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ABSTRACT Blind recognition of communication parameters has been studied for various applications
including cognitive radios, non-cooperative communications, electronic warfare, etc. In this article, the iden-
tification of frame information, such as frame length and synchronization word (SW), and frame synchro-
nization, is addressed over the wiretap channel, where no prior information of the frame structure is available,
but only the existence of a repeated SW is known. Modifying the previous study, we propose two blind frame
recognition and synchronization algorithms based on the correlation between two distinct windows of the
received signal as well as the mean of periodic samples. The algorithms run in two steps. A multiple of
frame length is estimated via the correlation and then other frame parameters are acquired using the mean of
periodic samples with the estimate. Asymptotic analysis of the first algorithm shows that the error probability
of estimation vanishes as the received data increases both in noiseless and noisy transmissions. The second
algorithm improves the performance in the limited received data scenario. Simulation results as well as
complexity analysis of the proposed algorithm are also shown.

INDEX TERMS Blind frame synchronization, correlation, frame recognition, non-cooperative communica-
tion, synchronization word.

I. INTRODUCTION
In digital communication systems, data are transmitted in
units of frames, and they are recovered at the receiver through
proper digital signal processing techniques. Among these
techniques, frame synchronization is a process that iden-
tifies the time alignment of frames in the received signal
stream [1]–[4]. Frame synchronization should be acquired
before data recovery at the receiver. A usual assumption
pertaining in most of the previous works on frame synchro-
nization is that the receiver has the knowledge of frame
information such as the frame length, the synchronization
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word (SW), and the specification of employed channel codes.
However, if a receiving end is an adversary or a cognitive
device with non-cooperative services, blind recognition of
communication parameters should precede the information
acquisition [5]–[14].

Electronic and information warfare is a typical sce-
nario where data from adversary is a crucial resource that
gives advantage in battlefield. Electronic warfare consists
of actions such as electronic support, electronic attack, and
electronic protect [15]. Among them, the electronic sup-
port refers to actions intercepting transmissions of adversary,
which may contain helpful information for conducting tacti-
cal operations. To leverage such intercepted signals, locating
data from a stream of intercepted signal is required. As data
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are transmitted in frames, it is necessary to identify the frame
structure blindly above all else.

In this article, we deal with the signal intercepted from
a communication source. Such a scenario can be modeled
by a wiretap channel where a source and a destination
are communicated while an eavesdropper tries to listen to
ongoing transmission [16]. Various studies have considered
the wiretap channel model for the eavesdropping attack
scenario [16]–[25]. The secrecy capacity of wiretap channels
were analyzed in [16]–[18]. Secrecy enhancement of trans-
mitted signals in multiple antenna systems were developed
in [19], [22], where the key idea is to increase the difference
between the signal strength for the legitimate receiver and that
for the eavesdropper using beamforming techniques. Cooper-
ative jamming for the wireless medium by other helper nodes
can increase the security [23]. Secure coding schemes also
provide security and can achieve the secrecy capacity [24].
As opposed to the secrecy schemes, the pilot spoofing attack
were presented in [25], where an eavesdropper recognizes
the training sequence and transmits the estimated one for the
purpose of signal leakage to the eavesdropper. In this article,
the wiretap channel model is considered where the receiver
and the eavesdropper receive the transmitted signal possibly
corrupted by Gaussian noise.

Before addressing the blind setting, we review frame syn-
chronization techniques under normal communication envi-
ronment. Early studies on frame synchronization assumed
that a frame consists of a single SW and data of a fixed length,
and that the frame structure is known or provided beforehand
via a control channel to the receiver [1]–[4]. Barker [1]
showed that the optimal metric of frame synchronization over
binary symmetric channel is the correlation between the SW
and the received signal stream. Massey [2] found that the
correlation rule is suboptimal for additive white Gaussian
noise (AWGN) channels. He proposed the optimal maximum
likelihood (ML) rule for the AWGN channel, which is a
modification of the standard correlation rule with a nonlin-
ear correction term that accounts for the presence of ran-
dom data surrounding the SW. High and low signal-to-noise
ratio (SNR) approximation rules were also proposed in [2].
Massey’s frame synchronization rules [2] were extensively
simulated by Nielsen [3], and it was shown that the high-
SNR approximation rule exhibits a similar performance to
the optimal rule over a wide range of SNR. It was also shown
in [3] that the probability of frame synchronization error is
lower-bounded by the probability of the occurrence of the
SW pattern in the data region. The ML rule and the lower
bound were generalized toM -ary phase-coherent and phase-
noncoherent signalings [4].

In addition to the above works on generic frame synchro-
nization, a number of frame synchronization techniques were
developed for frames with some special features [26]–[33].
Specifically, frames with variable length were considered
in [26]–[28], where sequential hypothesis tests were con-
ducted to determine the presence of the SW pattern in the
observation window. Especially, unknown and asymmetric

data distributions were assumed in [27] and [28], respectively.
Identification and location detection of SW by means of
a predefined set of candidate SWs was addressed in [29].
Joint synchronization and channel decoding for the purpose
of improving the synchronization performance was studied
in [30], [31]. Frame synchronization with no SW but with
only the decoding results was proposed in [32], [33].

The above frame synchronization techniques require a
presharing of communication parameters such as the frame
structure and transmission schemes by using a separate con-
trol channel. In contrast, there are various scenarios in which
the communication parameters are not known at the receiver,
and thus they should be blindly recognized [5]–[8]. For exam-
ple, in cognitive radio systems, the receiver adapts to a
specific transmission context and blindly estimates trans-
mitter parameters for self-reconfiguration purposes [5], [6].
As another example, in adaptive modulation and coding
schemes, the transmitter changes its modulation and coding
schemes on the fly according to the state of the channel, and
this can be conducted without explicit signaling of related
parameters [7]. In non-cooperative applications such as elec-
tronic warfare, signal interception and processing via wiretap
channels are key tasks for tactical operations [8].

Numerous studies have been conducted to blindly rec-
ognize communication parameters, where methodologies
therein can readily be applied to the eavesdropping attack
scenario.Methods for detecting the number of transmit anten-
nas were studied in [34]. For blind modulation recognition,
likelihood-based and feature-based modulation classification
schemes were proposed in [6], [9], respectively. A com-
prehensive summary for blind modulation recognition was
provided in [35]. On the other hand, the blind estimation of
channel coding parameters have been studied for binary lin-
ear codes [36], convolutional codes [5], and Reed-Solomon
codes [14]. Meanwhile, blind interleaver detection and blind
equalization were also investigated in [38] and in [39],
respectively.

Regarding frame synchronization, some blind frame recog-
nition methods were devised in [10]–[12] where the unknown
parameters of interest there in are only the frame length, SW,
and delay. In [10], the blind recognition of frame length and
SW pattern was first introduced. A two-step algorithm was
proposed, in which the cross-correlation of two windows of
the received signal was used to estimate the frame length first,
and the SW was estimated from the mean of the received
symbols that are sampled with the period of the estimated
frame length. However, explicit rules for estimating the frame
information and the analysis of the algorithm were missing.
The algorithms proposed in [11], [12] are mainly based on
the mean of periodically sampled symbols [10]. Their algo-
rithms, however, assumed the knowledge of the minimum
length of frame, which cannot be utilized in purely non-
cooperative communications, and analysis on the algorithms
were also missing.

In this article, we present an extended work related to the
algorithm proposed in [10]. Specifically, we mathematically
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analyze the correlation function and mean of periodic sam-
ples. We then propose a frame parameter estimation and
frame synchronization algorithm. In contrast to the method
proposed in [10], we estimate a multiple of frame length
instead of the exact frame length, and estimate all frame
parameters using the mean of periodically sampled sym-
bols. The error performance of the proposed algorithm and
its asymptotic behavior are also analyzed. We also present
another frame parameter estimation algorithm, which is a
practical modification of the first algorithm for the purpose
of use in the limited received data scenario. The modified
algorithm improves the estimation performance.

