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ABSTRACT The design and optimization of wireless networks have mostly been based on strong mathe-
matical and theoretical modeling. Nonetheless, as novel applications emerge in the era of 5G and beyond,
unprecedented levels of complexity will be encountered in the design and optimization of the network. As a
result, the use of Artificial Intelligence (AI) is envisioned for wireless network design and optimization due to
the flexibility and adaptability it offers in solving extremely complex problems in real-time. One of the main
future applications of AI is enabling user-level personalization for numerous use cases. AI will revolutionize
the way we interact with computers in which computers will be able to sense commands and emotions
from humans in a non-intrusive manner, making the entire process transparent to users. By leveraging this
capability, and accelerated by the advances in computing technologies, wireless networks can be redesigned
to enable the personalization of network services to the user level in real-time. While current wireless net-
works are being optimized to achieve a predefined set of quality requirements, the personalization technology
advocated in this article is supported by an intelligent big data-driven layer designed to micro-manage the
scarce network resources. This layer provides the intelligence required to decide the necessary service
quality that achieves the target satisfaction level for each user. Due to its dynamic and flexible design,
personalized networks are expected to achieve unprecedented improvements in optimizing two contradicting
objectives in wireless networks: saving resources and improving user satisfaction levels. This article presents
some foundational background on the proposed network personalization technology and its enablers. Then,
an AI-enabled big data-driven surrogate-assisted multi-objective optimization formulation is proposed and
tested to illustrate the feasibility and prominence of this technology.

INDEX TERMS Wireless network personalization, machine learning (ML), big data-driven, wireless
networks, user satisfaction, quality-of-experience (QoE), deep learning (DL), artificial intelligence (AI),
resource allocation, evolutionary multi-objective optimization (EMOO).

I. INTRODUCTION
Over the past decade, the convergence of Internet of Things
(IoT) and Ambient Intelligence (AmI) technologies have
paved the way for more connected, adaptive, proactive, and
smart environments. Nonetheless, although adaptive environ-
ments are designed to support people in their daily life, human
emotions and preferences are rarely taken into considera-
tions. Nowadays, users interact with technology through two
senses, sight and sound. However, by 2025, it is envisioned
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that advanced technology will enable a full internet of senses,
including touch, taste, smell, and mind. Also, by 2030, com-
municating thoughts digitally could be possible, which in
effect, will replace the current user interfaces, such as mouses
and keyboards, by our brains [1]. The emerging internet of
senses technology will enable the transparent (i.e., without
direct user feedback) integration of human emotions and pref-
erences, which will improve the personalized user experience
for various services and products.

In wireless networks, emotion-aware applications have
proved to offer better user experience and improved systems
efficiency. Examples of such applications include cognitive
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radio ad-hoc networks [2] and mobile cloud computing [3].
One of the main emerging emotion-aware applications in
wireless networks is network personalization, in which user
experience is greatly enhanced by providing services per-
sonalized to users’ individual needs and expectations in
continuously varying contexts.

Unlike personalized networks, current wireless networks
are over-provisioned to unnecessarily provide high Quality-
of-Service (QoS) levels in order to achieve high satisfac-
tion levels for all users. In certain contexts, some users
may have lower QoS requirements, yet the network will
always attempt to provide higher QoS levels, and conse-
quently charges users more for the unnecessary high-quality
services. Arguably, although this non-granular average-based
single-objective approach is currently adopted by all oper-
ators, it is far from optimum and it is costing the majority
of users more money for the provided extra bandwidth they
do not need or use. Besides, this over-provisioned design
will not be able to cope with the emerging network require-
ments as future wireless networks are designed to support
the emerging bandwidth-hungry applications, such as Virtual
Reality (VR), Augmented Reality (AR), and self-driving cars.
Tackling the exploding rate demand issue by continuously
investing in new infrastructure will eventually make wire-
less networks unprofitable or make network services very
expensive. Therefore, there is a tremendous need to effi-
ciently utilize scarce resources already available in wire-
less networks. Furthermore, the emerging wireless network
applications require network services to be delivered with
a variety of network performance characteristics (e.g., rate,
latency, security, and Quality-of-Experience (QoE)), which
poses fundamental technical challenges for the management
of user experience. By contrast, personalized wireless net-
works are envisioned to micro-manage resources in a way
that meets the expectations of each user in the network while
using a minimum amount of resources. This will provide
operators with improved flexibility of operation in terms
of the amounts of consumed resources and personalized
user satisfaction (rather than one averaged satisfaction value
assumed to be good for most users). Also, enabling net-
works to make more personalized decisions (e.g., configu-
rations) and optimized actions (e.g., resource allocation) is
crucial and indispensable to achieving the ultimate balance
between network resources and user satisfaction. Finally,
wireless networks are considered the most inefficient sys-
tems in terms of energy consumption. Personalizing service
quality instead of overflowing the network with unneeded
high amounts of network resources could contribute to
the reduction of energy consumption; hence decrease toxic
emissions.

The main contribution of this article revolves around
addressing the personalized decision-making process that is
responsible for making optimized, fine-grained, and person-
alized actions in wireless networks. The decision process in
personalized wireless networks is based on the intelligence
created by Machine Learning (ML) engines. The primary use

of ML in personalized networks is to build surrogate models
for user satisfaction behavior, which is highly dynamic and
continuously evolving. This article begins by presenting some
fundamental concepts associated with personalized wireless
networks. Then, of the various decision-making processes in
wireless networks, we shed light on the personalization of
the resource allocation process. The main premise of per-
sonalized resource allocation is to achieve optimum alloca-
tion such that maximum user satisfaction levels are achieved
using the minimum amount of resources. To this end, per-
sonalized wireless networks should be designed to optimize
two correlated and contradicting objectives in real-time: user
satisfaction and resource utilization. We term the described
optimization problem by Optimum Personalized Resource
Allocation (OPA) problem.

In this article, we model OPA as a Multi-Objective Opti-
mization (MOO) problem. In wireless networks, decisions
are made in real-time; hence, to maintain the proactivity
of the network, the optimization process and decisions are
also required to be in real-time. As a result, although exact
optimization algorithms that are based on mathematical pro-
gramming produce the best possible solutions, they are slow
and computationally expensive; hence not feasible due to the
complexity of OPA. Instead, to speed up the optimization
process, we resort to data-driven evolutionary optimization
to approximate the Pareto front solutions. In view of this,
we present a review and categorization of data-driven Evo-
lutionary MOO (EMOO) followed by a discussion on the
benefits and challenges of employing EMOO in personalized
wireless networks. Another important aspect of the problem
is integrating user satisfaction behavior into the optimization
process. To actualize this in real-time, we utilize a surro-
gate model to approximate the personalized user satisfaction
behavior of network users. The proposed surrogate model is
ML-based and built using Deep Neural Networks (DNNs).
Then, in order to maintain and manage the surrogate models,
we propose a surrogate-management framework that employs
the collection of select user satisfaction feedback measure-
ments in real-time. The proposed framework reduces the risk
of solutions divergence and the effect of uncertainty intro-
duced by surrogate models. Besides, it is designed to con-
tinuously enhance the performance of the surrogate models
as more data arrive in the network. Afterward, we formulate
and solve the OPA problem using EMOO. Through several
experiments, we analyze the optimum Pareto front solutions
for various EMOO algorithms. Then, using the best algo-
rithm, we compare the personalized and non-personalized
networks in terms of the amount of saved resources and
user satisfaction levels in the network. Moreover, we study
the effect of uncertainty introduced by the surrogate mod-
els on the quality of the produced Pareto front solutions.
Finally, we conduct a scalability analysis to explore the
effect of higher numbers of users and the effect of varying
the Number of Function Evaluations (NFEs) on the per-
formance of the simulated algorithms and the quality of
solutions.
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II. WIRELESS NETWORK PERSONALIZATION:
CHALLENGES AND SOLUTIONS
To realize wireless network personalization, certain design
and implementation-related challenges need to be overcome.
This section summaries these challenges and discusses the
proposed solutions.

