IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 31, 2020, accepted July 17, 2020, date of publication August 4, 2020, date of current version August 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014269

A Three-Stage Optimization Method for Assembly
Line Balancing Problem

QIDONG YIN'-2"” AND XIAOCHUAN LUO'23"“, (Member, IEEE)

!College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
2State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
3State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Corresponding author: Xiaochuan Luo (luoxch@mail.neu.edu.cn)
This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB0304100 and

Grant 2019YFB1705002, in part by the National Natural Science Foundation of China under Grant 51634002, and in part by the Open
Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University, under Grant 2018RALKFKTO00S.

ABSTRACT Considering the characteristics of multimodels production pattern on assembly line, the assem-
bly line balancing problem which is non-deterministic polynomial hard becomes more challenging to
complete. In this article, we propose a reformulation of simple assembly line balancing problem based
on Dantzig-Wolfe decomposition. New models of the master problem and subproblems in this algorithm
are built. We implement a branching rule which is suited to seeking integer solutions of the problem.
A new three-stage branch-and-price algorithm is designed to accelerate the process of searching the branch-
and-bound tree. Extensive computational experiments on benchmark data sets, as well as a real industry case
are conducted. The numerical results validate the feasibility and effectiveness of the proposed method which
performs efficiently on various cases. Effects on optimization results considering the characteristics of the
instance sets are analyzed. Results show that the three-stage branch-and-price algorithm is superior to the
classic branch-and-price algorithm in terms of solution quality and computing time.

INDEX TERMS Assembly process planning, line balancing, branch and price algorithm, column generation.

I. INTRODUCTION

The production system of passenger vehicle manufacturing
consists of four main areas: Press shop, Body shop, Paint
shop and Assembly shop. Assembly represents the final phase
in which parts are sequentially installed on the semi-finished
vehicle body as it moves from one work station to the next.
Fig.1 shows the structure of main assembly line which con-
sists of more than 300 work stations (gray squares with
green borders) at Plant Tiexi, BMW Brilliance. Six models
are produced in Plant Tiexi currently, and there are 2000+
parts designed to be installed on every vehicle. Planners are
responsible for designing a line balancing scheme for each
model of cars according to the structure of the assembly
line, the production rate and work force. However, the line
balancing work is done manually depending on planners’ own
experiences now. These plans need to be updated often as
orders change and new models are planned to be produced.
Thus, the line balancing work becomes more challenging
to be finished. It is crucial to design an algorithm which

The associate editor coordinating the review of this manuscript and

approving it for publication was Shaoyong Zheng

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

could solve the problem efficiently and correctly. The prob-
lem of assigning tasks to sequential stations in such a way
that one or more objectives are optimized subject to some
specific constraints is called the assembly line balancing
problem (ALBP). The basic formulation of assembly line
balancing problem, in which one worker is assigned to a work
station, is known as the simple assembly line balancing prob-
lem (SALBP). SALBP can be classified into two groups: sim-
ple assembly line balancing problem type-1 (SALBP-I) and
simple assembly line balancing problem type-2 (SALBP-II).
In SALBP-I, the objective is to minimize the number of
work stations for a given cycle time, while in SALBP-II the
objective is to minimize the cycle time for a given number
of work stations. SALBP-I could be applied at the stage of
planning assembly process for a new vehicle before its start
of production (SOP) or optimization of production cost after
SOP. SALBP-II matches for the reconfiguration of the assem-
bly line when the production rate increase or the take rate
of specific car model changes during production. We study
SALBP-Ito deal with practical demands of automotive indus-
try that more models are planned to be produced on one
assembly line.

143607

https://orcid.org/0000-0003-2356-7491
https://orcid.org/0000-0001-6886-1649
https://orcid.org/0000-0002-4337-7057

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

C—) —) | I
 I—
| -
=z
oo
{
! B
, — Ll
! : } [— —
—— — —o J it i [E— == =n ||
—] T T S — N) e Q Engino o
L]

FIGURE 1. Assembly line system at Plant Tiexi, BMW Brilliance Automotive.