The remainder of this article is organized as follows. In
Section II, some relevant notations and the system model are
given. In Section III, we present our blind frame recognition
algorithm (Algorithm 1) and two key functions, i.e., the
correlation function and the mean of periodic samples. We
then prove the asymptotic behavior of the proposed algorithm
under the noiseless wiretap channel and provide complexity
analysis of the algorithm in Section IV. Our theoretical results
are extended to Gaussian wiretap channel in Section V. Sub-
sequently, we propose a more practical algorithm for the lim-
ited data scenario (Algorithm 2) in SectionVI. The simulation
results are presented in Section VII, both for Algorithms 1
and 2. Section VIII concludes the study.

II. PRELIMINARIES
A. NOTATIONS
An italic letter indicates a scalar (e.g., a or A). A boldface
lower-case letter represents a vector (e.g., a). A calligraphic
letter shows a set of scalar values (e.g.,A), and |·| denotes the
set cardinality. The n-th smallest element of A is written as
A(n), satisfying A(1) ≤ A(2) ≤ . . . ≤ A(|A|). For two vectors
a = (a0, . . . , aN−1) and b = (b0, . . . , bN−1) of length N ,
the correlation between a and b is written as

C(a,b) =
1
N

N−1∑
i=0

aibi.

For 0 ≤ j ≤ N , the aperiodic correlation, or the partial
correlation function, of a and b is given by

C(a,b; j) =
1
N

N−j−1∑
i=0

aibi+j.

For an integer i and a positive integer j, a modulo operation
is defined as (i)j = (i+ kj) mod j, where k is the smallest
non-negative integer that satisfies i + kj ≥ 0. A binomial
random variable with n trials and a probability of success 0.5
is denoted by Bn. A sign function of a real number x is defined
as

sgn(x) =


−1, for x < 0,
0, for x = 0,
1, for x > 0.

B. SYSTEM MODEL
We address the blind frame recognition problem in the Gaus-
sian wiretap channel depicted in Fig. 1. The system model
is shown in Figs. 1 and 2, where communication frames
of the same size, each of which contains the same SW,
are continuously transmitted from a source to the legitimate
receiver. Meanwhile, the eavesdropper, who is aware of the
existence of SW but does not know the frame length, SW,
and its length, observes the transmitted signal passing through
the wiretap channel. The eavesdropper estimates the frame
parameters to acquire synchronization from the received data
stream. The transmitted signal stream is denoted by x, and an
eavesdropper and the legitimate receiver receive the signal
stream y and z, respectively.

FIGURE 1. A wiretap channel model: a transmitter sends signal stream x
to the legitimate receiver and an eavesdropper and the legitimate
receiver receive the signal stream y and z through main and wiretap
channels, respectively.

FIGURE 2. Frame structure, transmitted signal stream and received signal
stream.

The frame structure, transmitted signal, and received signal
are depicted in Fig. 2. A frame of length N consists of SW,
denoted by s = (s0, s1, . . . , sL−1) ∈ {1,−1}L , of length L
and the following data of length N − L. The ratio of SW
is denoted by r = L/N . Assume that the data symbols are
independent and identically distributed (i.i.d.) equiprobable
binary random variables taken from {1,−1}.

It is assumed that x = (x0, x1, . . .) is transmitted con-
tinuously, where xi ∈ {1,−1}, and the eavesdropper takes
a truncated signal of length M to process. Let the received
signals at the eavesdropper, y = (y0, y1, . . . , yM−1), be

yi = xjN−T+i + ni, i = 0, 1, . . . ,M − 1, (1)

where n = (n0, n1, . . . , nM−1) is a Gaussian noise vector
with i.i.d. elements of zeromean and variance σ 2, so that SNR
is given by Es/N0 = 1/(2σ 2), where N0/2 is the two-sided
noise power spectral density. In (1), j is a positive integer,
and T ∈ {0, 1, . . . ,N − 1} is the delay, which corresponds to
the time difference between the first received symbol and the
earliest symbol in the next frame.We assume that the received
signal length is much longer than the frame length; that is,
M � N . Our goal is to estimate the repetitive SW s and

147518 VOLUME 8, 2020



Y.-S. Kil et al.: Analysis of Blind Frame Recognition and Synchronization Based on Sync Word Periodicity

its length L, the frame length N , and the delay T from the
received signal y at the eavesdropper side.

III. BLIND FRAME RECOGNITION AND
SYNCHRONIZATION
In the past works on frame synchronization for the scenario
where frame structures are known at the receiver [1]–[4],
the cross-correlation of known SW and the received symbols
is the key metric to acquire frame synchronization. However,
in blind scenarios where the receiver has no information on
the frame structure, the detection of the frame length and SW
should precede the synchronization process.

In a previous work on blind frame recognition [10], a two-
step blind frame recognition and synchronization technique
was proposed. In the first step, the receiver exploits the cross-
correlation of two non-overlapping windows of the received
signal stream to estimate the frame length. In the second step,
the mean of symbols sampled with the period of the estimated
frame length is used to locate and estimate the SW sequence,
and finally to acquire frame synchronization.

In this section, we investigate the correlation function and
the mean of periodic samples in the noise-free channel. Then,
we propose a new blind frame recognition and synchro-
nization method, which is a refined version of our previous
scheme [13]. The analysis of the proposed algorithm and
extension to noisy channel are presented in the following
subsections.

Under the noise-free channel assumption, the received sig-
nal at the eavesdropper is represented as

yi = xjN−T+i, i = 0, 1, . . . ,M − 1. (2)

Let S andD be the sets of indices in y indicating the SW and
data symbols, respectively. For i ∈ S, yi is an SW symbol,
and for i ∈ D, yi is a data symbol. It is clear that S ∪ D =
{0, 1, . . . ,M −1}, and S ∩D = ∅. The received SW symbol
can be expressed as

yi = s(i−T )N , i ∈ S. (3)

For example, when N = 10,L = 3,M = 15, and T = 2,
we have S = {2, 3, 4, 12, 13, 14} and y2 = y12 = s0, y3 =
y13 = s1, and y4 = y14 = s2.

A. CORRELATION FUNCTION
In this subsection, we investigate the characteristics and
asymptotic behaviors of the cross-correlation of sliding win-
dows. Let wm be the sequence contained in a window of
lengthW (0 < W < M) in the received symbol stream y, and
m ∈ {0, 1, . . . ,M −W } be the index of the earliest symbol in
the window. Then, we obtain

wm = (wm,0,wm,1, . . . ,wm,W−1)

= (ym, ym+1, . . . , ym+W−1).

We define w0 as the reference window. The received symbol
stream and window structure are depicted in Fig. 3, where
SW is shaded with stripes.

FIGURE 3. Received signal stream and the windows. (a) The reference
window w0. (b) The sliding window wm.

