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ABSTRACT Using the optical camera in remote sensing is limited in various environmental conditions.
This paper presents a system of combining deep learning and image transform algorithms to detect landslide
location in satellite images. In the deep learning part, a convolution neural network is used to classify satellite
images contain landslides. From landslide images classified, in order to accurately identify landslides under
different lighting conditions, this paper proposes a transformation algorithm Hue — Bi-dimensional empirical
mode decomposition (H-BEMD) to determine the landslide region and size. After the location of landslide is
detected, we discover the size change of the landslide based on different time points. In this study, we record
an accuracy of up to 96% in the classification process, and the accuracy of landslide location almost absolute.

INDEX TERMS H-BEMD, CNN, object recognition, landslide localization, Earth, remote sensing, satellite
image.

I. INTRODUCTION
In recent years, satellite technology and remote sensing tech-
nology [1] is fast developing. Thus, a large number of works
related to image processing in remote sensing of the Earth.
Application of satellite remote sensing to capture the Earth
is rapidly increasing in number as well as image quality.
It plays a significant role in the Earth’s surface monitoring.
Objects detection in remote sensing [2] is to define one
or more objects belong to a class and their locations in
the image. Their objects have many different sizes and are
divided into two types (small and large). Small objects may FIGURE 1. Image obtained from the sensor with different spatial
be vehicles, ships, planes, buildings, etc. Identifying these ~ resolutions [2]. (a) Landsat-TM, resolution 30m. (b) Alos-AVNIR,
X ? X resolution 10m.
small objects helps to monitor urban areas, airports, seaports,
etc. To detect smaller objects, higher image resolution of
the image is required. Besides, large objects may be forest-
covered regions, lakes, river flow, landslides, etc. Environ-
ment observation research is also essential in the exploitation
of satellite image data. In study of environment, because
identifiable objects are in the large size group, we can use
medium or low-resolution images to observe an object.

Figure 1 shows two remote sensing images. Figure 1 (a)
is a Landsat-8 [3] image at 30m/pixel resolution, while
Figure 1 (b) is an Alos [4] image at 10m/pixel. High-
resolution satellite imagery tracks the changing of small
objects. Resolution is the first important factor in the exploita-
tion of satellite image data. The second is the revisit time of
a (single) satellite, which is the time elapsed between two
successive observations on the Earth’s surface [5].

The new commercial satellite, also known as super-
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FIGURE 2. Forest fire burning [6]. (a) The visible part of the spectrum -
the smoke completely obscures the ground. (b) SWIR image, which made
from three of eight SWIR bands - the smoke disappeared and
coincidentally give an orange color to the fires.

processing facility. It is also possible to see through thick haze
and smoke — Figure 2 [6]. Thus, the third important factor
in object detection from satellite image is the multi-spectral
data.

Object detection on satellite imagery is kept developing,
which many challenges on different objects target. To mon-
itor desertification, a mean of supervised classification and
change detection method is introduced [7] that is the opti-
mization of feature extraction and deep learning layer. Deep
learning is not only widely applied on satellite optical images,
research of mini-UAVs classification [8] introduced architec-
ture to apply CNN in radar. Optimization of deep learning
by reducing features in CNN [9] to predict wireless channel
parameters of an area directly from a satellite image of the
area. Space technology in general and satellite, in particular,
are being researched and developed rapidly. Deep learning
algorithms are making progress in terms of accuracy, as well
as performance [10]. The combination of deep learning and
space technology is and will bring expected results.

The Earth is facing global warming and climate change
[11]. Therefore, natural disasters occur at an increasing.
Earthquakes, tsunamis, storms, floods, and mountain land-
slides are in high numbers and pose danger to people. Making
accurate predictions about natural disasters will help reduce
damages to people and property. A landslide is the movement
of a mass of rock, debris, or earth down a slope. Landslide are
categorized into five models: falls, topples, slides, spreads,
and flows. Earthquakes are detected via a seismograph or
seismometer. Tsunamis are determined through devices that
calculate oscillate in the seabed. Storms and floods are iden-
tified and predicted through the combination of wind and
precipitation calculation sensors, and satellite imagery. How-
ever, landslide areas can be identified and predicted only by
satellite images. Landslides have different sizes; from a few
hundred meters to several kilometers. Therefore, identifying
landslides accurately and predicting their influence plays a
vital role in prevention against natural disasters.

Landslide object has a size bigger than other typically
objects. Landslides often appear in mountainous and complex
terrains. And satellite images are captured landslide areas
have a high cloud cover. Therefore, selecting satellite images
with a high revisit rate to take advantage of the full amount
of data in bulk to conduct analysis. Landsat is a USGS-
NASA [3] program that provides us the opportunity to collect
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valuable resource data. The primary Landsat mission is imag-
ing the Earth. The Landsat database provides free purchase
for research purposes with a 30m / pixel image resolution.
Besides, Landsat 8 satellite has a 16-day repeat cycle. Finally,
Landsat 8 provides multi-spectral bands. R, G, B image chan-
nels are easy to collect from multi-spectral bands. Therefore,
this paper uses Landsat data to build a landslide dataset in
deep learning training and classification. Landsat images also
are used to locate landslide and predict direction.