A. INTEGRATION INTO WIRELESS NETWORKS
The first design challenge of personalized networks is the
integration of network personalization into current wireless
networks. Since wireless networks are already complex and
highly structured systems, as shown in Fig. 1, our vision is to
consolidate an intelligent layer into wireless network layers
dedicated to personalizing network decisions. The personal-
ization layer is responsible for digesting and analyzing data,
modeling complex and dynamic user behavior usingML, and
utilizing the created intelligence in making optimized and
personalized network decisions. This design enables wireless
network personalization to act as an orthogonal system that
can be supported in any wireless networks, and hence reduce
complexity. Also, this type of modularity will enable the
personalization of diverse sets of applications and problems
in networks. To address the integrability issue, we propose in
[4] a framework in which we illustrate how personalization

FIGURE 1. Wireless network personalization: a big data-driven AI-based
layer.

can be integrated into current wireless networks in such a
way that enables the coherent operation of both systems with
reduced complexity. The framework describes the process
of data collection, processing, and the process of utilizing
user satisfaction behavior information to learn, predict, and
optimize based on user needs and expectations in a certain
context.

B. MEASURING USER SATISFACTION
The second design challenge ofwireless network personaliza-
tion is to find a way to quantify and measure user satisfaction
in wireless networks. The importance of this challenge stems
from the fact that personalized networks require the continu-
ousmeasurement and tracking of user satisfaction. Inwireless
networks, user satisfaction is highly subjective, complicated,
and changes dynamically depending on various factors. For
this reason, mathematical expressions that attempt to model
the relationship between user satisfaction and other factors
do not yield accurate results. Therefore, adopting data-driven
approaches that are backed by ML and AI techniques are the
best strategy to model and predict user satisfaction in wireless
networks. Nonetheless, due to the lack of a dynamic user
satisfaction model, researchers and service providers were
not able to dynamically quantify and predict the real-time per-
sonalized satisfaction behavior of users in wireless networks.
To this end, we proposed in [4] a dynamic user satisfaction
model that is based on the notion of Zone of Tolerance (ZoT).
As shown in Fig. 2, we propose dividing user satisfaction into
levels, where each level is associated with a certain range of
QoS. The division and number of satisfaction levels could
vary depending on service providers’ preferences. In order
to achieve a satisfaction level i, the user should receive a QoS
within ZoTi. Although QoS seems the main factor influenc-
ing user satisfaction in wireless networks, the gap between
demanded QoS (QoSd) and provided QoS (QoSp) is what
actually does. To incorporate this gap into our satisfaction
model, as shown in Fig. 2, we define the variable 1, which
refers to the difference between the demanded and provided
QoS (QoSd-QoSp). Also, the minimum (adequate) QoS
required to achieve a satisfaction level i is referred to as
QoSai . In our proposed ZoT model, each user satisfaction
behavior (i.e., the relation between 1 and satisfaction) is

FIGURE 2. The proposed satisfaction Zone of Tolerance model [4].
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associated with a certain context. Context is a multi-variate
variable composed of various context variables, such as time,
location, and speed. It is worth mentioning that QoS can be a
vector with several elements, such as rate, reliability, latency,
and jitter. Nonetheless, for simplicity, we assume that QoS is
solely defined by rate.

C. DATA COLLECTION
In addition to the aforementioned challenges, given that AI is
a key component in wireless network personalization, data
is an essential requirement. Therefore, understanding the
types of data that can be mined to personalized wireless
networks is cardinal for the successful integration of this
technology. However, the lack of publicly available user data
due to confidentiality and privacy concerns is slowing down
the research and development in wireless network person-
alization and holding back innovation into new approaches
for monitoring and predicting user satisfaction. Therefore,
we proposed in [5], [6] a synthetic dataset structure designed
based on Bayesian networks as well as Markov chain models.
The proposed synthetic user behavior-satisfaction datasets
can be utilized for data-driven user satisfaction prediction
and optimization from context information. The synthesized
datasets are meticulously designed to have realistic character-
istics and personas, and therefore behave in the same manner
as a real user behavior dataset [7]. In this article, we utilize
the datasets proposed in [6] and [5] to solve the OPA problem,
which will be discussed later in the paper. The datasets are
publicly available in a GitHub repository [8]. Datasets in [8]
are designed for four distinct personas. For the purpose of
this article, we will work with the Working Professional
Persona (WPP) dataset. Table 1 shows the features of the
WPP dataset and an example of their values.1

D. OPTIMUM DECISION MAKING
Finally, one of the most fundamental design challenges
that need to be addressed is the process of integrating the
optimized decisions made by the data-driven intelligent per-
sonalization layer with network decisions in order to make
relevant personalized actions. The rest of this article focuses
on addressing this challenging aspect of personalized wire-
less networks. Undoubtedly, there are several other design
issues as well as implementation-related challenges that need
to be addressed in order to realize wireless network personal-
ization. Nonetheless, for the purpose of this article, we limit
our discussion to the aforementioned points.

III. DATA-DRIVEN SURROGATE-ASSISTED
EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
Many problems in all sorts of research fields are formu-
lated as optimization problems. While optimization problems
were traditionally approached using mathematical program-
ming, the complexity level of current problems have led

1The dataset in [8] has other features, such as real sensor measurements.
However, for the purpose of this article, we consider only the features listed
in Table 1.

TABLE 1. Features of the WPP dataset.

researchers in academia and industry to move towards more
heuristics/metaheuristics approaches. In contrast to mathe-
matical programming, heuristics/metaheuristics optimization
algorithms are less sensitive to the formulation of the opti-
mization problem. This is considerably important for wire-
less network optimization problems due to their scale and
complexity level. Generally, heuristics/metaheuristics opti-
mization algorithms are of two main classes, Evolutionary
Algorithms (EAs) [9] and Swarm Intelligence-based Opti-
mization Algorithms (SIOAs) [10]. In this article, we employ
EAs to solve the proposed and formulated optimization
problem.

A. EVOLUTIONARY OPTIMIZATION ALGORITHMS
EAs are a class of metaheuristics population-based opti-
mization algorithms, where multiple candidate solutions are
maintained in parallel. EAs are designed based on the idea
of the survival of the ‘‘fittest’’ solution in order to evolve a
population that is a good approximation of the global opti-
mum that we wish to find [11]. The fitness of an evolved
solution is a measure of its quality at solving the problem.
Block 1 in Fig. 3 illustrates the process cycle of evolution-
ary computation. At each cycle, EAs begin with generating
parents (populations of candidate solutions). Then, offspring
solutions are generated using various variation operations,
such as crossover and mutation. Lastly, in order to select
the parent solution for the next cycle, the quality (or fitness)
of the generated offspring solutions are evaluated using the
objectives and constraints.