Let Sm and Dm be the sets of indices in wm indicating SW
and data symbols of wm, respectively. For i ∈ Sm, wm,i is an
SW symbol, and for i ∈ Dm, wm,i is a data symbol. Clearly,
we have Sm∪Dm = {0, 1, . . . ,W−1}, and Sm∩Dm = ∅. We
define W = {0, 1, . . . ,W − 1} as the index set of a window.
Then, Sm ∪Dm =W .
We analyze the correlation between the reference window,

w0, and sliding window, wm (1 ≤ m ≤ M −W ). Assuming
that window length is greater than frame length (i.e., W >

N ), we first divide the reference window w0 into two parts of
complete frames and residual frames as depicted in Fig. 3(a),
whereW0,W−1, andW+1 denote their index sets. Here,W0
corresponds to the complete frame region (CFR), and W−1
and W+1 correspond to the parts of a frame, which we refer
to as the residual frame region (RFR). As shown in Fig. 3(a),
we have W = W−1 ∪W0 ∪W+1. Let k be the number of
frames in CFR. Then, it can be shown that

k =

{
bW/Nc − 1, for W − NbW/Nc < T ≤ N − 1,
bW/Nc, for 0 ≤ T ≤ W − NbW/Nc,

(4)

and |W0| = kN . For RFR, it is clear that 0 ≤ |W−1|, |W+1| ≤
N − 1 and |W−1| = T . Although any sliding window can
be divided into CFR and RFR, we use the terms only for
the reference window. From |W0| = kN and 0 ≤ |W−1|,
|W+1| ≤ N − 1, we obtain kN ≤ W < (k + 2)N . Thus,
the number of frames in CFR, k , is bounded as

W − 2N
N

< k ≤
W
N
. (5)

The cross-correlation between the reference window w0
and a sliding window wm is given by

C(w0,wm) =
1
W

W−1∑
i=0

w0,iwm,i, (6)

and the aperiodic auto-correlation of the SW, s, is given by

C(s, s; j) =
1
L

L−j−1∑
i=0

sisi+j. (7)

VOLUME 8, 2020 147519



Y.-S. Kil et al.: Analysis of Blind Frame Recognition and Synchronization Based on Sync Word Periodicity

For m = 0, a sliding window is the same as the reference
window, and thus we have C(w0,w0) = 1. For m ≥ 1,
C(w0,wm) is a function of random variables as the data
symbols are random.
Theorem 1: For the received signal without any additive

noise, given by (2), we have

lim
W→∞

C(w0,wm) =

{
1, for m = 0,
H (s; (m)N ), for 1 ≤ m ≤ M −W ,

where

H (s; j) =


L
N
C(s, s; j), for 0 ≤ j < L,

0, for L ≤ j ≤ N − L,
L
N
C(s, s;N − j), for N − L < j < N .

(8)

Proof: It is clear that for m = 0, we obtain
C(w0,w0) = 1. We next consider the case of 1 ≤ m ≤
M −W . The correlation (6) can be split as

C(w0,wm)=
1
W

( ∑
i∈S0∩Sm

w0,iwm,i+
∑

i∈W\{S0∩Sm}
w0,iwm,i

)
.

(9)

Note that the summand of the first sum is the product of two
SW symbols. The first sum can be split into CFR and RFR
parts:∑
i∈S0∩Sm

w0,iwm,i

=

∑
i∈{S0∩Sm}∩W0

w0,iwm,i +
∑

i∈{S0∩Sm}\W0

w0,iwm,i. (10)

As the SW is repeated in y with a period N , it follows that
wm,i = w(m)N ,i for i ∈ S(m)N . The first sum in the right hand
side of (10) can be expressed in terms of the aperiodic auto-
correlation of the SW given by (7):∑
i∈{S0∩Sm}∩W0

w0,iwm,i

=

∑
i∈{S0∩S(m)N }∩W0

w0,iw(m)N ,i

=


kLC(s, s; (m)N ), for 0 ≤ (m)N < L,
0, for L ≤ (m)N ≤ N − L,
kLC(s, s;N − (m)N ), for N − L < (m)N < N

= kNH (s; (m)N ), (11)

where the last line follows from the definition ofH (s; j) given
by (8). The second term in the right hand side of (10) is a sum
within RFR, and the number of summands is smaller than 2L.
We have −2L <

∑
i∈{S0∩Sm}\W0

w0,iwm,i < 2L.
Now, we consider the second sum in (9) where at least one

of w0,i and wm,i is a data symbol. Each summand becomes an
independent and equiprobable binary randomvariable and the
number of summands is |W\{S0 ∩ Sm}| = W − |S0 ∩ Sm|.

The sum can be represented in terms of a binomial random
variable as∑
i∈W\{S0∩Sm}

w0,iwm,i = 2BW−|S0∩Sm| − (W − |S0 ∩ Sm|) ,

(12)

where BW−|S0∩Sm| ∼ B
(
W − |S0 ∩ Sm| , 12

)
. Then,

the cross-correlation is represented as

C(w0,wm) =
1
W

(
kNH (s; (m)N )+

∑
i∈{S0∩Sm}\W0

w0,iwm,i

+ 2BW−|S0∩Sm|−(W−|S0 ∩ Sm|)
)
, (13)

where BW−|S0∩Sm| is the only random variable. By the law of
large numbers, we have

lim
W→∞

1
W

(
2BW−|S0∩Sm| − (W − |S0 ∩ Sm|)

)
= 0.

Finally, we obtain

lim
W→∞

C(w0,wm)

= lim
W→∞

1
W

(
kNH (s; (m)N )+

∑
i∈{S0∩Sm\W0}

w0,iwm,i

+ 2BW−|S0∩Sm| − (W − |S0 ∩ Sm|)
)

= H (s; (m)N ).

Note that C(w0,wm) can be divided into a deterministic
part and a random part as in (13). If m = 0, the correlation
marks the inphase auto-correlation of the reference window
and the random part is empty, indicating that C(w0,w0) = 1,
and we call this as the trivial peak. If m 6= 0, the corre-
lation function remains a random variable being biased by
the deterministic part. Some properties of H (s; j) are easily
derived.
Proposition 1: For 0 < j < L, we obtain |H (s; j)| ≤

(L − j)/N , and H (s; 0) = L/N .
Due to Proposition 1, H (s; j) has a unique peak at j = 0,

irrelevant to the SW realization. Lemma 1 shows that the
correlation of SW-matched windows is distinguishable with
a high probability asymptotically.
Lemma 1: For nonzero integers m1 and m2 satisfying

(m1)N = 0 and (m2)N 6= 0, we have

lim
W→∞

(C(w0,wm1 )− C(w0,wm2 )) ≥
1
N
.

Proof: From Theorem 1 and Proposition 1, it follows
that

lim
W→∞

(C(w0,wm1 )− C(w0,wm2 ))

= H (s; 0)− H (s; (m2)N )

≥
1
N
.
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FIGURE 4. Convergence behavior of C(w0, wm) to H(s; (m)N ) for
(a) W = 1000, (b) W = 5000.

Note that the properties hold for an arbitrary choice of s.
The convergence of C(w0,wm) to H (s; (m)N ) for m > 0 is
shown in Fig. 4. The frame length and pseudo random SW
are set as N = 50, s = (−1, 1, 1, 1,−1, 1, 1,−1,−1,−1),
and L = 10. The size of the windows is set to W = 1000
for Fig. 4(a) and W = 5000 for Fig. 4(b). In the figures,
both correlations have the trivial peak C(w0,w0) = 1.
The overall difference between C(w0,wm) and H (s; (m)N )
becomes smaller as W increases. The peaks of H (s; (m)N )
appear periodically with a period of the frame length N .
Hence, if W is sufficiently large, the index of the highest
peak, or the most reliable peak, of C(w0,wm) apart from
the trivial one is the frame length or its multiple with high
probability.
Corollary 1: For m > 0, the expectation and variance of

the correlation are

E [C(w0,wm)] =
1
W

 ∑
i∈S0∩Sm

w0,iwm,i

 , (14)

and

VAR [C(w0,wm)] =
W − |S0 ∩ Sm|

W 2 . (15)

Proof: The correlation can be split as (9). For i ∈ S0 ∩

Sm, both w0,i and wm,i are SW symbols.

E

 ∑
i∈S0∩Sm

w0,iwm,i

 = ∑
i∈S0∩Sm

w0,iwm,i,

VAR

 ∑
i∈S0∩Sm

w0,iwm,i

 = 0.