The Global Landslide Catalog (GLC) [12], [13] contains
more than 11500 reports on landslides, debris flows, rock
avalanches around the world. Based on their size and impact,
the GLC divides landslide events into case studies for the
classification of landslides. We have five cases of landslide
size classification as in Table 1.

TABLE 1. Landslide estimated size [14].

Size Descriptors Volumes
Small landslide affecting one hillslope or
= small area. <10
E One road is blocked, cleaned in a few hours; cubic
«» one dump truck needed to clear the dirt, usually meters
no fatalities.
Moderately sized landslide that could be
either a single event or multiple landslides within
s . . 10 to
an area, and involves a large amount of material.
2 . . . <1000
ks Road is blocked for multiple days; multiple .
51 . cubic
b= roads blocked; multiple houses damaged; meters
multiple dump trucks needed to clear the dirt;
sometimes at least one fatality
Large landslide or series of landslides that
. . 1000 to
o occur in one general area but cover a wide area.
n e . <100,000
] Substantial impacts to infrastructure and cubic
- roads, likely moderate to high number of meter
fatalities. Tens to hundreds of people displaced. clers
Very large landslide or multiple events that 100,000
> affect an entire region (often encompassing an to <1
25 entire village). million
— Thousands of people may be displaced, may cubic
be high numbers of fatalities. meters
Catastrophic impacts to infrastructure and
é’ roads. Multiple villages, neighborhoods, towns >1
& | buried. million
2 Tens of thousands of people may be cubic
S displaced. May be hundreds to thousands of meters
fatalities.

Studies image processing on remote sensing use RGB
or multi-spectral images (also known as optical images) to
identify objects on the Earth’s surface. Most approaches
uses segmentation and feature detection algorithm [15]-[17].
Object-oriented image analysis — a genetic algorithm —
case-based reasoning (OOIA-GA-CBR) [18] is a high —
performance classification method for detecting landslides.
It consists of three main phases: (1) image processing and
multi-image segmentation, (2) feature optimizations, and
(3) detecting landslides. A landslide event creates a sloping
area of land, which is a soil-covered area. This area has a
different color to the surrounding areas (the area in red-region
in Figure 3).
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FIGURE 3. Landslide soil-covered area. (a) A landslide in Nepal.
(b) A landslide in Kure, Japan.

When a satellite captures images, environmental factors
significantly are affected. Lighting and weather conditions
are different, so its have different clarity. Figure 4 shows two
land images captured by Landsat 8 using the same camera
sensor. With different cloud cover and sunlight ratio, these
two images are different in quality. The quality of Figure 4
(a) is better than (b). One of the biggest problems to overcome
at pixel level is existence of brightness variation. Hue value
in HSV color space is a stable value. Therefore, hue values
are more robust towards external lighting changes than RGB
color space.

FIGURE 4. Landsat 8 image with different weather and lighting condition.
(a) Free cloud - cloud cover 0% (b) Cloud cover over than 50%.

In pattern recognition, image decomposition plays an
important role. The transformation algorithm transforms an
image from the spatial domain into the frequency domain.
The empirical mode decomposition (EMD) [19] algorithm
is an adaptive decomposition method. EMD decomposes a
given signal from spatial into frequency components — intrin-
sic mode functions (IMFs) — by means of an algorithm called
sifting process [20]. The bi-dimensional empirical mode
decomposition (BEMD) [20] method is a 2D version of the
original empirical mode decomposition (EMD). BEMD is an
adaptive decomposition method that has been applied widely
in the analysis of nonlinear and nonstable signal. BEMD can
be adapted for the analysis of nonlinear and non-stationary
datasets [21]. Thus, BEMD can adaptively decomposes an
image according to the image characteristics, thus extract
features at multiple scales or spatial frequencies. 2D IMFs
are defined through a 2D sifting process [20] as flow:
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- Identify the extrema (both maxima and minima) of the
image I by morphological reconstruction [22] based on
geodesic operators;

- Generate the 2D ‘envelope’ by connecting maxima
points (respectively, minima points) with a RBF [23];

- Determine the local mean mp, by averaging the two
envelopes;

- Since IMF should have zero local mean, subtract the
mean from the image: I — m = hy;

- repeat as hp is an IMF.

