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ABSTRACT Capacity is a fundamental metric for mobile edge computing scenarios, where the system state
plays an important role. Previous studies have mostly been based on the premise that the system state is
stable. In reality, the network is dynamic and the system state changes with time. In this paper, we study
the capacity of a mobile edge system in which users continuously join or leave the coverage of base station.
We first change the problem of maximum network capacity into a minimum transmission distance problem.
We observe that both the probability of the files being requested and the distance of the files transmission are
related to the degree of files, i.e., the number of users who are interested in a file and request it with a certain
probability. Then, we evaluate the degree of files in a time-varying situation, and calculate the probability of
the files being requested and the transmission distance according to the degree of files. Finally, we calculate
the capacity of the network under time-varying conditions. In the experimental section, we analyze the degree
of files, the optimal copies number, and the change in network capacity over time. In addition, we compare
the capacity in our systemwith classic studies. The experimental results verify the superiority of the proposed
method.

INDEX TERMS Mobile edge computing, capacity, time-varying, degree of files, transmission distance.

I. INTRODUCTION
According to Gartner’s report, the number of devices con-
nected to the Internet will reach 20.8 billion by 2020. The
pervasive connections will urgently need a more competitive,
scalable, secure and intelligent access network. Mobile edge
computing (MEC) [1]–[3] provided a flexible platform by
integrating storage, computing and communication into base
stations (BSs) or small base stations (SBSs), which are closer
to end users, to reduce access delay and achieve a better
quality of experience [4]–[7]. There have been many studies
on MEC so far [8]–[12].

Capacity indicates the ability of a channel to transmit sig-
nals that can reflect themaximum transmission rate supported
by the channel. Gupta and Kumar [13] proved that each
node can transmit at most θ

(
W
√
n

)
bits per second, where n

is the number of nodes, W is the channel throughput and
θ is used to characterize the growth rate of the function.
Evaluating capacity in MEC systems becomes more com-
plex. First, the popularity of files vary at different moments
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and for different users. Second, the devices of the network
contain BSs, SBSs, and users, and their functions/roles are
different. Third, users are generally mobile rather than static.
Some related work study capacity from different perspec-
tives [14]–[21]. However, most of the papers on capac-
ity cache files in nodes according to the popularity of the
files (popularity follows Zipf distribution). While in prac-
tice, the popularity of files changes with users requests.
For example, the authors of [22]–[24] allocated resource
and cache files by effectively predicting the distribution of
users’ requests and its mobility model. In addition, [14]–[21]
assumed that the scenario is stationary, failing to reflect the
network dynamics. In reality, the system status can evolve
over time. The network state can be stable or time-varying
(unstable). In a stable state, the values of variables in the
network are constant. In the time-varying (unstable) state,
the variables in the network change with time. For example,
the number of users, the location of users, the number of
files and the popularity all change with time. When users
join or leave the coverage of the BS, the number of users in
the BS will change, which may make the probability of files
being requested and the optimal copies number change over
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time. Some papers analyzed the system performance with the
time varying network state. For example, new nodes appear
in the graph as time evolved, to reflect the fact that the web
is changing with time [25]. The authors of [26] observed that
most graphics density changes over time with the number of
edges growing superlinearly in the number of nodes and the
average distance between nodes often shrinking over time.
In [27], [28], they found that in many applications, the pop-
ularity profile is unknown and changes over time; hence,
they analyzed the cache with nonstationary and statisti-
cally dependent popularity profiles (hypothetically unknown
and therefore estimated) from a learning theory perspective.
Liu et al. [29], [30] proposed a novel evolving model in
which the hybrid interactions among entities, based on
whether they belong to the same type, are classified into
intertype and intratype interactions that are characterized by
two joint graphs evolving over time. The proposed model
was verified through simulations, and the results show that
the model can well capture realistic networks. The authors
of [31] proved that the evolution of the network over time
can increase the files delivery rate from the perspective of the
degree of files, i.e., the number of users who are interested in
the file and may request it with a certain probability. These
studies are different from traditional static networks.

Recall that MEC provides services for local users, and the
files in the edge cache are more targeted to users within their
coverage. However, under time-varying conditions, the users
within the coverage of the BS are constantly changing, and
the users’ preference for the files will also change, then the
popularity of the files and the network capacity are change
over time. Considering this fact, we study the capacity of
MEC over time. Our contributions are as follows.

We mainly analyze the capacity of the edge network under
time-varying conditions, which is different from other static
network environments.

We use a bipartite graph to represent the evolutionary
relationship between users and files, in which users and files
are treated as two disjoint subsets, and each user and file is a
vertex in bipartite graph.