For i ∈ W\{S0 ∩ Sm}, at least one of w0,i and wm,i is a data
symbol, where we can exploit (12).

E

 ∑
i∈W\{S0∩Sm}

w0,iwm,i

 = 0,

VAR

 ∑
i∈W\{S0∩Sm}

w0,iwm,i

 = W − |S0 ∩ Sm| .

The following corollary presents a lower bound of the
difference of expected the SW-matched correlation to the
SW-mismatched correlation.
Corollary 2: For nonzero integers m1 and m2 satisfying

(m1)N = 0 and (m2)N 6= 0, we have

E
[
C(w0,wm1 )

]
− E

[
C(w0,wm2 )

]
>

1
N
−

2
W
. (16)

Proof:

E
[
C(w0,wm1 )

]
− E

[
C(w0,wm2 )

]
(a)
=

1
W

 ∑
i∈S0∩Sm1

w0,iwm1,i −
∑

i∈S0∩Sm2

w0,iwm2,i


(b)
=

1
W

(
kNH (s; (m1)N )+

∑
i∈{S0∩Sm1 }∩W0

w0,iwm1,i

− kNH (s; (m2)N )−
∑

i∈{S0∩Sm2 }∩W0

w0,iwm2,i

)
(c)
≥

1
W

(
k + |S0| −

∣∣S0 ∩ Sm2

∣∣)
(d)
>

1
N
−

2
W
,

where (a) follows from Corollary 1, (b) follows from (10) and
(11), (c) follows from Proposition 1 and Sm = S(m)N , and
(d) follows from (5).

B. MEAN OF PERIODIC SAMPLES
In this subsection, we investigate the mean of periodic sam-
ples of the received signal y, which was used in [10] for
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detecting the values of the SW s and its length L. The mean
of periodic samples is defined as

Dp(l) =
1
d

d−1∑
i=0

yl+ip,

where 0 ≤ l ≤ p− 1, p is the sampling period, and d = bMp c
is the number of samples in the sum. The following theorem
presents the asymptotic convergence of Dp(l).
Theorem 2: For the received signal without additive noise,

given in (2), if (p)N = 0, we have

lim
M→∞

Dp(l) =

{
s(l−T )N , for l ∈ [0, p− 1] ∩ S,
0, for l ∈ [0, p− 1] ∩D.

Otherwise (i.e., (p)N 6= 0), we obtain∣∣∣∣ lim
M→∞

Dp(l)

∣∣∣∣ ≤ dL/ gcd(p,N )e
N/ gcd(p,N )

.

Proof: We first consider the case of (p)N = 0. If l ∈
[0, p− 1]∩ S , then yl+ip = s(l−T )N follows from (3). Hence,
for l ∈ [0, p− 1] ∩ S, we have Dp(l) = s(l−T )N , and

lim
M→∞

Dp(l) = s(l−T )N .

If l ∈ [0, p − 1] ∩ D, then yl+ip is an independent and
equiprobable binary random variable. We can representDp(l)
as

Dp(l) =
1
d
(2Bd − d) . (17)

By the law of large numbers,

lim
M→∞

Dp(l) = lim
d→∞

1
d (2Bd − d) = 0.

Now, we consider the case of (p)N 6= 0. We are interested
in the frame indices of the sampled symbols and the fraction
of fixed SW symbols that contribute to the sample sum. Let
b = (l − T )N , which is the frame perspective bias of the
sampling. If gcd (p,N ) = 1, as p is a generator of the cyclic
group {0, 1, . . . ,N − 1}, then

{(qp+b)N |0≤q ≤ N−1}={0, 1, . . . ,N−1} = ZN , (18)

for any b ∈ {0, 1, . . . ,N − 1} (we can use the notation Zn
instead). The sampler in (18) accesses all the symbol indices
in the frame regularly with the period of N . More generally,
assume g = gcd(p,N ) and let p = gp1 and N = gN1, where
p1 and N1 are coprime. We have

{(qp)N |0 ≤ q ≤ N − 1} = {0, g, . . . ,N − g},

where G = {0, g, . . . ,N − g} is a subgroup of ZN of order
N/g. Therefore,

{(qp+ b)N |0 ≤ q ≤ N − 1} = {b′, g+ b′, . . . ,N − g+ b′},

where b′ = b mod g. Hence, the sampler accesses only N1
symbol indices of the frame regularly. The fraction of sam-
pling of SW symbols is smaller than or equal to dL/ge/N1,
which is smaller than one if L < N/2. It is apparent that

FIGURE 5. Absolute mean of periodic samples |Dp(l )| for (a) p = 300,
(b) p = 50.

the absolute value of the mean of periodic samples does not
exceed dL/ge/(N/g) asymptotically:∣∣∣∣ lim

M→∞
Dp(l)

∣∣∣∣ ≤ dL/geN/g
,

with equality if the SW is the all-ones sequence.
It has been shown that, if the sampling period is a multiple

of the frame length, the mean of periodic samples converges
to the corresponding SW or zero. Assuming that we can
obtain a sufficiently long signal and a small multiple of
the frame length, this converging behavior guarantees the
acquisition of the SW, its position, and interval, which is equal
to the exact frame length.

The convergence behavior of |Dp(l)|, which is related to
Theorem 2, is exhibited in Fig. 5. We consider the same
frame length and SW as those used in Fig. 4. Here, we set
the sampling period p to 300 and 50, which are 5 times
as large as and equal to the frame length, respectively. As
the sampling periods p are multiples of the frame length
(or frame length itself), if l ∈ S, then the periodically
collected samples are all SW symbols with the same sign.
In contrast, if l ∈ D, then the samples to be averaged are
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all randomly generated data symbols. Note that, a smaller
p draws a larger d , which is the number of samples to be
averaged out. Hence, a smaller p, being a multiple of the
frame length, leads to a smaller average |Dp(l∈D)| and makes
the discrimination between |Dp(l∈D)| and |Dp(l∈S )| easier.
Until now, we have discussed the asymptotic behavior of

the correlation and the mean of periodic samples. In the
following section, a blind frame recognition method will be
proposed, which utilizes these results.

C. PROPOSED BLIND FRAME RECOGNITION METHOD
We propose an algorithm that targets an asymptotic setting
first. The algorithm is a two-step approach, which is a mod-
ified version of that proposed in [10]. In [10], the exact
frame length was estimated by averaging the intervals of
consecutive peaks through the correlation function. Other
frame parameters, such as the SW and the length of a frame,
and the delay were estimated using the absolute mean of
periodic samples subsequently. However, while choosing the
successive peaks of correlation, if some of the successive
peaks are not selected or some improper peaks are included,
the estimation of frame length may fail. Furthermore, as nei-
ther the number nor the minimum value of the proper peaks
are provided to the eavesdropper, no explicit method to select
helpful peaks from all the peaks for some frame information
was provided. We claim through Algorithm 1 that setting
a frame length multiple by choosing a single peak of the
correlation first, and then estimating all other parameters with
the mean of periodic samples is an effective approach.

The proposed blind frame recognition algorithm is
described in Algorithm 1. The algorithm is designed for
estimating the information of finite-length frames so that it
is assumed that N ≤ Nmax for a finite Nmax. The algorithm
takes the input of the received signal stream y and parameters
Nmax and η, and outputs an estimation of the frame length
N̂ , the delay T̂ , the SW ŝ and its length L̂. In the first step,
the algorithm estimates a small multiple of the frame length
p. The window length is set toM −Nmax in line 1. In line 2, p
is set to the index of the largest peak of C(w0,wm) excluding
C(w0,w0) = 1. This is one of differences from [10] in that
we choose the single highest peak instead of multiple peaks
from C(w0,wm) form > 0, which improves the performance
of the first step of the algorithm.

