposition. We will analyze the relative
weights of the computations in the time analysis subsection.

FIGURE 5. Serial evaluation of the gradient.

The second part of ogr (Task B) is truly dependent on Task
A. However, it consists of an intensive for loop to calculate
the gradient of the objective function in Eq. (2) as expressed
in Section III-C. Each element of the arrays h1, h2, and g1 is
calculated independently, i.e., grad(i) for i = 1, . . . ,L1 +
L2 + L3. Hence, this is a candidate of data parallelization
where each iteration could be executed independently on a
Processing Element (PE). The maximum concurrency level
for that loop is Ltot = L1 + L2 + L3 (e.g., Ltot = 30 if each
vector is of size 10). Fig. 6 demonstrates how the tasks are
decomposed among different PEs based on the dependency
analysis performed.

The dependency analysis performed for the serial and the
parallel tasks ogr can be evaluated theoretically through a
simple timing analysis. However, the actual parallelization
speedup can only be assessed quantitatively through par-
allel implementation. Actual execution on parallel system
accounts for the parallelization overhead (idle and communi-
cation/synchronization time) as well as the relative execution
time for each concurrent subtask. To simplify the analysis,
we can define in the abstract level the serial time of ogr as
ts_ogr reflecting the flow chart in Fig. 5.

Eq. (9), captures most timing components of the serial
time of ogr where togr_init is the initialization timing for

FIGURE 6. Parallel evaluation of the gradient.

VOLUME 8, 2020 144083



A. A. El-Moursy et al.: Parallel Two-Way Relay Channel Estimation in Cloud-Based 5G Radio Access Networks

any computation task outside the major tasks of ogr , and
ts_ogr_task_A and ts_ogr_task_B are the time of TaskA and TaskB
respectively. Eq. (10) and (11) show the further decomposi-
tion of the serial TaskA and TaskB respectively. Assuming
that the parallel system has number of PEs NPE ≥ Ltot ,
the time for the parallel execution of the proposed parallel
ogr in Fig. 6 can be expressed by Eq. (12) and (13) for
the parallel TaskA and TaskB respectively. Hence, the total
execution time for the parallel ogr is given by Eq. (14)
where togr_oh is the overhead time for parallelization due to
communication/synchronization. Accordingly, the speed up
of ogr parallelization is represented in Eq. (15).

ts_ogr = togr_init + ts_ogr_task_A + ts_ogr_task_B (9)

ts_ogr_task_A = togr_p1 + togr_p2 (10)

ts_ogr_task_B = (L1 ∗ togr_grad_h1)

+(L2 ∗ togr_grad_h2)+ (L3 ∗ togr_grad_g1)

(11)

tp_ogr_task_A = max(togr_p1, togr_p2) (12)

tp_ogr_task_B = max(togr_grad_h1, togr_grad_h2, togr_grad_g1)

(13)

tp_ogr = togr_init + togr_oh +max(togr_p1, togr_p2)

+max(togr_grad_h1, togr_grad_h2, togr_grad_g1)

(14)

Speedupogr =
togr_init + ts_ogr_task_A + ts_ogr_task_B

tp_ogr
(15)

C. PARALLEL BACKTRACKING LINE SEARCH
The next task to be studied in detail is the backtracking
linesearch (BLS) function to calculate the appropriate step
size in order to update curr_est . The BLS flowchart is shown
in Fig. 7. Again this process contains an intensive iterative
routine searching for a convergence for the step size. First,
the initial value of the objective function F(θ̂

(k)
) (denoted

as init_val) is calculated based on the provided rx_sig,
self _intrf and curr_est by calling the function eval_obj.
Then the step size t is initialized to 1 and another value of
the objective function, denoted curr_val is evaluated at the
location curr_est + t ∗ search_dir . The value curr_val is
compared to a threshold value that depends on t , the search
direction search_dir and the current gradient curr_grad , and
this procedure is repeated until the threshold is satisfied,
each time updating the step size through the update t :=
βt . Calculations in eval_obj could be even broken-down
to a set of equations. However we want to see the perfor-
mance significance of this process before we go into that
fine-grain decomposition of tasks. While the iterations of the
eval_obj function have the same carried loop dependency
feature of the higher level iterative process of gradient cal-
culation, the search process for the best step size can be
performed independently for each scaled updated estimate
curr_est + βn ∗ search_dir , where n is the iteration index.
However, if PE is available to generate a separate eval_obj

FIGURE 7. Serial backtracking linesearch.