This study focused on predicting landslide scaling based
on remote sensing images. The data collected from satellites
play an essential role in this prediction. Based on the Landsat
data volume combined with the influence and danger from
the size of landslide on table 1, we choose the size of the
landslide from medium to catastrophic to build landslide
dataset. To solve the effect of light conditions on object
recognition, this paper proposes a H-BEMD method to detect
the object of interest (soil-covered region) on Earth’s surface
[24]. However, satellite image come in large quantities, large
sizes, and an abundance of different image categories and
qualities. Therefore, a deep learning algorithm is used to
classify satellite images with or without landslide region. This
paper proposes an architecture that combines the advantage
of CNN and H-BEMD to detect the landslide region and to
predict the scaling of landslide. This paper proposes an archi-
tecture that combines deep learning and image processing to
detect landslides from satellite image, including:

- landslide dataset from the medium-resolution satellite
image;

- landslide region classification by deep learning model
(Convolution Neural Network);

- landslide region localization by proposed algorithm with
named H-BEMD (Hue Bi-dimensional empirical mode
decomposition);

- combined architecture between Convolution Neural
Network and H-BEMD.

This paper is organized into four main part:

- Introduction

- Hue - Bi-dimensional empirical mode decomposition
(H-BEMD): In this section, we propose an improvement
algorithm to detect landslide region on hue channel from
satellite image.

- The combination methodology between CNN and
H-BEMD: An architecture of combining CNN and Hue-
BEMD to predict the scaling of landslide based on satel-
lite image data.

- Simulation Results

Il. HUE - BI-DIMENSIONAL EMPIRICAL MODE
DECOMPOSITION (H-BEMD)

Equation 1 [25] shows the RGB to HSV color space transfor-
mation. With R, G, B € [0, 1] and MAX := max (R, G, B) ;
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FIGURE 5. Hue channel from satellite image. (a)(d)(c) RGB image with
difference lighting condition. (b)(e)(h) Histogram chart of image (a), (d),
(c), respective. (c)(f)(i) Hue image of (a), (d), (c), respective.

MIN = min (R, G, B), HSV is denoted as:

0, ifR=G=8B
G—-B i
6075 (0+——" ), if MAX =R
MAX — MIN
H: B—R 1.
60°x (24 —2—R \ wmax-¢ ¥
MAX — MIN
R—-G
607 (4+ o), if MAX =B
MAX — MIN
0, if R=G=B
S: MAX — MIN (1.b)
—  else;
MAX
V := MAX (1.c)

HSV separates to luminance from chrominance also
known as image intensity. Satellite image is governed
by weather, especially the lighting conditions for each
shot are different. Figure 5 (a), (d), (g) are RGB satellite
images of the same location under different lighting con-
ditions. Figure 5 (b), (e), (h) are the histogram chart of
Figure 5 (a), (d), (g), respective. Although the histogram val-
ues between 3 images are different, the hue channels—
Figure 5 (c)(f)(i) — are the same. Therefore, the hue image
channel is selected to detect landslide objects in satellite
image.

This paper proposes an algorithm Hue — Bi-dimensional
empirical mode decomposition (H-BEMD) to detect land-
slide objects in satellite images. Figure 6 is the flowchart of
the proposed algorithm.

We separate “Hue — Bi-dimensional empirical mode
decomposition (H-BEMD)” part into two sections. The first
section presents the rationale of using sine and cosine of
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ﬁ &_h = sin(Hue) F H-BEMD(s_h) —B:residual_sme:
arctan2(IMFs_sine,
IMFs_cosine)

Lb{ c_h = cos(Hug) H H-BEMD(c_h) }—)’\reswdualﬁmslne"

FIGURE 6. H-BEMD flowchart.
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FIGURE 7. Hue channel value presentation.

FIGURE 8. Hue channel in satellite image.

hue values in our process. The second section presents the
detailed H-BEMD algorithm.

A. THE ROLE OF SINE AND COSINE OF HUE

Hue is commonly represented as an angular value from O to
360 degrees (or O to 2m) — Figure 7. Figure 8 presents the
depth hue value of Figure 5 (c).

Figure 8 (a) is a satellite image in hue value, and
Figure 8 (b) is the detail of black square region in
Figure 8 (a). The region with red-orange and yellow color is
a landslide area. However, the red-orange region corresponds
to a minimal value of hue, and the yellow corresponds to a
maximal value of hue image. This is the region that separates
the landslide into two different regions.

To determine the exact maxima and minima, we rely on the
maxima and minima values of hue’s cosine and sine value.
Then, H-BEMD is proposed to do the transformation from
sine and cosine values of the hue channel for satellite image.
After that, we use the arctan2 of sine and cosine value to get
residual hue value — as shown in the flowchart in Figure 6.

B. H-BEMD

This section presents the details of our proposed algorithm
(H-BEMD) to detect the landslide region. The sin(hue)
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and cos(hue) values are denoted by 6 and ¢, respectively.
H-BEMD adaptively decomposes sine and cosine of hue
image (¢ and ¢) through H-BEMD sifting process as flow:

- Step 1: Detect the extrema (both maxima and minima)
points of 8 by morphological algorithm, as presented in
section 2.2.1.

- Step 2: Connect the maxima and minima points of 6,
respectively with a Radial Basis Functions (RBFs) [23]
to generate the new 2D ‘envelop’.