In the second step, the frame parameters are estimated with
Dp(l). If the first step is successful, p is an integer multiple
of N . Then, for l ∈ [0, p − 1] ∩ S, |Dp(l)| = 1 because
the summands of |Dp(l)| are all the same SW symbols. For
l ∈ [0, p− 1] ∩D, |Dp(l)| < 1 with a high probability as the
summands of |Dp(l)| are all random data. We detect the rising
and falling edges of |Dp(l)| to estimate the SW and frame
length. In line 3, the index sets of the rising and falling edges,
R andF , respectively, are determined with an edge detection
threshold η:

R = {l| |Dp((l − 1)p)| < η ≤ |Dp(l)|, l ∈ [0, p− 1]},

F = {l| |Dp(l)| < η ≤ |Dp(l − 1)p|, l ∈ [0, p− 1]}.

Algorithm 1 Blind Frame Recognition and Synchronization
Input: y, Nmax, η;
Output: N̂ , T̂ , L̂, ŝ;
\\ Step 1: Estimation of frame length

multiple p
1: W ← M−Nmax, compute C(w0,wm) form ∈ [0,Nmax];
2: p ← arg max

m∈[1,Nmax]
C(w0,wm), compute Dp(l) for l ∈

[0, p− 1];
\\ Step 2: Detection of frame length,

SW, and delay
3: set the index sets of rising and falling edges, R and F ,

from |Dp(l)|;
4: if |R| = 1 then
5: N̂ ← p;
6: else if |R| > 1 then
7: N̂ ← R(2) −R(1);
8: end if
9: T̂ ← R(1);

10: L̂ ←
(
F(1) −R(1)

)
N̂ ;

11: for l = 0, . . . , L̂ − 1 do
12: ŝl ← sgn(Dp((T̂ + l)p));
13: end for

The above predicates provide the same number of rising and
falling edges. The rising and falling edge instants provide
the start and end indices of the SWs in the received signals,
respectively. For p = N with proper η, there is a single rising
edge and a single falling edge regarding SW. If p = iN where
i > 1, there aremore than one rising and falling edges. Hence,
depending on the size of R, the frame length estimate N̂ is
obtained in lines 4-8. The delay is estimated by the value of
the first rising edge instant in line 9. The length of the SW
is estimated by the distance from the first rising edge to the
nearest falling edge and the SW is estimated by corresponding
signs of Dp(l) in lines 10-13.

IV. ANALYSIS OF ALGORITHM 1
In this section, we analyze the estimation error probability
of Algorithm 1. Subsequently, it is proved that the proposed
algorithm works well asymptotically; the error probabil-
ity approaches zero. Then the computational complexity of
Algorithm 1 is given.
Let the estimation error probability of Algorithm 1 be Pe

and the probability of correct estimation be Pc = 1 − Pe.
Then, Pe is bounded as

Pe = 1− Pc

= 1− P
(
N̂ = N , L̂ = L, ŝ = s, T̂ = T

)
≤ 1− P

(
(p)N = 0

)
×P

(
N̂ = N , L̂ = L, ŝ=s, T̂ =T |(p)N = 0

)
, (19)

where (p)N = 0 is the desired condition for the output of
the first step of Algorithm 1. An upper bound of (19) can be
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derived with Lemmas 2 and 3, whose proofs are provided in
Appendices A and B, respectively.
Lemma 2: The probability that p is a multiple of N is

bounded as

P
(
(p)N = 0

)
≥ 1−

4N 3
maxW

(W − 2Nmax)
2 . (20)

Lemma 3: Given (p)N = 0, the probability of correct
estimation of N , L, s, and T is bounded as

P
(
N̂ = N , L̂ = L, ŝ = s, T̂ = T |(p)N = 0

)
≥

(
1− 2 exp

(
−

η2
(

M
Nmax
− 1

)
2

))Nmax

.

The following theorem confirms that the error probabil-
ity of Algorithm 1 converges to zero as the received data
increases.
Theorem 3: For the noiseless reception (2), the error prob-

ability of estimatingN , L, s, and T byAlgorithm 1 diminishes
as M increases:

lim
M→∞

Pe = 0.

Proof: From (19) and Lemmas 2 and 3, we have

lim
M→∞

Pe

≤ 1− lim
M→∞

P
(
(p)N = 0

)
×P

(
N̂ = N , L̂ = L, ŝ = s, T̂ = T |(p)N = 0

)
≤ 1− lim

M→∞

(
1−

4N 3
maxW

(W − 2Nmax)
2

)
×

(
1− 2 exp

(
−
η2

2

(
M
Nmax

− 1
)))Nmax

= 0.

Now the analysis of computational complexity of Algo-
rithm 1 is given. The number of computations in Algorithm 1
is affected not only by the length of received signal M and
the input parameters Nmax and η but also from p, which is
determined by the realization of the received signals. Instead
of providing the exact number of operations, we evaluate the
complexity usingO (·), the big omicron, to show the limiting
behaviors.

The overall computational complexity of Algorithm 1 is
O (MNmax), which is explained as follows. At first, the cor-
relation, C(w0,wm), is computed for all m ∈ [0,Nmax]. As
the size of window is W = M − Nmax, where M > Nmax,
the computation of C(w0,wm) for all m requiresO (MNmax).
The following computations have smaller complexity. The
search of p and computation of Dp(l) for all l ∈ [0, p − 1]
are conducted with the complexity of O (Nmax) and O (M),
respectively. The rest of the algorithm can be computed in
O (Nmax).

V. ANALYSIS OF BLIND FRAME RECOGNITION IN
GAUSSIAN WIRETAP CHANNELS
In this section we consider Gaussian wiretap channel and
analyze the blind frame recognition by showing the asymp-
totic behaviors of the correlation function and the mean of
periodic samples. The wiretap channel is assumed to be an
AWGN channel with σ 6= 0, and the received signal was
given in (1). Let the noiseless component of the received
signal y′ = (y′0, y

′

1, . . . , y
′

M−1) and the sliding window w′m =
(w′m,0,w

′

m,1, . . . ,w
′

m,W−1) be

y′i = xtj−T+i = yi − ni,

and

w′m,i = wm,i − nm+i = y′m+i,

respectively. The following theorem shows the asymptotic
behavior of C(w0,wm) for increasingW .
Theorem 4: For the transmission over an AWGN channel

as in (1), C(w0,wm) converges as

lim
W→∞

C(w0,wm) =

{
1, for m = 0,
H (s; (m)N ), for 1 ≤ m ≤ M −W ,

Proof: When m = 0, C(w0,w0) = 1 as noted. Let us
consider the case of m > 0. The correlation function can be
expressed as

C(w0,wm)

= C(w′0,w
′
m)+

1
W

W−1∑
i=0

(
niw′m,i + w

′

0,inm+i + ninm+i
)
.

As ni is a Gaussian random variable, niw′m,i, w
′

0,inm+i, and
ninm+i are random variables with zero mean. By the law of
large numbers, we have

lim
W→∞

1
W

W−1∑
i=0

(
niw′m,i + w

′

0,inm+i + ninm+i
)
= 0.

From Theorem 1, we have

lim
W→∞

C(w0,wm) = lim
W→∞

C(w′0,w
′
m) = H (s; (m)N ).

Now we consider the mean of periodic samples of y. The
following theorem shows the asymptotic behavior of Dp(l)
over y.
Theorem 5: For the transmission over an AWGN channel

as in (1), if (p)N = 0, Dp(l) converges as

lim
M→∞

Dp(l) =

{
s(l−T )N , for l ∈ [0, p− 1] ∩ S,
0, for l ∈ [0, p− 1] ∩D,

and if (p)N 6= 0, Dp(l) is bounded as∣∣∣∣ lim
M→∞

Dp(l)

∣∣∣∣ ≤ dL/geN/g
.
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Proof: The mean of periodic samples can be written as

Dp(l) =
1
d

d−1∑
i=0

y′l+ip +
1
d

d−1∑
i=0

nl+ip.