There are several advantages of EAs that drive researchers
to utilize them for solving various optimization problems,
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FIGURE 3. A comparison between data-driven (online) and offline EAs
frameworks.

of which the most important is that they do not necessi-
tate analytical modeling and formulation of the objectives
and constraints functions associated with the optimization
problem. This is considered beneficial since many emerging
problems, including the proposed OPA problem, cannot be
expressed using mathematical modeling. The mathematical
formulation could require the integration of many relaxations
into the problem, which, in effect, will limit the practicality
and accuracy of the produced and solved problems. Another
important advantage of EAs is that they can operate with little
domain knowledge, which creates more robust models that
are less susceptible to the various mathematical features of
problems, such as convexities and discontinuities. Another
advantage that adds to the robustness of EAs is that they
are based on stochastic search, which samples the entire
population making them less vulnerable to local optimums.

The advantages of heuristics/metaheuristics optimization
come at a price. Since EAs rely on iterating the evalua-
tion process of the objective and constraints associated with
the solutions population, the higher the degree of accuracy
required, the higher the computational power required. How-
ever, supercomputers and distributed computing technologies
are improving rapidly to the point that the use of big data
analytics and EAs for practical near-real-time applications
are currently possible. As a result, EAs have been utilized
in many fields and applications, such as automated data
mining to extract meaningful information [12], finance and
economics [13], and wireless sensor networks [14].

B. ONLINE vs. OFFLINE OPTIMIZATION
Although EAs do not require the analytical and mathematical
formulation of objectives and constraints, most EAs in the
literature assume the availability of such models. Optimiza-
tion algorithms that assume the availability of mathematical
models to assess objectives and constraints are referred to as
offline optimization algorithms. Unfortunately, offline opti-
mization is not a valid approach for many dynamic problems
that involve rapidly changing features, requirements, and
behaviors. In comparison, online optimization continuously
digests data from the problem’s environment to make deci-
sions based on updated information flowing to the algorithm,
making the optimization process more dynamic and adaptive.

EAs that are based on data are called data-driven evolutionary
optimization algorithms. As shown in Fig. 3, the main differ-
ence between offline EAs (Block 2, Fig 3) and data-driven
EAs (Block 3, Fig 3) is the method used in the evaluation pro-
cess. Offline EAs utilize analytical objectives and constraints
to evaluate the fitness of solutions, whereas data-driven EAs
utilize data-drivenmodels. The proposedOPAproblem in this
article utilizes a data-driven model to estimate real-time user
satisfaction in networks; hence, data-driven (online) EAs are
utilized to find the optimum decisions.

C. INTERACTIVE EVOLUTIONARY COMPUTATION
Interactive Evolutionary Computation (IEC) is evolutionary
computation applied to optimize systems based on humans’
subjective opinions and expectations [15]. The IEC technol-
ogy embeds a user in the optimization system in which the
user is considered to be a black box. There are several reasons
for integrating user input with particularly EAs as opposed
to other optimization methods. One of the most prominent
reasons is that EAs do not require the use of gradient infor-
mation to search the space, which in most scenarios cannot
be computed for such problems. Examples of problems that
capitalize on IEC algorithms include mental health measure-
ment [16] and emotional music generation [17].

Although the decisions in personalized wireless networks
are optimized based on users’ subjective opinions and expec-
tations, users are not actively logging their satisfaction
levels. Instead, as shown in Fig. 4, user satisfaction is cap-
tured in a non-intrusive manner from sensors data using
AI. Also, the trained user satisfaction ML engine models
user behavior and expectations, which enables the network
to repeatedly evaluate user satisfaction in the optimization
process in a non-intrusive manner and in a relatively short
time. Considering the fact users are involved in the person-
alized optimization process, the proposed OPA problem in
this article can be considered as an IEC problem. In the
literature, many researchers proposed solutions to improve
the performance and efficiency of IEC problems. For exam-
ple, preference-based (or progressive) interactive evolution-
ary optimization reduces the required numbers of function
evaluations by involving the decision-maker in the interme-
diate generations of the algorithm; hence focus computa-
tions on the targeted Pareto front solutions [18], [19]. Even
though IEC-based algorithms have several benefits and can
greatly enhance the performance of optimization algorithms,
for the purpose of this article, we employ well-known Multi-
Objective Evolutionary Algorithms (MOEAs) that are not
necessarily optimized for IEC problems.

IV. SURROGATES IN PERSONALIZED WIRLESS
NETWORKS
The micromanagement and personalization of wireless net-
works require the continuous tracking and measurement
of personalized user satisfaction behavior for all users.
Such a level of granularity and dynamic behavior model-
ing cannot be achieved using the traditional mathematical
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FIGURE 4. EMOO management framework to optimize personalized wireless networks.

models or the average-based ML models proposed in the
literature [20]–[23]. Therefore, in [4], we proposed the uti-
lization of personalized ML models designed based on
the proposed user ZoT model. Besides, the ML models
are optimized based on context data collected by the net-
work. These personalized satisfaction behavior models are
employed by personalized networks to personalize the allo-
cation of resources based on the satisfaction behavior of each
user.

A. WHY SURROGATES ARE ADVANTAGEOUS?
In the optimization literature, ML models that are used to
estimate the relationship between the inputs and outputs of
systems are known as ML-based surrogate models (or meta-
models). In this section, we discuss the main drivers for
adopting surrogate models in personalized wireless networks.

1) REAL-TIME USER SATISFACTION EVALULATION
Although user satisfaction behavior in wireless networks can-
not be modeled analytically, the network can still capture
the satisfaction measurements from users. Although these
measurements may not be done in real-time, they can act as
the exact function evaluations (or reference evaluations) for
the evolutionary optimization algorithm. The problem with
measuring user satisfaction is the associated cost. Collecting
data and extracting user satisfaction information is expensive
and time-consuming. Due to the nature of wireless network
applications, wireless networks are designed to take decisions
in real-time. Therefore, for practical reasons, real-time net-
work decisions should not be designed to be dependent on
the captured user satisfaction. Evolutionary optimization of

wireless network problems will not be able to afford thou-
sands of real-time evaluations required by EAs. Instead, sur-
rogate models are comparatively faster and rely on historical
data and user patterns to predict user satisfaction values in
real-time. Accordingly, surrogate models are considered an
essential enabler for personalized wireless networks.

2) DYNAMICALLY EVOLVING USER SATISFACTION MODELS
Our expectations of wireless networks dynamically change
with several factors that constitute multi-variate contexts.
Also, the speed of behavioral changes can be in the order of
seconds, which imposes another limitation on the modeling
process of user behavior in wireless networks. Although users
could have repeating patterns in their short-term behavior
and expectations, their long-term behavior and satisfaction
patterns can change. This can be explained by different fac-
tors, such as age, professional development, career type, etc.,
which are usually accompanied by interest changes. Since
the surrogate models are built using ML models, and due
to the fact that such surrogates are continuously trained and
validated through user feedback data, they are able to capture
the short-term changes in user behavior patterns as well
the behavioral changes over the long run. This ensures the
dynamic design and adaptivity of the network.