- Step 3: Normalize the 2D ‘envelop’ as presented in
section 2.2.2.

- Step 3: Determine the local mean my, by averaging the
two envelopes.

- Step 4: Subtract out the mean from the image:
U =60 — myg;

- Step 5: Follow step 1 to 4 on ¢, w; = ¢ — my

- Step 6: repeat the sifting process with 6 = ¥; and ¢ = w;
andi:=i+1

The IMF value is the ¥; and w; with i = [1, n], where

n is the number of times the sifting loop is performed. In
H-BEMD sifting process, identifying the extrema and nor-
malizing the 2D ‘envelop’ are two essential part that deter-
mine the accuracy and performance of H-BEMD. We present
two important parts into two sub-section.

1) EXTREMA POINTS DETECTION BY MORPHOLOGICAL
ALGORITHM ON SINE AND COSINE VALUE OF HUE
(6 AND g)
BEMD uses morphological reconstruction by dilation [26]
based on geodesic operators to detect image extrema. Hue
values have range in [0,360]. Opposite, 8 and ¢ have value
range in [—1,1]. Therefore, a new morphological reconstruc-
tion algorithm is proposed in this section to detect the maxima
and minima points on 6 and ¢.

Equation 2 represents a dilation of size N.

SMIZ2Vp:D-¥q:Ng(p) - q)) < max [p], ] [q])
)

where [ is the image, p, and g are pixels, D represents the
image domain, and Ng is the pixel neighborhood addressed
in the dilation.

s 1=8M1 A C, ..., N times 3)

Equation 3 represents geodesic by dilation of size N, where /
is the marker, C is the mask and A is the point-wise minimum
operator. Reconstruction by dilation is defined as the geodesic
dilation operator, B(Cl ) applied iteratively until stability [26].

Because the characteristic of hue value is a 360-degree
closed circle (Figure 7), we propose a process of finding the
extrema of separation sine and cosine of Hue value, as shown
in Figure 9.

The value range of the input image change from [0, 360]
to [—1,1]. Reconstruction by dilation is defined as:

s 1=8V1 A C @
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extrema detection
by morphological

maxima and minima

sin(hue_img) location on sine value

Hue image signal
(hue_img)

1 s maxima and minima
cos(hue_img) —» by morphological o T e i
reconstruction

-~
s |-

FIGURE 9. Proposal flowchart of extrema detection by morphological
reconstruction on Hue value.

where:

o [ is 6 or @, respectively.
o C is mask.
e A is the point-wise minimum operator.

Because value domain is changed to [—1,1], so a new
mask C is proposed. C is a 2-dimension signal having the
same size with / and value of minima degree in range
[sin (0), sin (360)] and [cos (0) , cos (360)], as equation [5].

C=I—-a 5)

where « is value of minima point of /.

The coefficient is @« = cos (89°) = sin (1°). Because the
hue values are stored with radian value in 16 bits, so the «
value in 16 bits value is 0.01746. We define the location of
maxima and minima points by minus image to reconstruction
image as formula [6].

Inar =1 — 881
Inin = (—1) = 8% (=1) (6)
C=I]—-«

Figure 10 (a) is the maxima (red color) or minima (blue
color) regions when applying original extrema detection
algorithm from BEMD sifting process [20] on 6 or ¢.
Figure 12 (b) is extrema detection by proposed algorithm at
formula [6] on 6 or ¢.

R/ N/ N /) N /)
, 10 . 1174

—— Maxima poinis region

—— Minima points region
()
; A\ A\
; \

—— Maxima poinis region

—— Minima points region
(b)
FIGURE 10. The extrema detection on 6 or ¢. (a) Original Extrema
detection on BEMD. (b) Improved Extrema detection on out proposed
Hue-BEMD.

To prove the formula for defining extrema location, a hue
value image with size 224 x 224 is applied to identify the max-
ima and minima points. Figure 11 (a) and (b) are the maxima
and minima points detected by the original extrema detection
algorithm, respective. This is a 2-dimensional example of
Figure 10 (a). In this case, the maxima of 16731 and minima
of 44099 points are obtained. Figures 11 (c) and (d) are the
maxima and minima points detected by proposed extrema
detection formula [6], respectively. This is a 2-dimensional

143669



IEEE Access

T.-A. Bui et al.: Deep Learning for Landslide Recognition in Satellite Architecture

© (d)

FIGURE 11. Extrema detection from Hue channel. (a) (b) Maxima and
minima points detected by original BEMD, respectively. (c) (d) Maxima
and minima points detected by Proposal new J, respective.

example of Figure 10 (b). We get the maxima of 3867 and
minima of 5650 points.

Based on the above results, H-BEMD with new reconstruc-
tion function in extreme detection can reduce the number
of resources used for the whole algorithm by approximately
((16731/3867 + (44099 /5650) ~ 12) times.