By the law of large numbers, we have

lim
M→∞

1
d

d−1∑
i=0

nl+ip = 0,

and

lim
M→∞

Dp(l) = lim
M→∞

1
d

d−1∑
i=0

y′l+ip.

The rest of the proof is straightforward in regard to the proof
of Theorem 2.

FromTheorems 4 and 5, it was proven that the convergence
of C(w0,wm) and Dp(l) for a noisy signal is similar to that
in the noiseless case, indicating that the channel noise does
not affect their asymptotic behaviors. From these properties,
the asymptotic error probability of Algorithm 1 overGaussian
channel is 0 with proof omitted.

VI. MODIFIED BLIND FRAME RECOGNITION
AND SYNCHRONIZATION
From Theorem 3, we show that the SW and the frame length
are estimated with diminishing error probability when the
received symbol stream size increases. However, it is realistic
to assume that the received signal is finite in length, which
may result in estimation errors. In this section, we analyze
the possible errors in the finitely long received signal case and
we present Algorithm 2, a modified version of Algorithm 1,

Algorithm 2 Modified Blind Frame Recognition and
Synchronization
Input: y, Nmax, J ;
Output: N̂ , L̂, T̂ , ŝ;
1: N ′max← Nmax;
2: repeat
3: W ← M − N ′max, compute C(w0,wm) for m ∈

[0,N ′max];
4: p ← arg max

m∈[1,N ′max]
C(w0,wm), compute Dp(l) for l ∈

[0, p− 1];
5: η∗← argmax

η
3(η) ;

6: (R,F)← EdgeDetection(J , η∗);
7: N ′max← p− 1;
8: until |R| = 1
9: N̂ ← p;
10: T̂ ← R(1);
11: L̂ ←

(
F(1) −R(1)

)
N̂ ;

12: for l = 0, . . . , L̂ − 1 do
13: ŝl ← sgn(Dp((T̂ + l)p));
14: end for

which estimates the frame information with lower error
probability.

In Algorithm 1, the estimate of frame length multiple p is
set to the index of the maximum of C(w0,wm) except the
trivial peak C(w0,w0) = 1, and all the frame information
is estimated with |Dp(l)|. The estimation is performed based
on the rising and falling edges of |Dp(l)|. To improve the
estimation performance, we modify Algorithm 1 in three per-
spectives; optimization of edge detection threshold, stricter
detection of edges, and minimization of an estimate of frame
length multiple.

We first address the optimization of edge detection thresh-
old, η, of |Dp(l)| for maximizing the edge detection prob-
ability. For the correct estimate of a frame length multiple
p, the probability of detection of all edges in |Dp(l)| is
given as

P

 ⋂
l∈[0,p−1]∩S

∣∣Dp(l)∣∣ ≥ η, ⋂
l∈[0,p−1]∩D

∣∣Dp(l)∣∣ < η


= P

(∣∣Dp(l)∣∣ ≥ η|l ∈ [0, p− 1] ∩ S
)rp

×P
(∣∣Dp(l)∣∣ < η|l ∈ [0, p− 1] ∩D

)(1−r)p
, (21)

where Dp(l)’s for all l ∈ [0, p− 1] are independent to each
other, the SW ratio is r = L/N , |[0, p− 1] ∩ S| = rp,
and |[0, p− 1] ∩D| = (1 − r)p. Although r is unknown,
as C (w0,wm) converges to r for (m)N = 0 by Theorem 1,
we use C

(
w0,wp

)
as an estimate of r . The absolute mean of

periodic samples in each factor of (21) is given as

Dp(l) =
1
d

d−1∑
i=0

(
yl+ip + nl+ip

)
,

and is well approximated to Gaussian random variable by the
central limit theorem.

Let 3(η) denote an approximation of correct detection
probability, given as

3(η) = 3S (η)3D (η) , (22)

where 3S (η) and 3D (η) denote approximations of correct
detection probability in SW region and data region, respec-
tively. They are the factors of (21) and given as

3S (η) =

(
1− Q

(
−(1+ η)

√
d
σ

)

+Q

(
−(1− η)

√
d
σ

))bC(w0,wp)pc

≈ P
( ∣∣∣∣∣ 1d

d−1∑
i=0

(
yl+ip + nl+ip

)∣∣∣∣∣
≥ η|l ∈ [0, p− 1] ∩ S

)rp
, (23)
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and likewise,

3D (η) =

(
Q

(
−η

√
d

1+ σ 2

)

−Q

(
η

√
d

1+ σ 2

))p−bC(w0,wp)pc

. (24)

The optimized threshold is given as

ηopt = argmax
η
3(η) (25)

= argmax
η
3S (η)3D (η) .

As the frame length and SW are acquired by the edges of∣∣Dp(l)∣∣, false edge detection may lead to estimation error.
Hence a stricter criterion that can prevent such false edge
detection is required. One way of achieving this is to observe
more consecutive sampled values of

∣∣Dp(l)∣∣ than the number
of samples that observed inAlgorithm 1 for detecting an edge.
Since the length of SW is more than a few symbols, a stricter
condition is to check if there are J > 1 consecutive low or
high samples after a high or low sample for determining rising
or falling edges, respectively. We define an edge detecting
function 8(J , η, l), which observes J + 1 symbols and out-
puts 1, -1, and 0, meaning l is an index of either rising or
falling edges of

∣∣Dp(l)∣∣ or neither of them, as

8(J , η, l) =



1, for |Dp((l − 1)p)| < η, |Dp(l)| ≥ η,
. . . , |Dp(l + J − 1)| ≥ η,

−1, for |Dp((l − 1)p)| ≥ η, |Dp(l)| < η,

. . . , |Dp(l + J − 1)| < η,

0, otherwise.
(26)

The minimization of the randomness in |Dp(l)| can be
achieved by increasing the number of samples to be summed,
d , or with a smaller p. Given that p is a multiple ofN obtained
from C(w0,wm), |R| = 1 is a sufficient condition for p = N ,
which is the optimal p for detecting the edges of |Dp(l)|.
Therefore, we modify Algorithm 1 to choose p iteratively
until |R| = 1.
Algorithm 2 starts by setting N ′max = Nmax where Nmax is

an input argument to the algorithm. We set N ′max smaller as
the inner loop of the algorithm iterates. An iterative search
of W , p, η, R, and F is conducted in lines 2-8 where lines
3 and 4 are the same as Algorithm 1. In line 5, η is optimize
with (25). The rising and falling edges are set by Algorithm 3
where the first edge is determined in line 1-6 and remaining
edges are determined in line 7-13. At the end of each iteration,
the cardinality of R for rising edges is checked in line 8 of
Algorithm 2. If |R| 6= 1, Nmax is set to p − 1 for narrowing
the search range for N and the subsequent iteration begins.
The iteration proceeds until |R| = 1. After the iteration ter-
minates, the frame information is estimated as in Algorithm 1
in lines 9-13. Note that, throughout the iteration,W increases
gradually. This improves the accuracy of determining η with
the approximations and p such that (p)N = 0, as C(w0,wm)

Algorithm 3 EdgeDetection(J , η)
Input: J , η;
Output: R,F ;
1: R← ∅,F ← ∅;
2: for l = 0, . . . , p − 1 do \\ Detection of the
first edge

3: if 8(J , η, l) 6= 0 then
4: l0← l, break;
5: end if
6: end for
7: for l = l0, . . . , l0+p−1 do \\ Detection of all
edges

8: if 8(J , η, (l)p) = 1 then
9: R← R ∪ {(l)p};

10: else if 8(J , η, (l)p) = −1 then
11: F ← F ∪ {(l)p};
12: end if
13: end for

converges to H (s; (m)N ) with increase in W . The iteration
stops in some finite number of loops.