B. MANAGMENT OF SURROGATES IN PERSONALIZED
NETWORKS
Management of surrogates, which involves the process of
using and updating the models, plays an essential role in
maintaining acceptable performance of surrogate-assisted
optimization [24]. Generally, surrogate models are assumed
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to be of high fidelity; hence, the exact fitness functions are
not utilized in the evolutionary optimization computation.
Nevertheless, this approach can run the risk of convergence to
incorrect solutions [25]. To address this issue, many strategies
for managing surrogate models using exact fitness functions
are proposed in the literature [24]. Nonetheless, since the
OPA problem proposed in this article does not have an
exact fitness function, the implemented MOEAs are solely
dependent on the approximatedML-based surrogates. Hence,
to manage user satisfaction surrogates in personalized wire-
less networks, we adopt a different approach. Fig. 4 illustrates
the proposed framework for solving the OPA problem using
evolutionary computation. As shown in Fig. 4, the proposed
framework essentially relies on the trained ML-based user
satisfaction surrogates to compute the satisfaction fitness val-
ues during the optimization process. However, even though
the exact fitness function for user satisfaction behavior in
personalized wireless networks does not exist, user satis-
faction feedback can be measured and utilized to enhance
the accuracy of the implemented surrogates and prevent the
network from converging to inaccurate solutions. As shown
in Fig. 4, user satisfaction feedback is measured and fed back
to the surrogate model in order to actively validate and correct
inaccurate solutions produced by the optimizer. Also, the sur-
rogate model uses the continuously arriving data samples
to learn and enhance its performance. Moreover, when the
measured user satisfaction levels do not match the optimized
targeted levels by the optimizer, as illustrated in Fig. 4, the
proposed framework suggests to gradually increase/decrease
the provided resources to the user by Rd while continuously
measuring the actual user satisfaction levels. Then, the col-
lected user satisfaction behavior data at that particular context
is used to enhance the performance of the approximated
ML-based satisfaction surrogate. This process is critical as
it prevents wireless networks from continuously providing
services to users with satisfaction levels that do not meet the
service providers’ standards and requirements.

Notably, only a small number of instances are re-evaluated
and validated by the real user satisfaction behavior in the
network. There are several algorithms and solutions pro-
posed in the literature for choosing such individuals or
instances, including selecting solutions with high uncertainty
levels [26], [27] and choosing representative and good solu-
tions [28]–[30]. The implementation and integration of these
strategies into our proposed framework in Fig. 4 are out of the
scope of this article.

C. SURROGRATE MODEL DESIGN AND PERFORMANCE
Various ML models can be utilized to build surrogates,
including linear models, support vector machines [31], and
Gaussian processes [32]. In this article, we adopt DNNs to
capture the complicated patterns that exist within the col-
lected user data. There are several advantages of employing
DNNs tomodel and predict user satisfaction levels in wireless
networks of which the most important is their scalability
and ability to automate feature extraction from data that has

complex structures and correlations. Since building accurate
and complex ML engines to predict user satisfaction in wire-
less networks is not the main focus of this article, we adopt a
simple DNN model with four layers as follows:
• First hidden layer (Layer 2): 128 neurons.
• Second hidden layer (Layer 3): 32 neurons.
• Third hidden layer (Layer 4): 16 neurons.
• Fourth hidden layer (Layer 5): 8 neurons.

The data fed into the model is pre-processed using several
steps including scaling, encoding, and balancing. In [7],
we discuss the details of the implemented preprocessing steps
for the personalized networks dataset utilized in this article.
To examine the performance of the utilized DNN model,
we implement a 10-folds cross-validation test. Tabel 2 sum-
marizes the performance of the implemented ML model.

TABLE 2. Performance of the adopted DNN design in terms of accuracy.

V. DATA-DRIVEN MULTI-OBJECTIVE OPTIMIZATION OF
RESOURCES IN PERSONALIZED WIRELESS NETWORKS
In order to study the benefits of integrating personalization
into wireless networks, we model, formulate, and solve the
resource allocation problem for personalizedwireless cellular
networks (i.e., OPA). As shown in Fig. 5, the resource alloca-
tion algorithm for personalizedwireless networks accepts two
groups of inputs, user context values, and network/system
context values. User context is a set of variables that affect
user satisfaction behavior in the network. As shown in Fig. 5,
examples of user context variables include user ID, time,
location, speed, application, and QoSd. On the other hand,
network context is the set of network variables that affect
network conditions, such as noise power, channel gain, Signal
to Noise Ratio (SNR), packet rate, and throughput. Taking
into consideration user and network context, each user is
assigned a set of Resource Blocks (RBs) determined based

FIGURE 5. Inputs and outputs of the Optimum Personalized Resource
Allocation (OPA) problem for wireless networks.
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on the predicted user satisfaction behavior at each particular
instant. The resource allocation algorithm will output the
optimum set of RBs for each user such that the required
satisfaction level is achieved using the minimum amount of
resources.

A. PROBLEM DESCRIPTION
Usually, resource scheduling problems for networks are mod-
eled as an optimization problem with a single objective
that maximizes throughput, spectral efficiency, or fairness
under certain constraints. Besides, the objective could be
a trade-off between throughput/spectral efficiency and fair-
ness [33]. In this article, OPA is modeled as a MOO problem.
MOO problems are used to model optimization problems
with more than one conflicting objective. OPA is defined
as a bi-objective optimization problem that maximizes two
conflicting objective functions: the total1 (QoSd-QoSp) for
all users, which represents the amount of saving in network
resources, and the average satisfaction for all users. Typically,
MOO problems are solved by finding the set of mutually
nondominant solutions called the Pareto front. In a Pareto
front solution set, there is no solution better than the other as
all solutions trade off the conflicting objective functions [34].
Using MOO, along with the available satisfaction informa-
tion in personalized networks, the network can make granular
personalized resource allocation decisions for each user to
ensure that the required satisfaction level is achieved with the
minimum cost (i.e., resources).

B. PROBLEM FORMULATION
1) SYSTEM MODEL
let B = {1, 2, . . . .,B} eNBs available in the network. The
number of user equipment connected to eNB b is denoted
by Ub = {u(1,b), u(2,b), . . . , u(Ib,b)}, where Ib is the number
of users connected to eNB b. Without loss of generality,
we assume that Ib is constant for all b ∈ B. For each eNB
b ∈ B, the number of available RBs is denoted by N =

{n1, n2, . . . ,N }. We define h(n)b,ub , where ub ∈ Ub, as the link
gain between eNB b and ub over RB n. The power Signal to
Interference Noise Ratio (SINR) between eNB b and ub over
RB n is as follows:

γ
(n)
b,ub =

P(n)b,ubh
(n)
b,ub

n∑
∀ub∈Ub,j6=b,j∈B

P(n)b,ubh
(n)
b,uj + N0BRB

, (1)

where P(n)b,ub is the power assigned for the link between b
and ub over RB n for all b ∈ B, N0 denotes the thermal
noise, and BRB is the resource block bandwidth. The power
allocation vector for user i connected to eNB b is Pb,ub =
[P(1)b,ub ,P

(2)
b,ub , . . . ,P

(N )
b,ub ]. For simplicity, we assume that inter-

ference between cells is negligible and SINR for all b ∈ B is
reduced to the following SNR:

γ
(n)
b,ub =

P(n)b,ubh
(n)
b,ub

N0BRB
. (2)

The achievable downlink data rate for all ub ∈ Ub over RB n
is given by

r (n)b,ub = BRB log2(1+ γ
(n)
b,ub ). (3)

2) Solution ENCODING: RESOURCE BLOCK AND POWER
Allocation
The RB allocation indicator is denoted by binary decision
variable x(n)ub ∈ {0, 1}, where

x(n)ub =

{
1, if RB n is assigned to ub,
0, otherwise.