We observe that the degree of the files plays a big role in
system capacity, and calculate the degree of the files by the
users’ arriving and leaving.We then use the degree of the files
to calculate the probability of files being requested and the
transmission distance of the files.

We calculate the time-varying optimal copies number
based on the probability of the files being requested, so that
the users can request the files at a relatively close distance
which can minimize the average transmission distance and
maximize the capacity.

The rest of this paper is organized as follows. We sur-
vey related work in Sec. II. In Sec. III, we introduce the
time-varying network model. In Sec. IV, we calculate the
degree of files and the probability of the files being requested.
In Sec. V, the minimum transmission distance is calculated
by the degree of files and the probability that the files being

requested, and analyze the copies number of files. In Sec. VI,
we calculate capacity of the edge network and discuss the
change in the degree of files. In Sec. VII, we analyze the
degree of files, the copies number of files, and the change
in network capacity over time and compare the capacity in
our system with classic studies. We provide a brief summary
of this paper in Sec. VIII.

II. RELATED WORK
There have been considerable researches on capacity. Most
of the current studies are based on the assumption that the
network state is stable [21], [32], [33]. In [14], the authors
introduced a general class of mobile networks that incorpo-
rate both restricted mobility and inhomogeneous node den-
sities and described a methodology to compute the asymp-
totic throughput achievable in these networks by the store-
carry-forward communication paradigm. The authors of [15]
studied the throughput capacity of an information-centric
network when the data cached in each node has a limited
lifetime and proved that increasing the files lifetime accord-
ing to the network growth can enhance throughput capacities.
In [16], the authors analyzed the effect of cooperation on
network capacity in a hybrid network composed of cellular
and device-to-device (D2D) communications, and their sim-
ulation results showed that the cooperation between cellular
and D2D links can contribute to the sum capacity of the
hybrid network. In [17], Yang et al. analyzed the transmission
capacity of D2D communication under heterogeneous net-
works with cellular users (CeUEs) assisted and stated that the
D2D network capacity can be enhanced by allocating a part
of CeUE transmission power to assist D2D communication.
Different from the previous research, the authors in [18]
extended the exact capacity study for mobile ad hoc net-
works (MANETs). In [21], they proposed a simple model that
captures two key characteristics observed in real large-scale
networks, i.e., how people select friends and the number of
friends, and examined their impact on capacity.

In [19], the authors proposed that storing part of the files in
cache can increase network capacity. However, simply adding
files to cache limits the capacity increase, and the amount of
files cached is not allocated according to popularity, which
results in cached files are not necessarily popular for users,
leading to an increase in transmission distance and a decrease
in capacity. The research on capacity in [20] significantly
improved upon the research in [19]. The author distributed the
files according to popularity, and each filewas not only a copy
in the network, i.e., more popular files hadmore copies. How-
ever, the calculation of transmission distance in this paper
was based on [19]. The distribution of nodes in the network is
uniform, which does not reflect reality. Additionally, as time
changes, the files cached in the network may not be popular
for the users. In this article we assume that the state of the
users, the popularity of the files, and the maximum value of
the network capacity all change over time.
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FIGURE 1. System architecture under time-varying conditions.

III. PRELIMINARIES
MEC can alleviate the bandwidth pressure and latency caused
by the rapid development of the Internet and the Internet of
Things. Hence, users can enjoy a higher quality of experience.
However, under time-varying conditions, the users continu-
ously arrive and leave the coverage of the BS, and the files
initially cached may not necessarily be popular for the users.
Therefore, the capacity of each moment can be calculated
according to the latest statistics of the number of users and
popularity. As such, we propose an edge computing model
under time-varying conditions.

The system architecture, as shown in Fig. 1, includes one
BS, n SBSs and U (0) users, where the U (0) denotes the
initial number of users. Compared with a BS, the disadvan-
tage of an SBS are smaller processing capacity, limited cache
capacity (how many files an SBS can cache) and coverage
and the advantages of smaller energy consumption and lower
deployment cost. Within the coverage of a BS, there can be
multiple SBSs, that is, there is a relatively close transmission
distance between users and SBSs. In this paper, n SBSs are
covered by the BS and SBSs can collaborate with each other
to provide services to users. Under time-varying conditions,
users may arrive or leave the BS coverage. We assume that
all SBSs follow the Poisson Point Process (PPP) with an
intensity of λ. PPP is one of the commonly used methods to
place nodes. We assume that the BS can access the library
of m files F = {F1, · · · ,Fm}. Because different files have
different sizes, we record the size of the jth file as bj. Then
we can assume that the average size of each file is b, where

b =

(
m∑
j=1

bj

)
/m. Each SBS can cache an average of s

files. Moreover, we assume that C = {C1,C2, · · · ,Cm} is a
placement vector and x ij indicates whether the jth file is placed
in the ith SBS. Cj (t) indicates the number of jth file placed in

the entire edge network at the moment t, i.e., Cj (t) =
n∑
i=1

x ij .