2) NORMALIZE THE 2D ‘ENVELOP’
Figure 12 shows the 8 and ¢ values, respective. The value
range is [—1;1]. Thus, the maxima value is 1 and minima
value is —1. Radial Basis Functions (RBFs) [20] is an algo-
rithm to reconstruct smooth, manifold surfaces from point-
cloud data and to repair incomplete meshes. In this sifting
process step, a 2D ‘envelope’ is generated by connecting
the maxima points (respectively, minima point) with RBFs.
However, RBFs make the value out of range. Therefore,
in this section, a normalization function is introduced as well
as the role of this function in H-BEMD sifting process. This
section is divided into 2 sub sections:
- The first sub-section: we introduce the interpolation and
the problems defined.
- The second sub-section: a normalization function is
introduced in H-BEMD sifting process as well as this
role to make the correctly IMF.

a: INTERPOLATION AND PROBLEMS DEFINED
When first loop of the H-BEMD sifting process (i = 1) is
done without step 3, we record the result as IMF 1. Figure 13
shows the | value, it is also the 6, value.

In Figure 13, the green circles (in Figure 13-a and 13-c) and
blue circles (Figure 13-b and 13-c) are the points of maxima
and minima value of IMF 1, respectively. The maxima value
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FIGURE 13. IMF 1 with the cosine value of Hue channel.

(green area) record 1.15 and minima value (blue area) is
about —1.45. Both maxima and minima points are those
created by RBF but exceed the value limit from —1 to 1.
This value domain gets bigger after every sifting process.
This results in the value range of Hue channel is no longer
accurate.

RBF is an algorithm better than cubic spline interpola-
tion [23] of which the primary purpose is interpolating data
points on a regular two-dimensional grid. In the first loop
of the sifting process, we determine the extrema values.
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FIGURE 14. RBF problems definition.

These maxima (or minima) values are adjacent to each other.
Suppose we show the maxima and minima detected points
in green and blue color, respectively, in Figure 14. RBFs
creates a curve (black color) that connects these points. This
process creates new maxima and minima points (red color)
out of value range. Therefore, in this subsection, our proposed
algorithm presents problem-solving to out of value range
when connecting the extremals.

b: NORMALIZATION AND ITS ROLE IN H-BEMD

SIFTING PROCESS

Normalization is a process that changes the range of pixel
intensity values. The motivation is to achieve consistency in
the dynamic range for image data.

(I (x,y) — a)
b-a)

where I,y and I'(, ) are original image and normalized
image, respectively. b and a are maxima and minima value
in/(y y. B and o are the new upper and lower range boundary
in I’ (y ). Figure 15 is the result of the applied formula [7] to
the signal in Figure 14. In Figure 14, 8, o, b A a are upper
red-point, lower red-point, green points, and blue points,
respective.

Figure 13 (c) is the interpolation result of extrema connec-
tion. This process makes the value out of range. Therefore,
anormalization function — equation [7] —is applied. Figure 16
shows the result of Figure 13 (c). The green, blue area, and
red-point are matching between 2 images. The image value
range is changed from [—1.5;1.5] to [—1;1].

Our proposed H-BEMD solves problems missed when
applying BEMD on Hue channel to detect landslide region.
We present the simulation results recorded during the appli-
cation of H-BEMD in satellite images as well as adequately
address the differences in lighting conditions in the Simula-
tion Results section.

Uy = *(B—a)+a @)

ill. THE COMBINATION METHODOLOGY BETWEEN

CNN AND H-BEMD

Every day, ground stations receive a large number of satel-
lite images. These images have different shooting times,
locations, lighting conditions, and image quality. To classify
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FIGURE 15. Normalized RBF result.

these images, which images have landslides or do not have
landslide, a Convolution Neural Network (CNN) is chosen to
conduct image classification. From the classified images, our
proposed H-BEMD algorithm is applied to identify landslide
location and scaling. Thus, in this section, we present a
proposed methodology to combine CNN and H-BEMD to
locate the landslide region from satellite database. We divide
into two sections:

- In the first section — Convolution Neural Network (CNN)
in satellite implementation, we present an architecture and
CNN model, which suitable in satellite implementation.

- In the second section — The methodology of combination
CNN and BEMD to predict the landslide scaling, we present
a method to combine CNN in landslide classification and
Hue-BEMD in landslide location. From location labeling,
we compare and predict landslide size scaling and direction.

A. CONVOLUTION NEURAL NETWORK (CNN)

IN SATELLITE IMPLEMENTATION

Convolution Neural Network (CNN) is a deep learning algo-
rithm. Currently, CNN has many different models, such as
VGGNet, ResNet, MobileNet.

'@ Y
‘,7“ %

.
NN Parameter

-
_‘\\"o

X

Different from the implementation of conventional CNN
applications, the CNN applied model be more careful. Beside
satisfies the accurate identification and limitations of satellite
hardware, the selection of a CNN has to match with inter-
transfer data between satellite and ground stations. Based on
inter-send/receive data limits, with CubeSat 3U, the limita-
tion of the upload link is lower than 1Mb/day. Thus, the size
of the neural parameters is focused. Besides choosing the
lightweight neural network, the computing resource in the
inference process is also focused. Floating-point operations
per second (FLOPS, flops, or flop/s) is a measure of computer
performance, useful in fields of scientific computations that
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TABLE 2. Convolution neural network comparison [27].