(4)

The RB allocation vector for user ub connected to eNB b
is Xub = [x(1)ub , x

(2)
ub , . . . ., x

(N )
ub ]. In each frame, the total rate

achieved by ub over the allocated RBs is given by

Rub =

N∑
n=1

x(n)ub r
(n)
b,ub , (5)

for all ub ∈ Ub. Consequently, 1ub , which refers to the
amount of saved resources by user ub, is given by

1ub = Dub
−Rub , (6)

whereDub
is the rate demanded by user ub connected to eNB

b. The sum of 1ub for all ub ∈ Ub is given by

1Ub =
∑
ub∈Ub

Dub
−Rub . (7)

The total rate achieved by all users connected to eNB b is
given by

Rb =
∑
ub∈Ub

Rub . (8)

3) DATA DRIVEN OPTIMIZATION
Let Aub be a J -dimensional feature space for ub, where
Aub = [a(1,ub), a(2,ub), . . . , a(J ,ub)] and a(j,ub) is the value of
feature j for user ub. As mentioned earlier, since personalized
satisfaction is predicted using the data collected from users,
the output of a satisfaction level Sub is predicted using the
deployed and tuned ML-based surrogate model. The inputs
for the surrogate model are user ID, context features Aub , and
user demand Dub .

4) OPTIMIZATION PROBLEM FORMULATION
In order to solve OPA, we formulate a MOO problem with
two objectives: 1) maximize the average1Ub (i.e., amount of
saved resources) for all users and 2) maximize the average
satisfaction for all users. The formulated MOO has two deci-
sion variables: Xub and Pub . Each objective function is asso-
ciated with a set of constrained and formulated as follows:

-Maximize the average 1Ub for all users:

max
Xub ,Pub

1
Ib

∑
ub∈Ub

(Dub
−

N∑
n=1

x(n)ub r
(n)
b,ub ), (9a)
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s.t.
∑
ub∈Ub

x(n)ub 6 1, ∀ n ∈ N (9b)

∑
ub∈Ub

N∑
n=1

xnubP
n
b,ub6 Pmax

b (9c)

Rub,b6 Dub , ∀ ub ∈ Ub (9d)

P(n)b,ub> 0, ∀ n ∈ N , ub ∈ Ub. (9e)

-Maximize the average satisfaction for all users:

max
Xub ,Pub

1
Ib

∑
ub∈Ub

Sub (Aub , (10a)

(Dub −

N∑
n=1

x(n)ub r
(n)
b,ub (P

(n)
b,ub ))), (10b)

s.t.
∑
ub∈Ub

x(n)ub 6 1, ∀ n ∈ N (10c)

∑
ub∈Ub

N∑
n=1

xnubP
n
b,ub6 Pmax

b (10d)

Rub,b6 Dub , ∀ ub ∈ Ub (10e)

Pnb,ub> 0, ∀ n ∈ N , ub ∈ Ub (10f)

Sub > Smin,ub , ∀ ub ∈ Ub. (10g)

The first objective function in (9a) maximizes the aver-
age 1Ub (1̄Ub ) in order to maximize resource-saving in the
network. On the other hand, the second objective function
in (10a) maximizes the average satisfaction for all users. Both
objective functions contradict each other; hence, the solution
set is expected to be a Pareto front, where the optimum points
trade-off both objectives.

As for constraints, the first objective function (9a) has four
constraints, of which constraint (9b) ensures that each RB is
being used by no more than one user during a single instance.
Also, the second constraint (9c) prevents each eNB from
allocating a total power more than the budget power Pmax

b .
Besides, the third constraint (9d) limits the rate provided to
each user to values less than the demanded rate Rub,b. The
fourth constraint (9e) ensures that the allocated power for
each user Pnb,ub is a positive value. On the other hand, the sec-
ond objective function (10a) has five constraints. Constraints
(10c), (10d), (10e), and (10f) are similar to the constraints
associated with the objective function in (9a). The last con-
straint (10g) maintains a minimum satisfaction specified for
each user. This constraint is added to differentiate among the
targeted satisfaction levels for different users; hence, enable
the network to provide a wider range of service quality levels
and pricing policies.

VI. EMOO OF RESOURCES IN PERSONALIZED WIRELESS
NETWORKS
In this section, we present the building blocks of MOEAs
utilized to solve the proposed OPA problem. For the purpose
of this article, the implementation of the optimization formu-
lation considers the optimization of the decision variableXub ,
whereas Pub is assigned a constant value for all users.

A. SOLUTION ENCODING
As mentioned in Section V-B2, an OPA solution for one
user is encoded as a binary vector Xub , which represents
a set of RBs available in the networks. With this in mind,
the combined solution for all users is an Ib x N matrix in the
form of

Xsol =


x(1)u(1,b) x(2)u(1,b) . . . x(N )

u(1,b)

x(1)u(2,b) x(2)u(2,b) . . . x(N )
u(2,b)

. . . . . . . . . . . .

x(1)u(Ib,b)
x(2)u(Ib,b)

. . . x(N )
u(Ib,b)

 . (11)

A solution Xub is feasible if it meets the constraints asso-
ciated with both objectives (9a) and (10a).

B. OBJECTIVE FUNCTIONS
The proposed OPA problem in Section V-B4 is a bi-objective
optimization problem with two objectives (1) average 1Ub
(1Ub ) in (9a) and (2) average satisfaction in (10a). Each solu-
tion is evaluated in terms of the aforementioned contradicting
objectives. In other words, maximizing user satisfaction will
require lower1s; hence, minimum resource-saving, and vice
versa. The final Pareto front solutions trade-off these contra-
dicting objectives.

C. POPULATION INTIALIZATION
The population consists of M solutions in the form of Ib x N
matrixes. The initial population is generated by drawing the
elements of the solution matrixes Xsol from a random binary
uniform distribution.

D. SELECTED MOEAs
In this article, we investigate the performance of fiveMOEAs
in solving OPA. One of the most famous genetic algo-
rithms considered in this article is non-dominated sorting
evolutionary algorithm II (NSGA-II) [35] and its successor
NSGA-III [36]. Besides, we investigate an indicator-based
MOEA called ε-MOEA [37], [38]. Further, we consider
SPEA2, which is a multiobjective evolutionary algorithm that
incorporates the concept of elitism [38].

E. EVOLUTIONARY OPERATORS
In this article, we utilize binary tournament selection as the
selection operator for all algorithms [39]. As for crossover
and mutation, we utilize the Half Uniform Crossover (HUX)
operator and bit flip, respectively [40]. Also, the population
size used across all experiments is 100 solutions.

F. STOPING CRITERIA
In practice, wireless networks make decisions and perform
actions in real-time; therefore, decision time is considered
a crucial factor in solving OPA. In EMOO, decision time is
proportional to theNFEs. SinceOPA is a large scale optimiza-
tion problem, practical systems are required to implement the
appropriate techniques in order to meet the associated time
constraint. Considering that meeting the wireless networks
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time constraint is out of the scope of this article, the stopping
criterion for the implemented simulation is set to a predefined
NFEs.

VII. EMPIRICAL ANALYSIS AND DISCUSSION
In this section, we evaluate the performance of MOEAs
described in the previous section in solving the formulated
OPA problem. Then, the best performing MOEA is used
to simulate personalized and non-personalized wireless net-
works in order to compare them in terms of the amount of
saved resources and user satisfaction in the network. Also,
we study the impact of errors and uncertainty introduced by
the ML surrogate on the performance of MOEAs. Finally,
we conduct several experiments to study the complexity and
scalability of the proposed optimization problem.