Fig. 1 shows the arriving and leaving of users. At time t, Ella
is outside BS coverage and Jeff is within BS coverage. Ella
is within BS coverage but Jeff is outside BS coverage at time
t + 1. The number of users at time t is U (t).
The authors of [31] indicated that users with strong social

relations tend to request the similar files and the evolution
between users and files can be represented by a bipartite
graph. As shown in Fig. 2, where the set of users and files are
two disjoint parts. Each user or file is equivalent to a vertex
in the graph. Based on the bipartite graph, when user i is
interested in file j and requests j with a certain probability,
an edge is established between the user and the file, and
the degree of the jth file also increases (the degree of file
is the number of users who are interested in the file and
will request the file with a certain probability). Assume that
under the initial conditions, the number of edges per user
is at least cu, the number of edges per file is at least cf ,
and there are at least cucf edges between users and files.
As such, in the initial state, each user’s degree is at least cu,
and each file is at least cf . When a user q enters the coverage
of the BS, the newly arrived user q selects a user q’ who
has the highest similarity with the new user as its prototype.
For the calculation of similarity, the server stores the users’
access records, which is similar to the users’ browsing records
in the cookie to facilitate users’ tracking. When a new user
enters the coverage of the BS, the types of file the new user
are interested in are compared with the types of file existing
users are interested in respectively. The similarity between
the new user and the existing user is the ratio of the number
of file types in the intersection and those in their union. For
example, if the interested file types of one user are type A,
type B, and type C, and the file types that another user are
type B, type C, and type D, the similarity between the two
is ninter

nunion
=

2
4 , where ninter is the number of types in the

intersection and nunion is the number of types in the union.
New user copy the Si,κdi (t) (di (t) is the degree of user i at
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FIGURE 2. User’s evolution graph.

time t) edges of the selected prototype, that is, the number
of edges copied from the prototype is directly proportional
to the similarity between the two users. In fact, this process
is to make a preliminary judgment on the new users. If the
similarity between the new user and all existing users is 0,
the new user will be given cu edge (this process is equivalent
to the process of new user initialization). In Fig. 2, when Ella
arrives, she chooses Alice as a prototype. Theymay have very
similar requests for online information. For example, they
may like movies, such asCaptain America,Hulk, and Spider-
Man. They may also be interested in cosmetics and beautiful
clothes.

Now we consider the transmission of files. If one user
wants to request a file, the user first sends the request to an
SBS (the user will request the closest SBS and be within the
coverage of the SBS). If the SBS has the file requested by the
user, the SBS immediately provides it to the user; otherwise,
the file request is forwarded to other SBSs. Generally, when
an SBS provides file to one user, it may be provided to the user
within its coverage or may be provided to the user within the
coverage of other SBSs. If the file is delivered to user within
the coverage of other SBSs, the file needs to be delivered to
the SBS of the user originally request rather than delivered
directly to the user.

Due to interference and noise in the network, the trans-
mission of files in the network needs to meet certain con-
ditions. Suppose all nodes use the same transmit power P,
V (t) denotes a set of SBSs that are transmit simultaneously
at time t. When a node i ∈ V (t) sends file to a node j ∈ V (t),
the transmission rate can reach W bits per second if the
following conditions are met:

P
dεi,j

N0 +
∑
ϕ∈V (t),ϕ 6=i

P
dεi,j

≥ γ (1)

where γ is the minimum SINR that is successfully received,
dεi,j is the distance between i and j, N0 is white noise, and ε is

a parameter greater than 2, which describes how the signal
strength decays with distance.

In this paper, our main task is to calculate the capacity
of MEC under time-varying conditions, that is, to maximize
the network capacity when users continuously arrive or leave
the BS coverage under time-varying conditions. We use the
definition of capacity in [20], i.e., the number of bits each
node utilizes per second to satisfy users’ requests, which
includes the number of files it receives from others and the
files in the local cache that have been used to serve requests.
It is indicated in [13], [19] and [20] that the relationship
between capacity and transmission distance is C= W

L
√
n . Let

L (t) denote the average transmission distance required for
the SBSs to deliver files to the users at time t, we can express
the capacity as:

C (L (t)) = max
(

W
L (t)
√
n

)
(2)

From the expression of capacity, we can see that if we
want to optimize the network capacity at time t, we need to
minimize the transmission distance at time t. Since different
files have different probability of being requested and there
are m unique files in the system, we can transfer optimal goal
frommaximum capacity problem intominimum transmission
distance as follow:

min

L (t) = m∑
j=1

Lj
(
Cj (t)

)
pj (t)

 (3)

s.t.