value from each scaled estimate, a comparison is needed
to pick the lowest n that satisfies the threshold condition.
Then, we have to ignore the rest of the calculated estimates
by the other processing elements. Still each iteration can be
independently performed on a separate processing element.
However, the net speedup depends on recursive dependency
and is not a direct scaling based on the number of used
processing elements [40], [41]. Computations are repeated
on each processing element with different value for the size.
Then a comparison is performed for all the log-likelihood
values from different processing elements. All are flushed
except the best which will be the starting point for the next
parallel iteration as shown in Fig. 8. Net speedup is highly
dependent on the efficiency of the synchronization among
the PEs. Since, PEs have to communicate after every parallel
iteration to realize whether the target has been reached or
not. Suppose that for the serial execution, we have to per-
form number of iterations Niter_eval_obj till the convergence is
achieved. Hence, the serial time for Backtrack LinearSearch
(BLS) ts_BLS can be formulated as in Eq. (16) where teval_obj
is the time for one backtracking linersearch iteration. The
number of iterations if NPE cooperatively participate in the
search is dNiter_eval_objNPE

e. Hence, BLS parallel time would be
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FIGURE 8. Parallel backtracking linesearch.

given by Eq. (17) where teval_obj_oh is the overhead time to
compare the values across the PEs and decide whether to go
for one more iteration or not. Accordingly, the Speedup can
be formulated by Eq. (18).

ts_BLS = Niter_eval_obj ∗ teval_obj (16)

tp_BLS = d
Niter_eval_obj

NPE
e ∗ (teval_obj_oh + teval_obj) (17)

SpeedupBLS

=
Niter_eval_obj ∗ teval_obj

d
Niter_eval_obj

NPE
e ∗ (teval_obj_oh + teval_obj)

(18)

V. QUANTITATIVE EVALUATION
The objective of this section is to provide a numerical assess-
ment of the performance of the parallel implementation of
the Semi-blind Estimation Algorithm, as compared to its
regular serial implementation. The main focus is to assess the
execution speedup achieved by the parallel implementation.

Since the parallel algorithm is neither data intensive nor
relies on a massive parallelization, nowadays mid-range
servers with high a core count can be utilized for the
parallel execution. Hence, we use a multithreaded imple-
mentation (shared memory and address space parallel
paradigm) [40], [41], and a server with up to 32 cores is

employed. Our server is Intel(R) Xeon(R) CPU E5-2690
v3 @ 2.60GHz, L1 cache:32K, L1i cache:32K, L2 cache:
256K, L3 cache:32MB with 64GB of RAM. First we con-
verted the semi-blind estimation algorithm originally imple-
mented on MATLAB to C++ using Armadillo version
7.8 linear algebra library (matrix maths) for the C++ lan-
guage [42]. Then we added the multithreaded implementa-
tion. The C++ (g++ 5.4) for Ubuntu is used to compile the
code with -04 compiler optimization level.

A. IDEAL SPEEDUP ANALYSIS
The table in Fig. 9 shows both the frequency of execution as
well as the relative execution time to the total execution time
for each of themajor tasks/functions identified in the previous
section. We used gprof performance profiling tool [43] and
the dot-graph generation to assist in our analysis. The analysis
performed for the semi-blind estimate algorithm in Fig. 9 is
for the setup N = 64 and L1 = L2 = L3 = 10. The function
oSB is an iterative process searching for the best semi-blind
estimate. It consists of the two major tasks (ogr and BLS)
executed serially and dependently. The number of iterations
performed is not fixed and is dependent on the signal-to-noise
ratio (SNR). We ran experiments for seven different SNR
values and averaged our performance results. For the experi-
ments performed we experience around 44 to 88 iterations for
SNR ranges from 0 dB to 30 dB. Although our parallel system
has only 32 cores, peak performance is reachedway below the
maximum utilization of cores as will be shown in the results.
On average, 65 iterations are needed for oSB to converge to
the final estimate. Across those iterations, no parallelization
can be performed due to the loop-carried-dependency dis-
cussed in the previous section. However, the relative time

FIGURE 9. Relative execution time analysis for the algorithm.
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is divided to about 33% for BLS and about 60% for ogr .
Hence, each of those functions should further be studied to
explore parallelization opportunities. For ogr , Task A takes
7% while Task B takes 53%. This directly suggests focusing
on Task B which is a good candidate for parallelization from
the dependency analysis side as discussed in the previous sub-
section. Task B is an iterative process that can be disjointedly
performed on each element of gradient array (h1, h2, and g1)
separately in a data decomposition fashion [40], [41].