The remainder of this article is structured as follows:
Section 2 discusses research works of SALBP-I done in liter-
ature and the column generation method used in scheduling
and planning area. In Section 3, we describe the objective
and constraints of SALBP-I, and present a new reformula-
tion of SALBP-I based on the Dantzig-Wolfe decomposi-
tion method. In Section 4, we develop a branch-and-price
algorithm which integrates the column generation method in
the frame of branch-and-bound approach to solve the math-
ematical model built in Section 3. In this article, a specific
branching strategy is implemented in the branch-and-price
algorithm. In Section 5, experiments based on benchmark
data sets as well as a test for the real production case, which
locates in the production area of the vehicle’s frontend pre-
assembly, at one premier brand OEM’s assembly shop are
conducted. Computational results are presented and analyzed
Section 6. Conclusions and further research work directions
are stated in the final part.

II. LITERATURE REVIEW

There exist a large number of models and methodologies
for the assembly line balancing problem, and we will focus
our review on the researches of the simple assembly line
balancing problem.

Baybars [1] presented a survey of exact algorithms for
the simple assembly line balancing problem. He concluded
that only the enumerative techniques (i.e., branch and bound
(B&B) or searching methods) had been extensively applied to
SALBP-I among the four primary approaches to solve inte-
ger programming (IP) problems (cutting plane techniques,

143608

enumerative techniques, partitioning methods and group
theory). Scholl and Becker [2] also reviewed the exact pro-
cedures for SALBP-I. He classified most exact solu-
tions into two subdivisions: branch and bound (B&B)
procedures and dynamic programming (DP) approaches.
Charlton and Death [3] defined a general B&B method for
machine scheduling. They utilized the solution of a criti-
cal path problem to yield a smallest lower bound for each
iteration of the algorithm. Jackson [4] first constructed the
algorithm for SALBP-I, using an unconventional DP method.
Held et al. [5] also reported a new DP algorithm with the
introduction of the notion of ‘feasible subsets’ and ‘feasi-
ble sequences’. Due to the severe computational and stor-
age requirements of the DP methods, few other significant
DP approaches were reported until Schrage and Baker [6]
proposed an efficient method within the framework of DP
approach. Queyranne [7] has also presented a hybrid DP and
B&B models, suggesting that such an approach may be more
efficient compared to individual DP or B&B approaches.
Besides, Bockmayr and Pisaruk [8] developed a branch
and cut procedure based on integer programming formula-
tions with additional valid inequalities and constraint pro-
gramming techniques. Pinnoi and Wilhelm [9], [10] also
proposed branch and cut procedures for SALBP-I con-
nected with vertical balancing as well as for more general
problems. Recently, Peeters and Degraeve [11] presented a
Dantzig-Wolfe type formulation of SALBP-I. Linear pro-
gramming (LP) relaxation of this formulation was solved by
using column generation combined with subgradient opti-
mization. Pastor and Ferrer [12] presented an improved

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

mathematical program to solve SALBP. They provided a
more effective mathematical model by adding an additional
set of constraints. An initial pre-process is implemented to
calculate the range of work stations for different tasks. Vila
and Pereira [13] studied the assembly line worker assign-
ment and balancing problem using a branch, bound and
remember algorithm. The branch, bound and remember algo-
rithm utilized the characteristics of a dynamic programming
method.