Cj (t) ≤ n
m∑
j=1

Cj (t) ≤ ns
(4)

where Lj
(
Cj (t)

)
is the average transmission distance when

user request for the jth file, and pj (t) is the probability
that the jth file is requested at time t. The two constraints
represent the copy number of each file in SBSs cannot exceed
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the number of SBSs and the copies number of all files in
SBSs cannot exceed the volumes of the system, respectively.
Note that the L(t) includes two important factors, one is the
probability of files being requested over time, and the other
is the copies number of the files. Next, we will discuss the
optimal copies number at the current time after calculating
the probability of files being requested, so as to minimize the
average transmission distance and maximize the capacity.

IV. THE PROBABILITY OF FILES BEING REQUESTED
We know that under time-varying conditions, there will be
users constantly arriving or leaving the coverage of the BS.
Different users will request different files, and the users’
preference for files are different in different time periods.
Then, the probability that one file is requested in the net-
work is different in each time period. More popular files
will be cached more often. Therefore, it is important to be
able to accurately predict the probability of the files being
requested. On the other hand, the degree of files is similar to
the probability of the files being requested [31] and reflects
the popularity of the files. Thus, the probability that the files
being requested in this paper is calculated by the degree of
files, which is different from the traditional Zipf distribution.
Lemma 1: In our time-varying network model, the degree

of the jth file at time t can be expressed as:

dj (t) = dj (0)
t−1∏
l=0

(
1+

ein (t)− eout (t)
(ein (t)− eout (t)) (l − 0)+ cucf

)
(5)

where ein (t) = pkin (t)
kin∑
k=1

Si,kdi (t), eout (t) =
kout∑
i=1

pkout (t)

di (t).
Proof: Suppose the number of users arriving in a unit

of time may be 0, 1, 2, 3 · · · . The number of requests across
users in any interval follows an independent Homogeneous
Poisson distribution [28] and then we can record the arrival
rate of users as λin following the Homogeneous Poisson
distribution. Thus, the probability that the kin users reach the
BS coverage within the time interval t can be expressed as

pkin (t) =
λ
kin
in
kin!

e−λin , where pkin (t) ≥ 0, kin = 0, 1, 2, · · · .
Similarly, we can assume that the users’ leave in a unit
time follows the Homogeneous Poisson distribution with
intensity λout , i.e., the probability that there are kout users
leaving the BS range within the time interval t can be

expressed as pkout (t) =
λ
kout
out
kout !

e−λout , where pkout (t) ≥ 0,
kout = 0, 1, 2, · · · .

Note that when a new user arrives in the coverage of the BS,
the newly arrived user will select one user with the highest
similarity as the prototype. The newly arrived user then copies
the Si,κdi (t) edges of the selected prototype. Then, when a
new user arrives, the new user may request jth file with the
probability dj(t−1)

e(t−1) , where e (t − 1) refers to the total number
of all edges between files and the users, i.e., the sum of
degrees of all files, and dj (t − 1) is the degree of jth file at

time t-1. That is, the larger the degree of the file, the greater
the probability of the file will be requested by users.

When one user leaves the coverage of the BS, the edges
associated with the user will break, i.e., the number of edges
that leave are the degree of the users. Then, the probability
that all related edges of the leaving user are disconnected
from the jth file is dj(t−1)

e(t−1) . Therefore, we can calculate the
degree of files based on the change in the number of users
arriving or leaving in a unit of time.

Therefore, the degree of the jth file at the time t interval is:

dj (t) = dj (t − 1)

+

(
pkin (t)

kin∑
κ=1

Si,kdi (t)−
kout∑
i=1

pkout (t) di (t)

)

×
dj (t − 1)
e (t − 1)

(6)

where pkin (t)
kin∑
κ=1

Si,kdi (t) and
kout∑
i=1

pkout (t) di (t) refer to the

number of edges join the network and the number of edges
leave the network per unit time. Then, we can get:

dj (t)

= dj (t − 1)
(
1+

ein (t)− eout (t)
e (t − 1)

)
= dj (t − 1)

(
1+

ein (t)− eout (t)
(ein (t)− eout (t)) (t − 1− 0)+ cucf

)
= dj (0)

t−1∏
l=0

(
1+

ein (t)− eout (t)
(ein (t)− eout (t)) (l − 0)+ cucf

)
(7)

Therefore, Lemma 1 is proven.
Theorem 1: Under our network model, the probability that

the jth file is requested at time t can be calculated as:

pj (t)=
dj (t)
m∑
j=1

dj (t)
(8)