Parameters GFLOG- Imagenet Accuracy
Architecture
(MB) PS Top 1 Top 5
AlexNet 237.95 1.132 59.0% 81.8%
VGGNetl6 527.79 15.610 74.4 % 91.9 %
ResNet50 102.24 4.140 77.2 % 933 %
Inception v3 90.92 5.743 78.9% 94.4%
MobileNet 16.96 0.569 70.7 % 89.5 %
MobileNetv2 | 13.5 0.360 71.7 % 91.0 %
i
“
]
|
“1
oo}

didad

BEEEE
—

FIGURE 16. Normalized image.

require floating-point calculations. Gigaflops (GFLOPS) is a
unit of measurement used to measure the performance of a
computer’s floating-point unit, commonly referred to as the
FPU. One gigaflop is one billion (1,000,000,000) FLOPS.

In our research, we focus on CNN implementation on
Cube satellite and small satellites. Therefore, the limita-
tion of hardware and power consumption is focused. Firstly,
MobileNetV2 [28] has lowest GFLOGPS. Secondly, the
parameters of MobileNetV2, which is the trained data, is the
smallest in Table 2. Trained data is uploaded from ground
station to satellite when training process is done. It always
keeps training when we get more and more satellite image
data. Therefore, MobileNetV2 [28] is chosen in the classifi-
cation deployment with CubeSat 3U.

B. THE METHODOLOGY OF COMBINATION CNN AND
BEMD TO PREDICT THE LANDSLIDE SCALING

A combination between CNN and BEMD is presented to
classify the landslide region from satellite image. From clas-
sification results, we predict the landslide scaling depends on
landslide size. Figure 17 is a flowchart of our combination
CNN and BEMD methodology to locate landslide region.

In ground station — bellow area with blue square in
Figure 17, satellite images collected from Landsat are built
to a Landslide dataset. Then, the dataset is used to train
with two labels (“‘with landslide” and “‘without landslide”)
by MobileNet V2. Adam Optimization [29] is applied to
minimize the loss function in training process. The train-
ing process finishes with result is network parameters of
MobileNet V2.

The network parameters are uploaded from the ground
station to satellite. In the satellite process — the top area with
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FIGURE 17. BEMD-CNN combination flowchart to predict landslide
scaling.

FIGURE 18. Landslide object from satellite image with resolution
10.34m/pixel. (a) Jure landslide [30], [31] in Nepal, captured at
September 15, 2013 - time ¢,. (b) Jure landslide [30], [31] in Nepal,
captured at September 18, 2014 - time ¢t,.

blue color bounder in Figure 17, MobileNet V2 is rebuilt
from parameters. Satellite images are captured by a satellite
camera. Figure 18(a) and (b) are satellite images captured at
different times. Those images are inputted to neural networks
to classify each image that has or does not have landslide
regions.

Figure 18 (a) is a landslide region captured from Land-
sat 8 on September 15, 2013. Figure 18 (b) is a satellite
image, which captured by the same sensor with Figure (a) on
September 18, 2014. Two images in Figure 18 contain Jure
landslide [30]. Figure 18 (a) is captured before landslide
event. Opposite, figure 18 (b) is captured after landslide
event. Both images have landslide region with a different size.
Thus, in our process, MobileNet v2 (rebuild from network
parameters) classify two images into label “with landslide™
with accuracy value is 0.98 and 0.85, respectively. In this step,
the power of CNN is used to classify landslide images.

After that, to locate landslide regions, H-BEMD is applied
to classified images. In the study of the application of land-
slide identification based on H-BEMD, we chose to perform
the sifting process twice that mean n = 2. The residual values
of H-BEMD sifting process are p and o, which are the result
of sine and cosine value, respectively.

n
p=0-— Zizl %, nenN 8.1)
n
oc=¢— Zi:l wi, nenN (8.2)
& = arctan2 (p, o), i€[l,n] (8.3)

The residual image &, is defined by Equation [8.3].
We present the reason to select n = 2 based on the actual
results and performance of algorithm in Simulation Result

VOLUME 8, 2020



T.-A. Bui et al.: Deep Learning for Landslide Recognition in Satellite Architecture

IEEE Access

FIGURE 19. Landslide feature - (&,) of Hue-BEMD from Jure Landslide.
(a) September 15, 2013. (b) September 18, 2014.
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FIGURE 20. Hue value range in Vegetation segmentation.

section. The results of this process (&2 of H-BEMD) are the
landslide feature — as shown in Figure 19.