We further profiled the three components of the ogr and
we can see a significant variation in the weight of calculations
related to each of them (h1 takes 9% and h2 takes 28%). In the
experiments performed each of those vectors is of size 10×1.
This means we can go as small as 2.8% per compute iteration
(h2 is the most time critical with ten iterations that take for
total 28%). Further decomposition is possible for the gradient
iteration, however, it is directly dependent on the capabilities
of the underlying hardware and its concurrency efficiency.

Moving to BLS, which searches for the appropriate step
size along the designated search direction, the relative exe-
cution time is almost half of ogr . However, it is a more
iterative function. With each ogr iteration, BLS iterates for
18 iterations on average. However, BLS iterations are harder
to parallelize sincewith 33%weight of theBLS function, each
iteration computation weight is around 1.5% (32/18).

The last column of the Table in Fig. 9 predicts the theo-
retical speedup if our parallel proposal is implemented on an
ideal system with no overheads (see Eqs. 15 and 18). ogr and
BLS can achieve around 9.5× and 18× speedup respectively.
However, due to the relative weights of the different tasks and
the remaining serial (non-parallelized) tasks, the ideal parallel
semi-blind estimation algorithm may achieve at maximum
6.6× speedup for N = 64, L1 = L2 = L3 = 10. This gives
us a good estimate of the upper limit of what we can achieve
and how close we can get to the best speedup limit.

B. IMPLEMENTATION SETUP
Wehave used amaster-slavemodel for the parallel implemen-
tation in which the master process (main thread) forks into a
number of threads that matches themaximum level of concur-
rency identified to be max(Niter_eval_obj,Ltot ). These threads
will be waiting on some conditional variables for triggering to
perform some computation tasks assigned by the master. The
master will perform all serial parts of the estimation process.
If a function is to be parallelized the master will signal the
slave threads to perform the parallel tasks. Each thread is
signaled based on the thread index. Then the threads will
signal the master back when they finish processing. Barriers
are used to trigger threads to start processing as well as the
master to regain the control of the flow of code execution.
Since a shared memory paradigm is utilized, no explicit data
transfer is needed among the processing threads or processing
elements (PEs). However, a synchronization is needed to
move from one processing task to the next.

As for the algorithm variables, unless mentioned oth-
erwise, the number of subcarriers (FFT size) is set to

N = 64 and the channel length (size of vectors h1, h2 and
g1) is L1 = L2 = L3 = 10, hence Ltot = 30. However,
we will also consider in some experiments N = 128 and also
channel lengths of 5 and 15 to explore the scalability of the
parallelization gains with the size of the problem.

1) PERFORMANCE ANALYSIS FOR PARALLELIZATION OF THE
GRADIENT COMPUTATION
We begin by discussing the performance of the ogr func-
tion. Fig. 10 shows different components of that function for
both serial and parallel implementations. Obviously no time
variation is noticed for the serial runs of ogr . As our per-
formance analysis shows, the major computation time of the
ogr function is spent in Task B. Task A is not much scalable
since the level of parallelism is at most 2 as discussed in the
previous section. Hence, we merge Task A to the ogr serial
Tasks. Before we discuss the parallelization of the major task
(Task B), we note that the major overhead of parallelism is the
synchronization needed among the running Processing Ele-
ments (threads in a shared address space parallel paradigm).
Hence, we run a hypothetical experiment (serial+ synch) ogr
shown in Fig.10. In which we keep the master node doing
the computations while signaling the threads to start compu-
tations without real calculations performed per thread. This
experiment will allow us to see the amount of overhead since
the computation time is still carried out by the master node
alone. However, the synchronization time is still measured
across the threads. Without a real work done by the threads,
the synchronization time increases gradually especially when
the number of threads goes beyond ten threads. This indicates
a corresponding slowdown to the ogr time with more threads
running the code.

FIGURE 10. Performance of serial and parallel gradient computation.

Accordingly, the time curve of parallelizing the ogr Task B
scales down significantly with more and more cores (threads)
cooperatively performing the ogr Task B computation until
it reaches the point of ten cores. Time for ogr Task B still
scales down with more cores, however, with a much slower
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slope. A tradeoff between the benefit of time scaling down for
the cooperative computation among the cores and the thread
synchronization is the factor that determines whether we get
a speedup or slowdown through parallelization. However,
the case is different for the overall ogr time considering
the ogr serial Tasks. Any benefit of parallelization vanishes
beyond the ten cores and steady timing is produced.