Proof: From Lemma 1, the degree of the jth file at time
t can be expressed as:

dj (t) = dj (0)
t−1∏
l=0

(
1+

ein (t)− eout (t)
(ein (t)− eout (t)) (l − 0)+ cucf

)
(9)

We know the degree of files is the same as the probability
of the files being requested and reflects the popularity of
the files, then probability of the files being requested can be
expressed as:

pj (t) =

dj (0)
t−1∏
l=0

(
1+ ein(t)−eout (t)

(ein(t)−eout (t))(l−0)+cucf

)
m∑
j=1

dj (0)
t−1∏
l=0

(
1+ ein(t)−eout (t)

(ein(t)−eout (t))(l−0)+cucf

)
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=
dj (t)
m∑
j=1

dj (t)
(10)

Consequently, Theorem 1 is proven.

V. TRANSMISSION DISTANCE
Calculating the minimum transmission distance is a critical
step in calculating the maximum network capacity. In this
section, we first represent the average transmission distance
of the files delivered to the users, and then we calculate the
copies number of files that can minimize the transmission
distance.

A. REPRESENTATION OF TRANSMISSION DISTANCE
Users in the coverage of all SBSs may request the jth file
directly or indirectly. If an SBS delivers one file to the user,
the probability that the SBS will deliver the file to the user
within its coverage is 1/n, and the probability of delivering it
to other SBSs is n−1n . Since the transmission distance from the
SBS to users within its coverage is relatively small, we ignore
it here. Then, the transmission distance can be expressed as:

L (t) =
1
n
· 0+

n− 1
n

L (t)

=
n− 1
n

m∑
j=1

Lj
(
Cj (t)

)
pj (t) (11)

where Lj (Ci (t)) is the average transmission distance from
the SBSs that delivers the jth file to other SBSs.
Theorem 2: Under our network model, the average trans-

mission distance over which SBSs deliver files to users can
be calculated as:

E
(
L (t)

)
=

m∑
j=1

dj (t) pj (t)

2
√
λCj (t) (n− 1)

(12)

Proof:When calculating the transmission distance over
which the SBSs delivers the jth file to the users, we start with
the degree of files. In Sec. IV, we have calculated the degree
of files, and the degree of the each file determines the number
of users for each file service. That is, when one SBS delivers
the jth file to other SBSs, it may deliver to one of dj (t)
SBSs. Since each file has Cj (t) copies at time t, the jth file
delivered by SBS may be one of Cj (t) files. Then, every file
inCj (t)may be delivered to dj(t)

Cj(t)
users, where dj (t) > Cj (t).

In addition, it is assumed that X ij represents the transmission
distance between the SBS receiving the request for jth file
and the ith neighboring SBS.We can express the transmission
distance for delivering the jth file to the users as:

E
(
Lj
(
Cj (t)

))
=

dj(t)
Cj(t)∑
j=1

X ij

n− 1
(13)

Considering that there are m unique files in the network
and each has a different probability of being requested,

we can calculate the average transmission distance when
SBSs deliver files to users as:

E
(
L (t)

)
=

m∑
j=1

dj(t)
Cj(t)∑
j=1

X ij

n− 1
pj (t) (14)

In the case where the SBSs in the network follow the PPP,
the distance between the SBS and the nearest SBS is (the
detailed proof process of (15) can be found in the appendix):

E
(
X ij
)
=

∫
∞

0
xf (x)dx

= 2πλ
∫
∞

0
x2 · e−λπx

2
dx

=
1

2
√
λ

(15)

We can rewrite the transmission distance as:

E
(
L (t)

)
=

m∑
j=1

dj (t) pj (t)

2
√
λCj (t) (n− 1)

(16)

Theorem 2 represents the transmission distance when users
request files. Since the problem of maximizing capacity can
be transformed into the problem of minimum transmission
distance. Thenwe need to find out the conditions under which
the transmission distance can be minimized.

B. OPTIMAL COPIES NUMBER AND MINIMUM
TRANSMISSION DISTANCE
In this section, our main task is to calculate the minimum
transmission distance when SBSs delivers files to users and
the copies number of files that can minimize the transmission
distance. Based on the average transmission distance we cal-
culated in Sec. V-A, we can express the optimization problem
(minimum transmission distance) as follows:

min

 m∑
j=1

dj (t) pj (t)

2
√
λCj (t) (n− 1)

 (17)

s.t.