The prototype and simulations in this article were done
using Python 3.7.6. The DNN model was built using the
TensorFlow library. In addition, the scikit-learn library was
used for preprocessing the data, whereas seaborn and Mat-
plotlib were used for visualization purposes. Also, MOO is
performed using the Platypus library.

A. EXPERIMENTAL SETTINGS
1) CELLULAR NETWORK ENVIRONMENT
Consider a cell within a cellular network that covers Ottawa,
Canada. The cell has one eNB and it is connected to users
moving within its coverage area. The area of the cell is
divided into a k ∗ k grid. The cellular network environment is
simulated using the parameters listed in Table 3. The cellular
network operator collects context data from users and stores
it in a database. The collected data are of two types, real-time
user satisfaction levels and context values. Measurements are
recorded at each measuring instant. The period between two
measuring instances is referred to as a Time Slot (TS). The
service provider collects data from the users using a TS length
of one second. Besides, the amount of resources consumed
within each TS is recorded. Also, for the sake of simplicity,
we assume that all users have the sameminimum requirement
for user satisfaction.

TABLE 3. Cellular network simulation parameters.

2) PERFORMANCE METRICS
The design of MOO metrics ususally considers three
main performance criteria: capacity, convergence, and diver-
sity [41]. Capacity metrics quantify the ratio (or number)
of nondominated solutions in the solution space S that con-
forms to the predefined reference set. To measure MOO
performance in terms of capacity, we calculate the Overall
Non-dominated Vector Generation Ratio (NGR) [42]. NGR
describes the capacity ratio of Swith respect toR, and is given
as

NGR(S,R) =
|S|
|R|

, (12)

where |.| is the cardinality or number of elements in the set.
In contrast to capacity, convergence metrics measures the
proximity of the solution set S to the reference setR. To mea-
sureMOOperformance in terms of convergence, we calculate
the Generational Distance (GD) [35] as follows:

GD(S,R) =
(
∑|S|

i=1 d
2
i )

1
2

|S|
, (13)

where di is the smallest distance from s ∈ S to the closest
solution in R, and is given as di = min

r∈R
||F(si) − F(r)||,

where si ∈ S. ||.|| denotes the Euclidean distance and F =
(f1(s), f2(s)), where f1 is defined in (9a) and f2 is defined
in (10a). As for measuring the performance of MOO in terms
of diversity, the Spacing (SP) metric [43] is calculated as
follows:

SP(S) =

√√√√ |S|∑
i=1

(di − h̄)2

|S− 1|
. (14)

In addition to the aforementioned metrics, we calculate
the Hypervolume (HV) [44] and the Inverted Generational
Distance (IGD) [45], [46]. HV and IGD measure the perfor-
mance of MOO in terms of both convergence and diversity.
HV is one of the most popular performancemetrics forMOO,
where it quantifies the volume in the objective space that is
dominated by the solution set S. HV is calculated as follows:

HV (S,R) = volume(
|S|⋃
i=1

vi), (15)

where vi is the hypercube associated with si ∈ S, and R is
a reference point. On the other hand, IGD is calculated as
follows:

IGD(S, |R|) =
(
∑|P|

i=1 d
2
i )

1
2

|R|
. (16)

It is worth noting that the goal is to maximize HV and SP,
whereas GD and IGD are better when they are minimized.

3) REFERENCE SET GENERATION
In order to evaluate the performance and the quality of the
Pareto front solutions, we need to compare them to a Refer-
ence set R, which is the Pareto optimal set [34]. Since the
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FIGURE 6. The generated approximation sets of the Pareto front solutions
by the considered MOEA algorithms.

optimal set is not known, we employ the common practice of
using the best-known approximation of the Pareto optimal set
as the reference set. The approximation of the optimal Pareto
set for each instance is performed using the MOEAs listed
in Section VI-D. Each MOEA is run 30 times and the final
Pareto front solutions are merged into one set. Then, the set
of merged Pareto front solutions is utilized to extract the set of
non-dominated solutions, which represents the approximated
Pareto front reference setR. Using the simulation parameters
in Table 3, we plot both objectives, the average 1Ub (1Ub )
vs. the average satisfaction for a single exemplary instance.
For illustrative purposes, we set the minimum satisfaction
allowed in the network to Smin,ub = 1. Fig. 6 illustrates
the generated solution sets by NSGAII, NSGAIII, SPEA2,
and ε-MOEA and their computed ranks. The Pareto front
solutions are the set of solutions in the merged solution
set that have the minimum rank (i.e., rank equal to zero),
which are referred to as the non-dominated solutions set.
In Fig. 7, the extracted optimum Pareto front solution set

FIGURE 7. The non-dominated Pareto front reference solution set
extracted from the multiple sets generated by the considered MOEA
algorithms.

is plotted. The Pareto front solutions provide a trade-off
between both objectives. Lower 1Ub values (i.e., a higher
amount of consumed resources) offer higher user satisfaction
levels in the network. To achieve a certain satisfaction level
in the network, the optimum Pareto front solution for each
instance is used to find the required minimum amount of
resources. Depending on the service provider policy and the
required Smin,ub , the personalized network will operate at the
Pareto front solution point that achieves the required average
satisfaction using the minimum resources. For the instance
depicted in Fig. 7, if the required average satisfaction level
for all users is 4, 1Ub should be less than or equal to 2.9,
which is the maximum (i.e., optimum) 1Ub solution.

B. EXPERIMENT 1: STATISTICAL ANALYSIS OF MOEAs
PERFORMANCE RESULTS
In this experiment, we evaluate and compare the performance
of the considered MOEAs in terms of the metrics described
in Section VII-A2. Since some of the performance metrics
use the reference set R as a parameter, an approximation of
the reference set is computed for each instance. In order to
test the significance of the performance results obtained in
this section, we use non-parametric tests [47]. First, we use
the Friedman N × N procedure to validate the existence of
statistical differences among the results obtained by all algo-
rithms. The Friedman test examines the null hypothesis (H0)
that the performance results for all algorithms come from the
same distribution. In this article, we choose a significance
level (α) of 0.05. This means that if p–value is less than 0.05,
the H0 is rejected; hence, there exist statistical differences
between the algorithms’ performance results. Otherwise, H0
cannot be rejected and the samples are likely coming from the
same statistical distribution. If the Friedman test suggests the
rejection of H0, we perform several posthoc tests to exam-
ine the statistical difference of each algorithm from every
other algorithm. The performed posthoc tests are Conover,
Wilcoxon, Nemenyi, and Mann-Whitney [48].

In this experiment, to ensure the consistent performance
of the chosen algorithm across all instances, we ran-
domly choose a number of instances Nm from the WPP
dataset described in Section II-C. For each instance, we run
MOEAs described in Section VI-D to solve the formulated
OPA problem. Then, the performance metrics described in
Section VII-A2 are computed. To ensure the statistical sig-
nificance of the performance results for each instance, this
process is repeated Ns times for each instance in the selected
Nm instance set. Thereafter, the mean of each performance
metric and for each algorithm is computed over all Ns runs.
The computed mean data is used to compare the algorithms.

1) SAMPLE SIZE SUFFICIENCY
Before proceeding with the performance results comparison,
it is important to determine whether the sample size is large
enough to support our experiment. This has to do with the
fact that too small sample size may produce inconclusive
results. In literature, different sample sizes are used, yet a
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TABLE 4. Statistical and Friedman test results.

clear justification of the selection is rarely provided. One
approach to choose a sufficient sample size Nm and Ns is
to examine their relationship with the Standard Error of the
Mean (SEM ), given as

SEM =
σ
√
n
, (17)

where σ is the sample standard deviation and n is the number
of samples [49]. For the purpose of this article, we choose a
maximum SEM of 0.05. In Fig. 8.a and Fig. 8.b, we compute
and plot the SEM for the sample sizesNm andNs, respectively.
Using the SEM data in Fig. 8.a and Fig. 8.b, we choose the
value of 30 samples forNs andNm, which achieves SEM lower
than 0.05.