The computational complexity of Algorithm 2 is
O
(
MNmax

2), which is shown as follows. The maximum
number of iterations of the loop in lines 2–8 of Algorithm 2
is Nmax. During an iteration, lines 3 and 4, which are the
same process as in Algorithm 1, require the complexity of
O (MNmax) and O (M), respectively. The optimization of η
can be easily performed by a single table lookup. Then the
detection of edges by Algorithm 3 requiresO (Nmax). Hence,
the complexity in lines 2–8 is O

(
MNmax

2). The rest of the
algorithm can be computed with the complexity ofO (Nmax).

VII. NUMERICAL RESULTS
The simulation results for the proposed blind frame recogni-
tion algorithms are provided in this section to evaluate their
validness. Throughout the simulations, the recognition error
performance of the algorithms is of interest. It is regarded as a
recognition error event if any of the outputs of the algorithms,
N̂ , T̂ , and ŝ, are not correct.
The simulation setting is as follows. The frame length N is

set to 50. Practically used SWs usually have a good aperiodic
correlation property to avoid synchronization errors [1]–[4].
As the proposed algorithms are designed for arbitrary real-
ization of a SW, we try two types of SWs of length L = 15;
one from the m-sequence and the other randomly generated.
Throughout the comparisons, the maximum length of the
frame to be estimated is set as Nmax = 100. We consider the
transmission of BPSK modulated signals through noiseless
or Gaussian wiretap channels with high or low-SNR.

We first present the sensitivity of the edge detection prob-
ability of Dp(l) to the detection threshold by showing 3(η),
the closed form approximation of edge detection probability,
for various η’s and Es/N0’s in Fig. 6. Then in Figs. 7, 8,
and 9, Algorithms 1 and 2 are evaluated for different values
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FIGURE 6. The approximate correct detection probability (22) for frame
structure N = 50, m-sequence SW of L = 15, and received signal length is
M = 1000 where the transmit signals are the same, but the realization of
the channel noise is different for different Es/N0’s.

FIGURE 7. Recognition error rate of Algorithms 1 and 2 with Nmax = 100
for N = 50 and L = 15 over a noiseless channel: (a) m-sequence SW and
(b) randomly generated SW.

of η and J in the noiseless wiretap channel, Gaussian wiretap
channels of Es/N0 = 10 dB and Es/N0 = 0 dB, respectively.
The recognition error performance as well as the estimation
error performance for each frame information, such as frame
length, SW, and delay, over a Gaussian wiretap channel of
Es/N0 = 10 dB is shown in Fig. 10. Then, the simula-
tion results for a wider search space for the frame length,

FIGURE 8. Recognition error rate of Algorithms 1 and 2 with Nmax = 100
for N = 50 and L = 15 over a Gaussian channel with SNR Es/N0 = 10 dB:
(a) m-sequence SW and (b) randomly generated SW.

Nmax = 200, is shown in Fig. 11. In Fig. 12, the recognition
error rate for Algorithms 1 and 2 are presented for various
Es/N0’s. We also present the error performance of a modified
version of Algorithm 1 in which the optimization step of η
is inserted as Algorithm 2, and these cases are labeled by
Alg1(ηopt). In fact, the recognition error rate of Alg1(ηopt)
is the performance limit of Algorithm 1 with constant η’s.

1) EDGE DETECTION THRESHOLD η OF ALGORITHM 2
In Algorithm 2, the edge detection threshold η is optimized.
Fig. 6 shows3(η) for various η’s and channel SNRs with the
same realization of the received signal and simulation param-
eters, such as d and Nmax. In the figure, as Es/N0 increases, η
maximizing 3(η) converges to 1. The recognition error rate
of Algorithm 1 for various η’s confirms this observation. In
Figs 7, 8, and 9, as channel SNR increases, η minimizing the
error rate of Algorithm 1 also increases.

2) PERFORMANCE FOR THE SWs OF M-SEQUENCE AND
RANDOM GENERATION
In this subsection, we discuss the performances of the pro-
posed algorithms for the SW of the m-sequence and the
random sequence. For the random SW, the rate of (p)N 6= 0,
the error performance of the first step only, is also drawn for
Algorithm 1 for comparison purpose. The recognition error
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FIGURE 9. Recognition error rate of Algorithms 1 and 2 with Nmax = 100
for N = 50 and L = 15 over a Gaussian channel with SNR Es/N0 = 0 dB:
(a) m-sequence SW and (b) randomly generated SW.

FIGURE 10. Estimation error rate of Algorithms 1 and 2 for all frame
parameters with J = 1 for N = 50 and m-sequence SW of L = 15 in
Gaussian channel with SNR Es/N0 = 10 dB.

performance of Algorithm 1 cannot surpass the error rate of
the first step because if (p)N 6= 0, the edge detection step fails.
Hence, the performance of the first step is the algorithmic
limit of Algorithm 1. In general, the recognition error rates
monotonically decrease as the length of the received signal
increases in all cases. This observation is consistent with the
result of Theorem 3.

When the SW is the m-sequence, the error rate decreases at
a constant rate in the semilog plot. The error rate of the first

FIGURE 11. Recognition error rate of Algorithms 1 and 2 with two
different values of Nmax for frame structure N = 50 and m-sequence SW
of L = 15 in Gaussian channel with SNR Es/N0 = 10 dB.

FIGURE 12. Recognition error rate of Algorithms 1 and 2 for N = 50 and
m-sequence SW of L = 15 and M = 2000 in Gaussian channel with
various Es/N0 dB.

step is found to be extremely low for the m-sequence SW,
indicating that the recognition error rate is dominated by the
incorrect edge detection of the mean of periodic samples in
the second step of the algorithms. In contrast, in the random
SW case, there appears to be an error floor as M increases
due to poor SW patterns. In Fig. 7(b), for example, the error
rate of Algorithm 1 decreases quickly for a smallM whereas
the slope of the error rate curve becomes modest for a larger
M . As the edge detection in |Dp(l)| is irrelevant of the SW
pattern, the edge detection performs equivalently for both
m-sequence and random SW given the same p. In contrast,
the performance of the first step is largely dependent on SW’s
aperiodic correlation. Although the performance is poorer for
the random SW, the error rates still gradually decrease as M
increases.

3) PERFORMANCE COMPARISON BETWEEN
ALGORITHMS 1 AND 2
The recognition performances of the two proposed
algorithms can be compared. Algorithm 2 outperforms
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Algorithm 1 by following reasons. First, the iterative update
of p leads to a smaller integer multiple of N which is better
for the second step performance. The strict condition on
detecting the rising and falling edges by observing J instants,
which can be more than one, also keeps the algorithm from
detecting wrong edges. The use of optimal η as a threshold
in each iteration also improves the edge detecting perfor-
mance. In Figs. 7(a), 8(a), 9(a), 11, and 12, Algorithm 2
significantly outperforms Algorithm 1 for all values of M .
When the m-sequence is used, proper peaks of correlation
are easily distinguishable from other correlation values. This
makes Algorithm 2 get p = N with high probability. The
estimation error performance of Algorithms 1 and 2 for
all frame parameters are compared in Fig. 10. In contrast,
in the random SW case, there is a performance crossover
between the two algorithms in high-SNR environments as
shown in Figs. 7(b) and 8(b). For SWs with a poor aperiodic
correlation property, the proper correlation peaks are possi-
bly be indistinguishable from others. In this case, iterative
estimations of p can degrade the performance because there
are multiple large side lobes in the aperiodic correlation
function of the SW resulting in strong false candidates for
peak detection.