Intelligent algorithms are also widely used on vari-
ous types of the general assembly line balancing prob-
lem. Rubinovitz and Levitin [14], Kim et al. [15] and
Sabuncuoglu et al. [16] developed genetic algorithms for the
SALBP. Ponnambalam et al. [17] presented a multiobjective
genetic algorithm for solving the SALBP with a given cycle
time. Yu and Yin [18] designed an adaptive genetic algo-
rithm in which the probability of crossover and that of
mutation are dynamically adjusted according to the indi-
vidual’s fitness value. Baykasoglu [19] proposed a simu-
lated annealing algorithm for simple assembly line balancing
problems. Seyed-Alagheband et al. [20] constructed a math-
ematical model and a novel simulated annealing (SA) algo-
rithm to solve the general assembly line balancing prob-
lem aiming at minimization of the cycle time with a given
number of work stations. Lapierre ef al. [21] stated a new
tabu search algorithm (TSA) for SALBP-I and verified
it with a real industrial data set. Annarongsri and Lim-
nararat [22] presented a hybrid tabu search method, which
combined the tabu search with the genetic algorithm, for
the SALBP-I. Fattahi et al. [23] developed a mathematical
model and ant colony optimization method for SALBP-IL.
Lai and Liu [24] applied an ant colony algorithm to solve
the SALBP-II.

Due to the fact that SALBP is a class of NP-hard optimiza-
tion problem, effective exact and heuristic procedures can
only obtain feasible solutions on medium size instances. Both
the number of nodes generated in branch-and-bound proce-
dures and the computational demands of a DP method grow
exponentially as the problem size increases [1]. Most exact
algorithms have large computer memory requirements, since
the enumerating procedures which assign tasks to stations
do not strictly work stage-by-stage [2]. In general, when the
number of tasks is large, all exact algorithms fail, in the sense
that the CPU times grow very rapidly [1]. Thus, algorithms
of SALBP for solving large-scale instances are necessary to
be studied.

Column generation has proven to be one of the most suc-
cessful approaches for solving large-scale integer program-
ming (IP). Three types of column generation approaches have
been used to solve problems with a huge number of columns.
Rather than enumerating so many columns explicitly, these
methods deal with them implicitly, generating a selected
set. The master problem, which contains a part of columns
of original problem’s solution, is defined as the Restricted
Master Problem (RMP) in column generation.

VOLUME 8, 2020

In the Type I approach, an auxiliary model is employed
to generate the set of feasible columns, and a RMP is
built to optimize over those generated columns obtaining
the best subset. Besides accepting columns from the aux-
iliary model, there is no interaction between the restricted
master problem and the auxiliary model. This method was
successfully applied to airline crew scheduling problems in
the 1960s and 1970s [25], [26]. Type II approach of column
generation includes the interaction between the restricted
master problem and subproblems. The restricted master
problem provides dual variable values as the coefficients
of the subproblems’ objective function. These data could
direct the search for improving columns in subproblems.
The subproblem chooses nonbasic columns which could
improve the master problem with the best reduced cost.
Gilmore and Gomory [27] first devised the Type II method-
ology to the cutting stock (CS) problem. A comprehen-
sive algorithm was designed to form a prototype for other
applications. Gilmore and Gomory [28] also proposed fur-
ther problem-specific techniques to facilitate this algorithm.
Balinski and Quandt [29] first suggested formulating the
vehicle routing problems with time windows (VRPTW) as
a set covering problem and Cullen et al. [30] first devised
a heuristic that exploited the related set partitioning form.
Wilhelm [31] applied the column generation method to
the assembly system design with tool changes problem.
Type III column generation applied Dantzig-Wolfe decom-
position [32] to the linear relaxation of an IP. The restricted
master problem provides dual values to the subproblem which
generates the improving column during the iteration. Appel-
gren [33] first used the Dantzig-Wolfe decomposition to solve
the ship scheduling problem which is an IP. Appelgren [34]
integrated the Dantzig-Wolfe decomposition into a branch
and bound searching frame dealing with the fractional solu-
tion. Type III column generation are successfully applied in
cutting stock problems. Vance et al. [35], [36] proposed a
branch and price algorithm to solve the CS problem. Savels-
bergh [37] presented a method of branch-and-price for the
generalized assignment problem. However, few works are
done with applying the branch-and-price method to SALBP-I
so far.