2) STATISTICAL ANALYSIS
Using the pickedNs andNm values, we perform the described
statistical analysis experiment. Table 4 summarizes the sta-
tistical and Friedman test results of the performed experi-
ment. The Friedman test results show that the p–value for

all performance metrics are less than α = 0.05; hence,
the test rejects H0 and accepts the alternative hypothesis Ha.
Consequently, Friedman test results suggest that, for each
performancemetric, there is a significant statistical difference
among the metric values calculated for all algorithms.

In order to select the best performing algorithm, we employ
the evaluated ranks by the Friedman test to compute a new
metric, which we refer to as the Algorithm Performance
Indicator (API), defined as follows:

API = |wHV |ejθHV ∗ HVr + |wSP|ejθSP ∗ SPr
+|wNGR|ejθNGR ∗ NGRr + |wGD|ejθGD ∗ GDr
+|wIGD|ejθIGD ∗ IGDr , (18)

where HVr , NGRr , GDr , IGDr , SPr are the algorithm ranks
of HV, NGR, GD, IGD, and SP. Besides, |wi| and θi ∀i ∈
[HV , SP,NGR,GD, IGD] are the magnitude and phase of
the weight wi. The weights magnitude can be chosen based
on the importance of each metric to the requirements of the
tackled problem. Nonetheless, for the purpose of this article,
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FIGURE 8. Standard Error of the Mean (SEM ) vs. sample sizes.

we assign the same weight value of 1/5 to all weights; hence,
all indicators are assumed to be of equal importance in the
final score. As mentioned earlier, some metrics are better
when their values are higher, and others are the opposite.
To reflect this in our API score, we assign θ = 0 for the
metrics that are better when they are higher (i.e., HV, SP) and
θ = π for those who are better when they are lower (i.e.,
GD, IGD). In comparison to other metrics, NGR could have
θ = 0 or π depending on the value of NGRr . This is because
NGRr < 1 is indicative of missing non-detected Pareto
front solutions, whereas NGRr > 1 is indicative of a higher
number of detected solutions compared to the reference set
solutions R. Therefore, the closer NGR to 1, the better the
quality of the Pareto front solutions. To incorporate this in
our API equation, θNGR is defined by

θNGR = (1− β)π, (19)

where β is given by

β =

{
0, NGR > 1
1, NGR ≤ 1.

(20)

Table 4 lists the API score for each algorithm. Of the four
algorithms, ε-MOEA achieved the highest score of 3.611;
therefore, we will use it for the personalized network sim-
ulations in the subsequent experiments.

Before accepting the aforementioned results, we should
verify that the statistics for ε-MOEA are significantly dif-
ferent for the other algorithms. To test that, we performed
the described pairwise posthoc tests. Table 5 summarizes
the posthoc tests results. Although the posthoc tests failed
to reject H0 for some of the metrics computed for NSGAII
and NSGAIII, ε-MOEA showed a significant statistical dif-
ference from every other algorithm.

C. EXPERIMENT 2: PERSONALIZED VS.
NON-PERSONALIZED WIRELESS NETWORKS
The goal of this experiment is to provide insights into the
dynamics of personalized wireless networks and to show

TABLE 5. Pairwise comparison of algorithms rejected by the posthoc
tests.

how they can be used to save the scarce network resources
and improve user satisfaction levels in a controlled man-
ner. Besides, the behavior of Surrogate-assisted Personalized
Wireless Networks (SPN) is compared to Direct Feedback
Personalized Wireless Networks (FPN) (i.e., networks uti-
lizing direct user satisfaction feedback). Although the lat-
ter approach is not practical, we use it as a benchmark to
study how the user satisfaction surrogates can deteriorate the
optimum solutions of OPA, and consequently the amounts
of savings and user satisfaction levels in the network. Also,
both SPN and FPN are compared to the Non-Personalized
Network (NPN), which tries to maximize the utilization of
the available resources and maximize the provided rate. The
wireless networks simulated in this section have four active
users and NFEs is set to 5000 evaluations. Besides, the simu-
lation time frame is set to 50minutes. The networks described
in this section are simulated at a resolution of one second
(i.e., TS = 1 second); hence, the optimization of OPA is run at
every second within the simulation time frame. Nonetheless,
for visualization purposes, we average the results over every
30 seconds. Notably, the simulated SPN does not employ the
surrogate management framework illustrated in Fig. 4.

The first promised advantage of personalized networks
is saving resources compared to current wireless networks.
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FIGURE 9. The simulation results of the Direct Feedback Personalized Network (FPN) and the Surrogate-assisted Personalized Network (SPN) for four
network users.

The amount of saved resources for both SPN and FPN is
measured by QoSNP − QoSP, where QoSNP is the QoS
provided by the non-personalized network and QoSP is the
QoS provided by the personalized network, both in Megabits
per seconds (Mbps). Fig. 9.a compares the amount of saved
resources for FPN and SPN. The first thing we observe is
the similar trends and patterns between both networks, which
is indicative of the validity of the produced solutions by the
surrogate-assisted OPA problem. Also, we further observe
that the SPN spends fewer resources compared to the FPN;
consequently, SPN achieved higher resource-savings. With
this in mind, the amount of saved resources by the FPN is the
maximum achievable amount of saved resources that doesn’t
compromise the required satisfaction levels required by the
network operator. As mentioned earlier, another promised
advantage of personalized networks is maintaining a spe-
cific user satisfaction level. In order to analyze the user
satisfaction levels achieved by the simulated three networks,
in Fig. 9.b we compare the average satisfaction levels for the
four users vs. time for NPN, FPN. Also, for SPN, we plot
the average satisfaction levels predicted by the surrogate
model (SPN-estimated). In order to benchmark the predicted
satisfaction results, we plot the actual satisfaction levels mea-
sured using direct user feedback (SPN-feedback). The first
thing we observe from 9.b is that the satisfaction levels for
NPN and FPN networks are above the specified minimum
of Smin,ub = 4. Perhaps the most important observation from
Fig. 9.b is the gap between the estimated (SPN-estimated)
and the actual satisfaction levels for SPN (SPN-feedback).
Although the SPN achieved superior amounts of saved
resources compared to FPN (see Fig. 9.a), it failed to achieve
the required average satisfaction level of 4. This is due to the
satisfaction uncertainty introduced by the surrogate model,
which led the SPN to further reduce resources below the
minimum required to achieve Smin,ub = 4. These findings

emphasize the importance of an effective surrogate man-
agement strategy to avoid the deterioration and divergence
of user satisfaction levels resulting from false satisfaction
predictions in the network.