4) IMPACT OF NOISE
For the noiseless wiretap channel, if p is a multiple of N ,
|Dp(l)| = 1 in the SW region, l ∈ S. Hence, for edge
detection, a higher η provides a better performance generally.
In contrast, for a noisy channel, |Dp(l)| in the SW region can
be smaller than 1 due to the channel noise and the variance
is larger when the SNR is lower. Therefore, a high η does
not guarantee a good edge detection performance in the noisy
channel and should be set lower for more margin to avoid
false edge detection. The simulation results show the perfor-
mance sensitivity to η as in Figs. 7, 8, and 9. The optimization
of η in Algorithm 2 can be explained with Fig. 6, presenting
the approximated edge detection probability for various η’s
and Es/N0’s.
The recognition error rates of Algorithms 1 and 2 for

various Es/N0’s are shown in Fig. 12. The iterative estima-
tion of frame information in Algorithm 2 gives SNR gain
over Algorithm 1 more than 6dB, which can be shown by
comparing Alg2(J = 1) to Alg1(ηopt). And also the strict
condition on detecting the rising and falling edges of |Dp(l)|
by observing J > 1 instants gives additional SNR gain, which
can be shown by comparing Alg2(J = 3) to Alg2(J = 1).

5) PERFORMANCE VERSUS MAXIMUM FRAME LENGTH
As the maximum frame length Nmax, that can be estimated by
the proposed algorithm, is a preset value and also affects the
frame recognition performance. The performance in terms
of Nmax is given in Fig. 11. An increase in Nmax causes a
significant performance degradation in Algorithm 1 whereas
Algorithm 2 shows little or no loss of performance. For
Algorithm 1, if Nmax is doubled, then the average of p is

almost doubled, too. Doubling of M is required to get a
similar accuracy in the edge detection of |Dp(l)|. In contrast,
in Algorithm 2, p gets smaller through iterations and the
optimal η for given C(w0,wm) and p is also obtained. For
a similar edge detection performance, M does not need
to increase as much as needed in Algorithm 1. Therefore,
Algorithm 2 works better for a wider search space of frame
length.

VIII. CONCLUSION
In this article, we have studied a blind frame recognition and
synchronization problem. It has been shown that, under no
prior information other than the existence of unknown SW,
reliable blind frame recognition is possible. We proposed
an asymptotically good correlation-based algorithm that is
designed to determine the frame length and SW. The valid-
ness of the algorithm was theoretically proven – the error
rate vanishes as the received data size increases. Although
this approach originated from [10], we presented an explicit
modified algorithm and analyzed the asymptotic behaviors.
In fact, this is the first study that conducted the theoretical
analysis on the performance of fully blind frame recognition
to the authors’ knowledge.

We also presented another algorithm, which performs bet-
ter under the limited data scenario, for practical use. The
simulation results showed that regardless of channel impair-
ments or SW pattern, the proposed algorithms estimate the
frame parameters consistently improves as the amount of the
received signal increases. It is also shown that our algorithms
perform better when an SW with a better aperiodic auto-
correlation is used. The complexity analysis was also con-
ducted and the iterative estimation of frame information in the
improved algorithm results in the complexity increase from
O (MNmax) to O

(
MNmax

2).
APPENDIX A

In this section, we prove Lemma 2. From line 2 of
Algorithm 1, the following hold:

(p)N = 0

⇔

(
arg max

m∈[1,Nmax]
C(w0,wm)

)
N
= 0

⇔ max
m∈[1,Nmax],
(m)N 6=0

C(w0,wm)< max
m∈[1,Nmax],
(m)N=0

C(w0,wm). (27)

From Corollary 2, |C (w0,wm)− E [C (w0,wm)]| <
1
2

(
1
N −

2
W

)
holding for all m ∈ [1,Nmax] is a sufficient

condition for (27).

P
(
(p)N = 0

)
= P

 max
m∈[1,Nmax],
(m)N 6=0

C(w0,wm) < max
m∈[1,Nmax],
(m)N=0

C(w0,wm)


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≥ P
( ⋂
m∈[1,Nmax]

|C (w0,wm)− E [C (w0,wm)]|

<
1
2

(
1
N
−

2
W

))
= 1− P

( ⋃
m∈[1,Nmax]

|C (w0,wm)− E [C (w0,wm)]|

≥
W − 2N
2NW

)
≥ 1−

∑
m∈[1,Nmax]

P
(
|C (w0,wm)− E [C (w0,wm)]|

≥
W − 2N
2NW

)
,

where the last inequality follows from the union bound on
probabilities. Since M � N , we can assume that W = M −
Nmax > 2N . From Corollary 1,

E [C (w0,wm)− E [C (w0,wm)]] = 0,

VAR [C (w0,wm)− E [C (w0,wm)]] =
W − |S0 ∩ Sm|

W 2 .

By the Chebyshev inequality, we conclude the proof as

P
(
(p)N = 0

)
≥ 1−

∑
m∈[1,Nmax]

W − |S0 ∩ Sm|
W 2

(
2NW

W − 2N

)2

≥ 1−
∑

m∈[1,Nmax]

4N 2W

(W − 2N )2

≥ 1−
4N 3

maxW

(W − 2Nmax)
2 .

APPENDIX B

In this section, we first introduce the Chernoff bound [40] and
prove Lemma 3.
Lemma 4 (Chernoff Bound [40]): Let Bn ∼ B

(
n, 12

)
. For

any 0 < ε < 1,

P
(
Bn ≥ (1+ ε)

n
2

)
≤ exp

(
−
ε2n
2

)
,

P
(
Bn ≤ (1− ε)

n
2

)
≤ exp

(
−
ε2n
2

)
.

Using Lemma 4, we now derive the lower bound in
Lemma 3. In line 3 of Algorithm 1, if all the rising and falling
edges that discriminate the SW and data are set correctly, all
the frame information is estimated without errors:

P
(
N̂ = N , L̂ = L, ŝ = s, T̂ = T |(p)N = 0

)
≥ P

( ⋂
l∈[0,p−1]∩S

∣∣Dp(l)∣∣ ≥ η,
⋂

l∈[0,p−1]∩D

∣∣Dp(l)∣∣ < η|(p)N = 0
)

= P
( ⋂
l∈[0,p−1]∩S

∣∣Dp(l)∣∣ ≥ η|(p)N = 0
)

×P
( ⋂
l∈[0,p−1]∩D

∣∣Dp(l)∣∣ < η|(p)N = 0
)
. (28)

As p is a multiple of the frame length, |Dp(l)| = 1 when
l ∈ [0, p− 1] ∩ S. Hence the first term of (28) is

P
( ⋂
l∈[0,p−1]∩S

∣∣Dp(l)∣∣ ≥ η|(p)N = 0
)
= 1.

Furthermore, a lower bound for the second term of (28) is
obtained as follows:

P
( ⋂
l∈[0,p−1]∩D

∣∣Dp(l)∣∣ < η|(p)N = 0
)

(a)
=

∏
l∈[0,p−1]∩D

P
(∣∣Dp(l)∣∣ < η|(p)N = 0

)
(b)
=

∏
l∈[0,p−1]∩D

P
(∣∣∣∣ 1d (2Bd − d)

∣∣∣∣ ≤ η)

(c)
≥ P

(∣∣∣∣ 1d (2Bd − d)
∣∣∣∣ ≤ η)Nmax

(d)
≥

(
1− 2 exp

(
−
η2

2

(
M
Nmax

− 1
)))Nmax

,

where (a) follows from the independence of Dp(l)’s, l ∈
[0, p−1]∩D, (b) follows from (17), (c) follows fromNmax ≥

p, and (d) is due to Lemma 4 and d = bMp c.
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