The pixel value on H-BEMD’s result is the Hue value,
which has value range between 0 to 359. In the next step, land-
slide regions are identified based on the characteristic color.
Hassanein [32] introduces “A New Vegetation Segmentation
Approach based on Threshold Detection from Hue value of
aerial image”.

The achieved results showed its ability to generate accurate
and stable vegetation segmentation performance with mean
accuracy equal to 87.29% and standard deviation as 12.5%.
In this study, landslide regions are identified through soil-
covered areas (red-bordering regions in Figure 3). Therefore,
based on hue histogram for vegetarian/non-vegetarian [32],
we propose to use the threshold value to segmentation land-
slide regions in range 330° to 90° - as formula [9].

—-05<v¢y <1 O]

where ¥ is the threshold value of &; —0.5 is value of
sin (330°), and 1 is value of sin (90°).

Figure 21 shows the result of landslide regions localization
by thresholding as formula [9]. Finally, landslide scaling and
erosion direction are predicted by the regions scaling between
Figure 19 (a) and Figure 19 (b). Figure 22 is detailed of red
rectangular region in Figure 21.

Image moment is a certain particular weighted average of
the image pixel intensities [33], which summarize a shape
given image /(x, y) — equation [10].

My=3 " > *VIGy)

where I(x, y) is binary image of the landslide region. In this
case, I(x,y) is image in Figure 22(a) or 22(b). A centroid of

(10)
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FIGURE 21. Landslide labeling. (a) Labeling of Figure 19-a. (b) Labeling of
Figure 19-b.

@ (b)

FIGURE 22. Landslide region location.

TABLE 3. Landslide region count points.

Figure 21 (a) Figure 21 (b)

Amount of Non-zero point 84 753

landslide shape is {x, y}, which is defined as equation [11].
Moo Moo

The green point (in Figure 23a) and redpoint (in
Figure 23b) are centroid points of landslide shape on each
case.

Besides, because the landslide image in Figure 22 is a
binary image, equation [12] is applied to count non-zero
points (N). The non-zero points are the exact landslide region.

Niey = Zl(x,y);ﬁo 1

where I (x, y) is landslide label image — Figure 22.
From results of Table 3, the scaling region (') is defined
by equation [13].

T =Ny

{3 ={ (11)

(12)

13)

(x.y) — Ni(x.y)) X resolution

where Ny, y) is the amount of non-zero point of landslide
at time #; and Nj( y) is the amount of non-zero point of
landslide at time #;. In this case, Ny y) and Ny y) are
753 and 84, respectively. The resolution of this image is
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Non zero points number: 84 Non zero points number: 753
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FIGURE 23. The centroid of landslide region.
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FIGURE 24. Landslide scaling direction.

30m? /pixel. Therefore, the scaling of landslide regionis T =
(753 — 84) x 30 = 20070m>.

From the centroid point of landslide region in difference
time (¢ and 1), a vector is defined, which is the direction
of landslide scaling. Figure 24 is the scaling direction of
landslide on Figure 23.

IV. SIMULATION RESULT

In this section, we present the results based on the flowchart
of Figure 17. We give each step from the training of the
Landslide data set to prediction of the Landslide scaling areas.

A. TRAINING LANDSLIDE DATASET FROM

SATELLITE IMAGE

In this paper, satellite images are collected from Landsat 8 via
USGS [3]. The satellite has a 16-days repeat cycle. The image
resolution is 30m/pixel in multi-spectral. In training process,
Adam optimization [29] is applied. Adam is an adaptive
learning rate method, which computes individual learning
rates for different parameters.

The learning rate configuration in Adam optimization
algorithm [29] is @ = 0.0001. The batch size configuration
is 150. The epochs in training step are 250. The early stopping
is configured by accuracy values are not increased by 20
epoch. Figure 25 is the training result of the training landslide
image process. Table 4 is the output of neural network, which
is parameters size.

Currently, the dataset is built by Landsat 8 images. The
positive data “with landslide” is defined by GLC, and the
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FIGURE 25. Training accuracy and loss value. (a) Training and test
accuracy value. (b) Train and test loss value.

TABLE 4. Neural network parameters - training output.

. Non-trainable
Trainable params Total params

params

3,871,234 39,232 3,910,466

negative data ‘“without landslide” is random by GPS location
not in the list of GLC. This dataset is currently very accurate
with positive data. However, negative data is incorrect. So the
limitations of the data set make a big difference between the
two labels during training. Improving this dataset is our goal
to complete the study.

B. LANDSLIDE IMAGE CLASSIFICATION
As a result of the training, landslide images are classified
from satellite images. In this part, the experiment results are
presented based on a sample data set from Landsat 8.

Figure 26 is the result of the classification process for
classifying images that do not contain landslide by CNN. All
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FIGURE 26. Classification results with CNN - label “without landslide™.

TABLE 5. Landslide classification accuracy by MobileNet V2.