The aim of this article is to develop a branch-and-price
algorithm to solve SALBP-I. The scale of practical line bal-
ancing problem in automotive industry becomes larger than
decades ago, and we analyze the feasibility and efficiency
of the proposed algorithm. We reformulate a new model for
Dantzig-Wolfe decomposition of the SALBP-I that maintains
precedence constraints in the master problem. Thus the sub-
problem could be designed as a knapsack problem with side
constraints which is solvable in pseudo-polynomial time [38].
In our study, we construct an efficient frame of a three-stage
branch-and-price algorithm, in which a heuristic algorithm
gives the initial solution in the 1% stage, column generation
procedures are integrated in the 2" stage and an IP model
is applied to solve the SALBP-I in the 3" stage, that could

143609

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

obtain the optimal solution in relatively short time. Effective
branching strategy is determined for the unique characteristic
of the column generation method.

N N N N
(A=),

@ / a ®) 10 \
/ \\
N/ TN TN RN \ TN N
) e e e = ()
N N N N N // A%
(3%) (10) (12) (2) (10) // (34)
Y
>/
(45)

FIGURE 2. Precedence graph of an instance with 11 tasks.

Working
Time
60
5)
V¥ Cycle time
50
I
[]

)

8
%
E
% 7
2
15 . 6
10
5 & 10

1
Station 1 Station 2 Station 3 Station 4

FIGURE 3. Solution example of the instance set with 11 tasks.

Ill. PROBLEM DESCRIPTION AND FORMULATION
An assembly line is the manufacturing process in which
vehicle components are added to an unfinished vehicle body
in a sequential manner along a serial flow line. Fig. 2 shows an
example of a precedence graph of an instance with 11 tasks.
The number in the node represents the task number, and the
value in the bracket is operation time for each task. The
bar chart in Fig. 3 displays an optimal line balancing solu-
tion for this example. Pillars of different colors are marked
with the task number 1 to 11, and the height of the pillar
matches the length of task’s operation time. The task assign-
ment to the four stations is: Station; = {1, 3}, Stationy, =
{2, 5}, Stations = {4,6,7,8,9}, and Stations = {10, 11}.
We illustrate some basic concepts used in the process of
assembly production in following texts.
1) Work station: A station is the basic unit constructing
an assembly line where a number of operations are
performed in a fix range of area.

143610

2) Production rate: The Production rate means the
hourly output of finished vehicles on the assembly
line associated with the operation or sequence of
lines.

3) Cycle time: The cycle time is planned according to
the production rate of an assembly line. One cycle
time begins to count when a product arrives at a
station, and ends until the following product enters
the same station. It gives a limitation that the work-
load of a worker should be less than the cycle
time.

4) Task: The task is the operation in an assembly
process. The sum of all operations adds up to
the total work content for a vehicle assembly. The
time it takes to perform a task is called operation
time.

5) Workload: The workload means the ratio of sum of one
worker’s total operation times needed for a vehicle to
the station’s cycle time.

6) Precedence relationship: Precedence relationship
defines the order in which operations of tasks should
follow. Precedence constrains can be summarized in
a precedence graph (activity-on-arrow diagram) that
shows which operation has to be completed before a
specific operation can start.

7) Predecessor: Predecessor refers to the set of tasks that
must be done previous to one task according to the
precedence relationship.

8) Successor: Successor refers to the set of tasks that
follow one task in the precedence relationship.

A. PROBLEM STATEMENT

Based on the above explanations of special terms, we define
the SALBP-I as: The purpose of SALBP-I is to obtain
the optimal line balancing plan with a minimum number
of stations under a given cycle time. The line balancing
solution must include the assignment of all tasks in the
data set.

To ensure the feasibility of line balancing solution, we seek
out rules that formed in the planning work. We state the
key instructions for the assembly line balancing in details
below.