D. EXPERIMENT 3: THE IMPACT OF UNCERTAINTY
INTRODUCED BY SURROGATES ON THE PERFORMANCE
OF MOEAs
Generally, as shown in the previous experiment, the estima-
tion error introduced by surrogates impacts the network’s
ability to use accurate user satisfaction information in the
optimization process. The magnitude of this impact depends
on several factors of which the most important is the per-
formance of the utilized surrogate model. To further study
this assumption, we design and perform the following exper-
iment. In order to vary the performance level of the sur-
rogate, we gradually increase the amount of training data.
The accuracy and the amount of data used for training are
recorded for each surrogate model. Then, using the set of
trained surrogate models, we run the MOEAs to solve the
OPA problem. For each surrogate model, each MOEA is run
for 30 times; thereafter the average HV is computed. Fig. 10
compares the average HV values for the surrogate mod-
els with varying performance levels. Essentially, as shown
in Fig. 10, as the quality of the employed surrogate model
improves, the quality of the OPA solutions for all algorithms
improve with different levels.

E. EXPERIMENT 4: SCALABILITY ANALYSIS
In order to evaluate the scalability of the proposed formu-
lation, we explore the effect of variables that contribute to
the complexity of the problem. For our formulated problem,
the number of users Ub determines the size of the problem
decision variables; therefore, it increases the complexity of
the problem. Another factor that impacts the complexity
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FIGURE 10. The average HV computed for different surrogate models with
varying performance levels for NSGAII, NSGAIII, SPEA2, and ε-MOEA.

of the problem is the required quality of solutions. Higher
quality solutions usually require higher NFEs; thereby, higher
amounts of computing resources. In this section, we explore
the effect of Ub and NFEs on complexity.

1) THE IMPACT OF THE NUMBER OF NETWORK USERS ON
COMPLEXITY
To study the effect of the number of network users Ub on
OPA, we performed the following experiment. Using a ran-
dom instance, the MOEAs considered in this article are run
30 times for varying number of users Ub. NFEs is set to
5000 evaluations for each run. Then, HV is computed and
averaged over the 30 runs for each Ub. Fig. 11 depicts the
averaged HV values vs. the number of users Ub for the
considered MOEAs. From Fig. 11, we observe a descending
HV trend as the number of users increases. Accordingly,
we conclude the following: as the complexity of the problem
increases, the quality of the output solutions decreases for a
fixed amount of computing resources.

FIGURE 11. The number of users Ub vs. average HV for NSGAII, NSGAIII,
SPEA2, and ε-MOEA.

2) THE IMPACT OF THE REQUIRED SOLUTION QUALITY ON
COMPLEXITY
In order to further improve the quality of the solutions as the
complexity of the problem increases, MOEAs need a higher
number of evaluations for each run; hence, more computing
resources are required. In order to investigate this assumption,
using a random instance, we compute the average HV with
varying NFEs. In this experiment, the number of network
users is fixed at 6 users. Fig. 12 compares the average HV
vs. NFEs for the considered MOEAs. As anticipated, the HV
values rise as the NFEs increase. After a certain NFEs limit,
the average HV stagnates. In practice, the network should be
able to decide the optimumNFEs in order to optimize the uti-
lization of computing resources and make the computations
more efficient. Usually, the optimum NFEs depends on sev-
eral factors, including the network environment, the number
of users, and the selected MOEA algorithm.

FIGURE 12. The Number of Function Evaluations (NFEs) vs. average HV
for NSGAII, NSGAIII, SPEA2, and ε-MOEA.

VIII. CONCLUSION
The complexity and the requirements of the emerging 5G
and beyond applications make AI and ML an indispensable
design tool for wireless networks. The ultimate design goal
of any wireless network is to optimize two correlated and
contradicting objectives, saving resources as well as main-
taining high levels of user satisfaction. To this end, enabled by
a big data-driven AI layer, wireless network personalization
is proposed to optimize these two objectives, and thereby
make fine-grained optimized decisions in networks. Due to
the complexity and novelty of the proposed technology, sev-
eral challenges need to be overcome. This article presented
discussions on several design-related issues, including the
integration of personalization into current wireless networks
and modeling user satisfaction in wireless networks. The
article focused on the decision-making process, which is part
of the wireless network personalization framework. Partic-
ularly, the article proposed a MOO formulation to model
the personalized resource allocation problem in wireless
networks. The proposed MOO problem was tackled using
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evolutionary optimization due to its practicality and speed.
Also, statistical analysis was conducted to verify the signif-
icance of the obtained results in this study. Using a dataset
that represents a personalized wireless network environment,
a simulation proof-of-concept prototype was built to solve the
formulated problem. The prototype was utilized to demon-
strate the benefits of implementing personalized networks
in contrast to non-personalized networks. Also, the effect
of uncertainty introduced by the ML surrogate models was
examined. Lastly, a scalability analysis was performed to
investigate the effect of increasing the number of problem
variables, such as the number of users, on the complexity and
quality of solutions.

IX. FUTURE DIRECTIONS
This article addressed several challenges and issues that
need to be overcome in order to realize wireless network
personalization. Nevertheless, there are a number of critical
open directions that are yet to be explored. In this section,
we summarize and list some of these directions and open
problems.

A. AN EFFECTIVE AND EFFICIENT SURROGATE
MANAGEMENT SCHEME
In this article, we have proposed a surrogate management
scheme in order to prevent the convergence of erroneous
Pareto front solutions. Nonetheless, the prototype imple-
mented in this article did not employ a surrogate management
scheme; hence, the simulated surrogate-assisted personalized
network was not able to maintain the required satisfaction
level. Therefore, a more thorough study and analysis of the
surrogatemanagement scheme should be performed. Interest-
ingly, the simulation results showed similar trends between
the surrogate assisted (SPN-estimated) and direct feed-
back (SPN-feedback) personalized networks. Yet, the SPN-
estimated had a negative bias in the satisfaction results and a
positive bias in the saved resources results. For this reason,
further analysis of the relationship between SPN-estimated
and SPN-feedback is necessary. Furthermore, the simula-
tion results presented in this article raised a vital question
about the efficacy of adding a fixed bias to the outcome of
surrogate-assisted personalized wireless networks in order to
resolve the divergence issues and whether this bias can be
calculated and predicted in real-time.

B. ACCURATE PREDICTION OF USER SATISFACTION
Among the main pillars of personalized wireless networks’
design is the accurate prediction of user satisfaction levels.
Therefore, further investigation into methods and advanced
ML structures that can improve the accuracy of predicting
user satisfaction in real-time is required. Besides, while the
synthetic dataset utilized in this article provided valuable
insights into the dynamics of personalized wireless networks,
real-world user context and satisfaction data is fundamental
to verify the developed models and framework.

C. ADVANED IEC MOEAs
As mentioned earlier, IEC MOEAs proposed in the literature
are designed to incorporate user feedback into the optimiza-
tion process. Leveraging IEC optimization in personalized
networks could reveal drastic improvements in optimization
performance and complexity reduction compared to tradi-
tional MOEAs.

D. SECURITY AND PRIVACY CONCERNS
The improved resource-saving and satisfaction levels
promised by personalized networks aremarred by privacy and
security challenges. Personalized wireless networks entail
gathering considerable amounts of data about users, such as
context and satisfaction levels. For this reason, more research
should be conducted to develop a responsible process to
enable this technology without compromising users’ privacy
and confidentiality.

E. OPTIMIZING OTHER ASPECTS OF WIRELESS
NETWORKS
This article highlighted resource scheduling, which is one
of several aspects of wireless networks that can benefit
from the proposed personalization scheme. Examples of such
include network failure detection and network security deci-
sions. Additionally, although the proposed OPA problem is
formulated for cellular networks, it can be formulated and
redesigned for any network with users, such as Wi-Fi and
wired networks. Finally, the main ideas and the premise of
the paper can be applied to any application that requires user
feedback.
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