“Landslide” “Without Landslide”
Fig.26 (a) 0.17741571 0.8225843
Fig.26 (b) 0.447432 0.55256796
Fig.26 (c) 0.008785016 0.991215
Fig.26 (d) 0.036235865 0.96376413
Fig.27 (a) 0.70610897 0.293897
Fig.27 (b) 0.74854316 0.25145682
Fig.27 (¢c) 0.93308794 0.066912115
Fig.27 (d) 0.8898166 0.1101834
Fig.27 (e) 0.62268275 0.37731728
Fig.27 (f) 0.98423797 0.015762087

images in Figure 26 have landslide region, and Table 5 is the
accuracy of landslide classification in Figure 27.

From this classified results, H-BEMD is used to locate
landslide regions in satellite images.

C. LANDSLIDE REGION DETECTION WITH HUE-BEMD

In this section, we present the proposed algorithm results.
Also, we compare our algorithm results compared to the
original algorithm.

1) LANDSLIDE FEATURE BY ORIGINAL BEMD

ON HUE CHANNEL

Figure 28 is &, by original BEMD [20] algorithm. This is
simulation result of original BEMD algorithm when apply
on Hue channel. With this result, we cannot recognize the
location of landslide.

2) LANDSLIDE FEATURE BY PROPOSED HUE-BEMD
Figure 29 is the &, by our proposed algorithm (H-BEMD).
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FIGURE 28. The results of original BEMD [20] - IMF 3 of sifting process.
(a) Original image. (b) IMF3.

With H-BEMD, we recognize the location of landslide on
&1, & and &3. Figure 30 shows the details of landslide region
in &1, & and &3, respectively.

We compare three figures (a), (b), and (c) in Figure 30.
Figure (a) still contains much noise - the position has pink
color. Figure (b) reduces the amount of noise compared to
figure (a). In Figure (c), the size of landslide is reduced
compared to Figure (b). Therefore, image (b) with & is
selected to identify the landslide region in the satellite image.
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FIGURE 29. The results of proposed Hue - BEMD - IMF 3 of sifting
process. (a) Original image. (b) IMF3.

TABLE 6. Performance comparison on sifting process.

Sifting process Memory CPU execute

loop count (byte) time (second)
&1 1 52199424 132
&, 2 20279296 52
&5 3 4288512 38

FIGURE 30. Landslide region in residual value of proposed H - BEMD
algorithm.

@ ® ©

FIGURE 31. Landslide region segmentation from Original Satellite image.
(g) landslide feature region (&) of H-BEMD from Figure 5(a). (h) landslide
feature region (¢,) of H-BEMD from Figure 5(d). (i) landslide feature
region (§,) of H-BEMD from Figure 5(g).

Another essential factor to decide on the selection of the
n value, we compare the performance of the sifting process.
Table 6 is a performance comparison for determining the
&. Besides better accuracy, &, also has average performance
value compared to & and &3.

When analyzing images from satellites, light conditions
greatly influence the identification of objects correctly.
Experiment results in identifying the landslide through our
proposed algorithm with different lighting conditions is pre-
sented at Figure 31.

Figure 5 (a), (d) and (g) are the satellite image with dif-
ferent lighting conditions. Figure 31 (a), (b) and (c) are the
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FIGURE 32. Landslide location from the combination of CNN and
Hue-BEMD. (a) (b) satellite image with landslide classified.

(c) (d) landslide feature region (&;) of (a) and (b), respectively.
(e) (f) landslide labeling of (c) and (d), respectively.

landslide feature region (§,) of H-BEMD sifting process.
However, these three image results are the same value. There-
fore, our proposed algorithm can solve the problem of light
and external conditions for landslide detection on satellite
images.

D. LANDSLIDE LOCATION FROM SATELLITE IMAGE

In this section, we present additional results to demonstrate
the validity of our improvement method and algorithm in this
paper.

V. CONCLUSION

We have presented a method for landslide localization from
satellite image. Our proposed algorithm has been shown
the combination between an image classification through
deep learning and adaptive transform algorithm by CNN
and H-BEMD. Then, we have presented a method to predict
landslide size scaling and direction. Simulation results show
satellite images with landslide classified as well as land-
slide localization. We have presented landslide scaling and
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direction prediction on case of Jure landslide with event
recorded in 2014.

In this paper, the maxima and minima are determined
based on sine and cosine of hue value. Because hue values
commonly represented as an angular value, so 360 not really
is a maxima value and O is not a minima value. We are
continuing to work and find a method that improves the
extreme method. Current method addresses the impact of
different light environmental conditions on images. However,
the results are still affected by cloud cover. With a lot of
coverage, the process of identifying objects is noisy. While
deep learning greatly enhances the capability of landslide
localization, we recognize that current satellite hardware may
not be adequate to perform such computations on-board or in
real time.

This study is an applied research and practical imple-
mentation for small satellites (Cube satellite 3U). Therefore,
the hardware limitations, as well as the practical implemen-
tation of the algorithms, have been our concern. We are
continually working to provide accurate identification and
real-time detection on satellite.
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