Cj (t) ≤ n
m∑
j=1

Cj (t) ≤ ns
(18)

In (18), all variables except Cj (t) are known. If the files
requested by the users have a larger copies number, the users
will receive the files at a relatively close distance. The value
of Cj (t) directly affects the value of the transmission dis-
tance. However, the size of the cache space of the SBSs
are limited, and it is impossible to store all files in edge
SBSs. Hence the files need to be allocated reasonably in
limited storage space in order to minimize the transmission
distance and maximize the capacity. Next, the optimal copies
number that can minimize the transmission distance will be
discussed.
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Theorem 3: The optimal copies number at time t can be
expressed as:

Cj (t)

=



0, pj (t) ≤ 0√
dj (t) pj (t)

2β
√
λ (n− 1)

; 0 < pj (t) <
2β
√
λ (n− 1) n2

dj (t)

n; pj (t) ≥
2β
√
λ (n− 1) n2

dj (t)
(19)

Proof:According to the standard form of the generalized
Lagrange function, we have:
m∑
j=1

dj (t) pj (t)

2
√
λCj (t) (n− 1)

+

m∑
j=1

αj
(
Cj (t)− n

)
+ β

 m∑
j=1

Cj (t)− ns

 (20)

where αj and β are the Lagrangian constants.
The KKT (Karush-Kuhn-Tucher) conditions are as

follows: 

m∑
j=1

αj
(
Cj (t)− n

)
= 0; αj ≥ 0

β

 m∑
j=1

Cj (t)− ns

 = 0; β ≥ 0

(21)

Then, we can construct multivariate partial differential
equations of Cj (t):

∂
−

L
∂Ci
=

−dj (t) pj (t)

2
√
λC2

j (t) (n− 1)
+ αi + β (22)

Let the above formula equal 0, we obtain:

Cj (t) =

√
dj (t) pj (t)

2
(
αj + β

)√
λ (n− 1)

(23)

Considering that the copies number of files in the network
cannot be negative and then combine with the KKT condi-
tions, we obtain:√

dj (t) pj (t)

2
(
αj + β

)√
λ (n− 1)

= 0⇒ pj (t) = 0 (24)

Since each file can have only one copy in one SBS and
there are only n SBSs in the network, the copy number of
each file in the network cannot be more than n.
Combining this cache constraint with the KKT conditions,

we can obtain:√
dj (t) pj (t)

2
(
αj + β

)√
λ (n− 1)

=n⇒pj (t) =
2β
√
λ (n− 1) n2

dj (t)

(25)

where αj =
dj(t)pj(t)

2
√
λ(n−1)n2

− β.

In summary, the optimal copies number in Theorem 3 can
be proved. Theorem 3 represents the copies number. This
number is calculated according to the popularity of files,
that is, the popular files have more copies, and vice versa.
If files are stored in SBSs according to this standard at a
certain moment, the average transmission distance of the files
requested by the users is smallest, and (12) can obtain the
minimum value.

Because the transmission distance of the files includes the
transmission distance of the SBSs to the users within its
coverage and the transmission distance to users in other SBSs,
combing with (11), we can express the transmission distance
as follows:

L (t) =
1
n
· 0+

n− 1
n

L (t)

=
n− 1
n

m∑
j=1

dj (t) pj (t)

2
√
λCj (t) (n− 1)

=
1

2
√
λn

m∑
j=1

dj (t) pj (t)
Cj (t)

(26)

where

Cj (t)

=



0; pj (t) ≤ 0√
dj (t) pj (t)

2β
√
λ (n− 1)

; 0 < pj (t) <
2β
√
λ (n− 1) n2

dj (t)

n; pj (t) ≥
2β
√
λ (n− 1) n2

dj (t)
(27)

VI. NETWORK CAPACITY
A. NETWORK CAPACITY
According to the average transmission distance obtained in
Sec. V and combine with the calculation formula of the
capacity of W

L(t)
√
n , we can calculate the network capacity as

follows:

C (L (t))=
W

L (t)
√
n
=

W

1
2
√
λn

m∑
j=1

dj(t)pj(t)
Cj(t)

√
n
=
2W
√
λ
√
n

m∑
j=1

dj(t)pj(t)
Cj(t)

(28)

where

Cj (t)

=



0; pj (t) ≤ 0√
dj (t) pj (t)

2β
√
λ (n− 1)

; 0 < pj (t) <
2β
√
λ (n− 1) n2

dj (t)

n; pj (t) ≥
2β
√
λ (n− 1) n2

dj (t)
(29)
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FIGURE 3. The degree of files under time-varying conditions.