The speedup of the ogr function is shown in the Fig. 11.
Despite the synchronization overhead, parallel ogr Task B
can keep achieving speedup to about 6× of serial ogr Task B,
however relative to parallel ogr only around 4× is achieved
for ten cores. For the total time of the whole oBS, only 2.5×
speedup is achieved for the same number of cores.

FIGURE 11. Overall speedup in ogr versus the number of cores.

2) PERFORMANCE ANALYSIS FOR THE PARALLELIZATION OF
BACKTRACKING LINESEARCH
BLS function is also interesting to study. For this function,
no data decomposition is possible due to the loop-carried
dependency and the high frequency of iterations performed.
Hence, there is no room to breakdown the execution time
to independent tasks. Fig, 12 shows two lines for the serial
execution. One for the BLS time and the other consider-
ing a similar hypothetical case to ogr in which threads
are signaled to wake up just to account for the synchro-
nization time. Although no data decomposition could be
performed, exploratory decomposition is utilized for this
function, in which each thread is doing the search for a differ-
ent step in each iteration. The master waits all cores to finish
then compares their results to select the best before going to
the next iteration. If the target is reached, no new iteration is
started. If not, all threads will go to the next iteration with
each of them performing its search with a different step.

It is worth noting that the number of iterations for the
convergence is not fixed. Hence, some of the slaves’ work
is wasted, which means needless overhead to compare their
computations. The synchronization time for this function
does not increase linearly with the number of cores (threads)

FIGURE 12. Performance of serial and parallel backtracking linesearch.

participating in the search process. This is due to two con-
tradicting factors. Increasing the number of synchronized
cores increases the synchronization time, however, with more
cores used in the search process fewer iterations are needed
to converge. The net synchronization time needed is almost
constant with a slight increase over large number of cores.
The computation time for the slaves decays asymptotically
with increasing the number of cores used. However, this does
not necessarily induce a continuous reduction of the master
node time since the master should compare the results from a
larger number of slaves. We can observe that again for ten
cores (slaves) the best time reduction is achieved. Beyond
this point, the overhead of synchronization and comparing
the results will waste any benefit from reducing the number
of iterations.

The results in Fig. 13 show another dimension for the BLS
parallelization. The first line chart shows how the number
of iterations needed for the linesearch to converge decays as

FIGURE 13. Relative scaling to one core of backtracking linesearch.
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more cores cooperate in the search process. A steep reduction
in the number of iterations is noticed with few slaves (up to
ten). Beyond that a shallow reduction in iterations is achieved.
This directly reflects on the relative reduction in time for the
slaves in the parallel slave BLS curve. However, the master
node time is not decaying as good as the slave time. Only
around five slaves point we can get the best time reduction for
the master. The same is noticed for the total time. However,
the total time gets much less reduction due to the relative
weight of BLS which is around the 32% as explained in the
previous section. In the best result for the total time for five
cores reduces the time by 20% which indicates a speedup of
1.25×.

3) PERFORMANCE ANALYSIS FOR OVERALL CHANNEL
ESTIMATION PARALLELIZATION
Fig. 14 shows the time for serial, serial+ Synch (for both ogr
and BLS), Parallel ogr alone, Parallel BLS alone and Parallel
ogr_BLS (for both of the functions together). Fig. 15 shows
the speedup achieved for parallelizing ogr alone (Parallel
ogr), BLS alone (Parallel BLS) and both ogr and BLS (Paral-
lel ogr_BLS). The timing chart shows higher rate of increase
in the synchronization time due to the more frequent barriers
needed among the threads after each iteration of ogr as well
as BLS. The total time reduction for parallelizing each of ogr
and BLS alone is discussed in the previous charts, however,
this chart adds a very interesting result of parallelizing both
functions together and comparing to the parallelized for each
individual function. While BLS function scales the total time
down till five cores, ogr function scales the total time down
till ten cores. Applying both parallelization techniques in
Parallel ogr_BLS can achieve a time reduction up to eight
cores. Keeping the master and slaves busy with calculations
makes the scaling more smooth and gradual which avoids
long idle times for either the master or the slaves. The maxi-
mum speedup of 3.6× is achieved with eight cores as shown

FIGURE 14. Time for serial, serial + Synch, Parallel ogr , Parallel BLS and
Parallel ogr_BLS.

FIGURE 15. Time for serial, serial + Synch, Parallel ogr , Parallel BLS and
Parallel ogr_BLS.

FIGURE 16. Breakdown for the absolute time and speedup relative to one
core.

in Fig. 15. It is worth noting that our theoretical speed up
is estimated to be 6.6× as shown in section. Hence, almost
60% of the theoretical/ideal speed up is waisted due to the
overhead.

Fig. 16 and Fig. 17 show the breakdown for both the
absolute time and speedup relative to one core respectively
for ogr function,BLS function and overall channel estimation
function. The parallelization of the two functions together
cooperatively achieves speedup of 4.25× for ten cores, 3.25×
for eight cores and 3.6× for eight cores for the functions ogr ,
BLS, and overall channel estimation respectively.

4) SCALABILITY AND CLOUD VIRTUALIZATION ANALYSIS
The real proof of developing an efficient parallel algo-
rithm is the ability of that algorithm to scale particularly
with respect to the problem size. In order to evaluate the
scalability of our proposed parallelization in the dataset
dimension, we run experiments for three more dataset for
{N = 64, L1 = L2 = L3 = 5}, {N = 128, L1 = L2 =
L3 = 10}, and {N = 128, L1 = L2 = L3 = 15} besides
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FIGURE 17. Breakdown for the speedup relative to one core.

the dataset for {N = 64, L1 = L3 = L3 = 10} that is
used in the full performance analysis. The channel length
parameters (L1, L2, L3) directly affect the parallelization
of ogr function. On the other hand, the FFT size parameter
N affects the iterations for the BLS function to converge.
Fig. 18 shows that {N = 64, L = 5}, {N = 64, L = 10},
{N = 128, L = 10}, and {N = 128, L = 15} achieve
the maximum speedup with five, eight, twenty and twenty
cores respectively. This significant increase in the number of
cores achieving speedup shows the robustness of the approach
taken to parallelize the semi-blind estimation algorithm. The
maximum speedup goes from 2.5× and 3.6× for {N = 64,
L = 5} and {N = 64, L = 10} respectively up to 5.4×
and 7.2× for {N = 128, L = 10}, and {N = 128, L =
15} respectively. This projects to a significantly improved
algorithm performance for even higher problem sizes.

All discussed results was for the relative performance
(execution time) to the serial implementation not account-
ing for the overhead caused by the Cloud implementation.
Although the extra flexible computing resources the Cloud
offers for C-RAN, nothing comes for free. The layer of
virtualization that allow the flexible recourse provisioning,
however adds overhead on the execution time which is a
direct price paid for Cloud utilization. To account for that
overhead, Fig. 19 shows how much slowdown is caused
comparing bare-metal (Physical Machine (PM)) implemen-
tation to the Virtual Machine (VM). Virtualization causes a
slowdown between 2× to 1.5× for the different datasets. It is
worth noting that some studies, e.g., [44] and [45], reported
a slowdown due to virtualization overhead of up to 5×.
These studies, however, focus on pure network transactions
applications (e.g., iPerf sending and receiving for TCP/IP, and
Apache2many-client HTTP download). In contrast, our work
focuses on a pure computer-intensive application (i.e., chan-
nel estimation). This explains the difference in slowdown
due to virtualization overhead. We can observe less overhead
for the larger dataset due to the higher computation time
for the large dataset compared to the small one. Finally,

FIGURE 18. Scalability of Parallel semi-blind estimation with respect to
dataset size.

FIGURE 19. Overhead of Virtualization and the Net Speedup for the best
speedup for each dataset.

the figure shows the net speedup considering the best speedup
core number for each dataset from the previous figure of the
scalability analysis. The net speedup ranges from 1.3× for
the smallest dataset {N = 64, L = 5} to almost 5× for the
largest dataset {N = 128, L = 15}.

VI. CONCLUSION
In this paper, we propose a parallel semi-blind channel esti-
mation algorithm for two-way relay networks. Our goal is to
leverage the network virtualization and parallel/cloud com-
puting capabilities of C-RANs, in order to provide a real-time
implementation of this highly accurate estimation algorithm.
A course look at the algorithm and its loop-carried depen-
dency may suggest that parallelization is not be possible.
However, a deep analysis utilizing data decomposition as well
as exploratory decomposition reveals amenability to paral-
lelization leading to significant execution-time speedup. The
obtained speedup scales well with problem size, with more
than 7× and 5× speedup obtained for large datasets with and
without virtualization overhead respectively. In conclusion,
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the utilization of parallel processing power of nowadays’
cloud computing systems to efficiently implement even more
complex, multidimensional and sophisticated communica-
tion algorithms will be witnessed in the near future. Our
future research will investigate the energy efficiency of the
proposed parallel Two-way relay semi-blind channel estima-
tion utilizing C-RAN Architecture. We are also interested to
parallelize other communication modules of the C-RAN.
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