B. DISCUSSION
Combiningwith the above formula and reality, we can discuss
in terms of users’ arriving and leaveing as follows:

(a) When the number of users who arrive is not less than
the number of users who leave (Kin ≥ Kout ), there are two
variations in the degree of files. In the first case, only the users
arrive the network, and no users leave (Kin > 0, Kout = 0).
In this case, the degree of the jth file increases with a certain
probability for each user’s arrival. Since no user leave the
network, the degree of all files is not reduced. Some files
are not popular, and their degree may not change. Therefore,
the degree of files will not decrease when only users arrive
and no users leave. The second is the case where both the
users arrive and the users leave (Kin > 0, Kout > 0). At this
point, the degree of files may increase, unchange, or decrease.
When the one user arrives at the network and requests certain
file in the network with a certain probability, the degree of the
requested file will increase with a certain probability. When a
user leaves the network, the edge between the user and the file
is broken, and the degree of file will decrease. There is also
a case where some users’ arriving and leaving are related to
some files in the network. Overall, it is difficult to estimate
whether the degree of files will increase, decrease or remain
unchanged. Therefore, we cannot infer how the degree of the
jth file changes.

(b) The second case is when the number of users arriving
and leaving is equal to zero (Kin = Kout = 0). In this case,
the degree of files, the popularity of the files, and the network
capacity do not change. At this time, the network state is
equivalent to being stable rather than time-varying.

(c) When the number of users leaving is larger than the
number of users arriving (Kin < Kout ), this situation may
cause the number of users become to 0. We will not discuss
this case in depth.

VII. NUMERICAL RESULTS
In the previous sections, we theoretically analyze the impact
of the users’ arriving and leaving on the degree, popularity,

and capacity under time-varying conditions. In this section,
we first simulate the change in the degree of the files when
there are only users arriving without users leaving, and both
users arriving and leaving. Then we analyze the change
in copies number under time-varying conditions. Finally,
the influence of some parameters on capacity is studied
and the capacity of the proposed scheme is compared with
the classic capacity in other papers. When calculating the
capacity, we take the logarithm of the capacity in order to
clearly show the relationship between the capacity. In addi-
tion, we perform four repetitions in the simulation phase and
take their average as experimental results.

A. DEGREE OF FILES AND COPIES NUMBER
Fig. 3 (a) shows the change in the degree of the files over
time, where the distribution intensity of SBSs is 50. The
number of files is 300, and the number of users at the initial
time is 50, which varies with time. We assume that there
are only users arriving per unit time and no users leaving.
We can see that the degree of each file is rising with different
levels over time. Whenever a new user arrives the network,
it will inevitably choose a user with high similarity as its
prototype. The higher the similarity, the more edges will be
copied, indicating that the files they request are more similar.
Then the user will request a file with a certain probability,
and the file with a higher degree will be requested by the
users with a greater probability. In the simulation, the users
use the Roulette Wheel Selection [32] to select files. Each
file is assigned a probability of being selected according to
the degree of the file. The greater the degree of the file,
the greater the probability of the file being requested by the
users, which is equivalent to the larger area occupied in the
roulette. Therefore, the faster the growth of the files degree
indicates that these files are liked by more users in the same
period of time, the contrary indicates that the popularity of
these files are not very high. Since there are no users leaving,
the edges between the users and the files will not break.
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FIGURE 4. The copies number of files under time-varying conditions.

On the other hand, it is obviously impractical to assume
that only users arriving without users leaving. So Fig. 3 (b)
shows the change of the degree of the files as users arrive
and leave. We set the number of arriving users is equal to
the number of leaving users. Since the arriving users and
leaving users are different users, the edge between the newly
added users and the files and the edge between the leaving
users and the files are also different. We can see that the
degree of the files may rise or fall over time. The arriving
of the users will increase the degree of the files. The users’
leaving may reduce the degree of files. Of course, some files
are always popular whether users arrive or leave. Because of
the constant flow of users, files can be divided into several
categories based on their popularity: a) files that have been
popular for a long time; b) files that have been popular for
a short time; c) files with moderate popularity; and d) files
that have never been very popular. Therefore, it is obviously
not feasible to calculate the capacity of system according to
a fixed popularity.

Fig. 4 shows how the copies number of files change with
time and popularity, where Cj (t) denotes the optimal copies

number of the jth file at a moment t. Since at the initial
moment we assume that each file keeps the same degree,
the popularity and copy number of each file will also be the
same. As shown in Fig. 2, when a user enters the coverage
of a BS, the user will be associated with the interested files.
With the arriving and leaving of users, the difference in the
request probability of different files becomes more obvious,
and so does the difference in the degree of files. As time goes
by, therefore, different files have different copies number.

B. ANALYSIS OF NETWORK CAPACITY
The two graphs in Fig. 5 show capacity under time varying
conditions. Fig. 5 (a) analyzes the influence of the distribution
intensity of the SBSs on the capacity, where λuin = λuout = 6.
We take three different λ values. It can be seen that the larger
the value of λ, the smaller the value of capacity. The increase
of λ means the increase of SBSs, the interference between
SBSs will also increase, and the probability of the files being
successfully transferred will be reduced. An increase in the
number of failed transmissions will result in an increase in
transmission distance. Therefore, an increase in λ will cause
a decrease in capacity. What’s more, when one user enters
the coverage of SBS, the user will request the interested
file, which is equivalent to participating in the evaluation
of files popularity. With arriving and leaving of different
users, the popularity of files will keep changing. Note that
the probability of files is to proportional their popularity, and
users can retrieve files at a relative distance if the changing of
popularity can be reflected, which will increase the capacity.

Fig. 5 (b) shows the impact of users arriving and leaving
on capacity, and we set λ = 50. From the analysis of the
degree and copies number of the files, we have learned that
the popularity of the files will change as the users arrive or
leave. We set up three sets of values regarding users arriving
and leaving rates: λuin = λuout = 6, λuin = λuout = 3
and λuin = λuout = 1. Here we set the users’ arriving rate

FIGURE 5. Network capacity under time-varying conditions.
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and leaving rate to be the same value, because the number of
users basically remain stable despite the arriving and leaving
of users within a period of time. We find that the higher
the arriving rate and leaving rate per unit time, the larger
the capacity; otherwise, the smaller. If a user is interested
in a file and establishes contact with it, it is equivalent to
the user participating in a files’ popularity evaluation. More
users arriving or leaving means that more users are evaluating
popularity, just like everyone will choose what they want.
As a result, the difference in popularity between files will
become more apparent with user participation. So SBSs will
cache more files that users really need, which will increase
the capacity.

FIGURE 6. Comparison of network capacity.

In Fig. 6 we compare the proposed scheme with the classic
schemes [19], [20], where λuin = λuout = 6 and λ = 50.
It is clear that our capacity increases over time and the others
do not. The capacity of our solution at the initial moment is
not very good, because at the initial moment, the BS does not
know the popularity of the files and cannot cache the files
that are popular to the users. Although the value at the initial
moment is not too satisfactory, it is more realistic. The other
two capacity values are actually the network capacity values
at a certain moment after the Zipf distribution is assumed.

From the above, our proposed scheme performs well,
it greatly improves the network capacity compared with other
schemes.

VIII. CONCLUSION
In this paper, we study the network capacity under
time-varying conditions. To the best of our knowledge, this
is the first time that files are cached in SBSs in order to maxi-
mize capacity through user mobility under time-varying con-
ditions. First, we change the capacity maximization problem
into a transmission distance minimization problem. We cal-
culate the degree of files, and we find that using the degree
of files, we can calculate the average transmission distance
and the probability of files being requested by users. Then,
we use the Lagrange multiplier to optimize the transmission

distance and determine the optimal copies number that can
minimize the transmission distance. Finally, we calculate
the network capacity and implement simulation experiments.
We first simulate the change in the degree of the files when
there are only users arriving without users leaving, and both
users arriving and leaving. Then we analyze the change in
copies number under time-varying conditions. In addition,
we compare our calculated capacity with the previous capac-
ity. The results show that the capacity calculated by us shows
superiority. Although our proposed scheme performs well,
there are still some work that need further research in the
future. First, we calculate the capacity based on the latest pop-
ularity and copies number at each moment. However, these
files cannot be updated frequently with the latest updated
data, because frequent updates will bring a lot of cost. And,
if it is not updated for a long time, the cached files in SBSs
will no longer be popular. So we need to find a balance in the
cache update time. Second, we need to consider how network
performance changes when congestion occurs.

APPENDIX
PROOF OF THE (15)
Proof: In the following, we use the knowledge about

gamma functions to prove (15).
0 (α)=

∫
+∞

0
xα−1e−xdx

0 (α + 1) = α0 (α)

0

(
1
2

)
=
√
π

(30)

Now, we need to solve
∫
∞

0 x2 · e−λπx
2
dx. Let t = x2.

We have:∫
∞

0
x2 · e−λπx

2
dx

=

∫
∞

0
t · e−λπ t

1

2
√
t
dt
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1

2λπ
√
λπ

∫
∞

0
(λπ t)

1
2 · e−λπ tdλπ t
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1

2λπ
√
λπ
0

(
3
2
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=
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√
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1
2
0

(
1
2
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=

1

2λπ
√
λπ

√
π

2
(31)

Then,

E
(
X ij
)
=2πλ ·

1

2πλ
√
λ
·
1
2
=

1

2
√
λ

(32)

Therefore, (15) is proven.
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