1) ASSEMBLY SEQUENCE

Assembly sequence is defined as the order in which parts
are installed on the vehicle. In the study of line balancing
problem, the precedence relations of tasks are edited on the
basis of assembly sequence. Line balancing solution should
satisfy the restrictions of the precedence relations. Since the
assembly sequence depends on the structure of product, some
parts must be installed first before its successors. Mechanical
interference between parts happens if the operation breaks the
precedence restrictions which may results in a shutdown of
the assembly line.

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

Plant Tiexi
Main Line

Pre-Assembly

] °

Frontend

Cockpit -

Door Line =
Powertrain Engine

FIGURE 4. Structure of the automotive assembly shop.

2) ALLOWED WORKPLACES

The assembly line is usually designed as a main assembly line
connected with several pre-assembly lines in the assembly
shop. Furthermore, the main assembly line can be partitioned
into several areas with different types of the vehicle’s con-
veyer which are marked with different colors in the struc-
ture layout in Fig. 4. Different structures of the conveyers
and hangers make it possible to assemble parts to specific
place on the vehicle for the process and ergonomic reasons.
Thus, some operations should be completed on the recom-
mended area. For example, all the operations of installing
parts underneath the vehicle body are distributed to the line
with tilting hangers (green area in Fig. 4: the tilting line)
which could lift the car vertically and adjust the tilting angle.
Parts assembly of doors, cockpit and frontend are completed
in the independent pre-assembly areas noted in the layout.
As aresult, the line balancing work in the industry practice is
done independently according to the assembly line’s different
areas.

3) RELATIONS BETWEEN TASKS

Some tasks require to be done continuously without a break.
Thus we create a group for this kind of tasks. Considering
special process requirements, some tasks must be completed
on the same station, while some operations are exclusive in
one station that there must be the station gap between them.
For those parts with a large size, they need two or more
workers cooperate together to finish the installations. These
tasks are marked as simultaneous work.

4) GUIDELINES OF THE WORK ORGANIZATION

All of operations are finally edited in the Standard Work
Specifications (SWS) document. The list of SWS states a
clear description of the tasks content and how to finish it on
each station. Total working time for one worker should be
less than the cycle time. Besides, the worker is not allowed

VOLUME 8, 2020

to take two tasks at the same time. One task description
usually includes several physical actions. The calculation of
workload of the worker is based on these actions. Using
the standard methods of time measurement planners could
compute the accurate task time.

TABLE 1. Definitions of the set symbols.

Set Definition

The set of tasks

The set of stations

The set of feasible assignments

The set of immediate predecessors of task i
The set of total tasks which precede task i
The set of immediate successors of task i
The set of total tasks which follow task i
The set of the assignment matrix

The set of columns of the assignment matrix
The set of task pairs in the left branch

The set of task pairs in the right branch

RO RTFAETI N~

TABLE 2. Definitions of the parameter symbols.

Parameter Definition

ct Cycle time

t; the operation time of task i

T the set of dual variables for constraint set (14)

o the set of dual variables for constraint set (15)
mfc Assignment pattern k of station j

rc the reduced cost

B. NATURAL FORMULATION OF SALBP-I

The definitions of the sets, parameters, and decision variables
used later in this article are presented in Table 1, Table 2
and Table 3, respectively. We describe the SALBP-I as an IP
formulation:

Minimize Zyj. ey
jeJ

Subject to
D aj=1 Viel)
jeJ
Zt,--aijfct-yj Viel 3)
iel
Djra <D jray Viel hePi) (4)
jeJ jeJ
a; €{0,1} Viel, jeJ)]
y€{0,1} VjeJ (6)

The objective function of the SALBP-I is to complete
all tasks assignment with the minimum number of stations.
Constraints set (2) ensure that all tasks in the data set are done
and every task (i) in the set is assigned to one work station.
Constraints set (3) define the cycle time constraint for work
stations. The sum of operation time of task on one station

143611

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

TABLE 3. Definitions of the variables.

Variables Definition

aij If task i is assigned to station j,=1;otherwise,=0
Yj Indicator variable, if station j is open, =1;otherwise,=0
)\{C If pattern k of station j is used in the solution,=1; other-
wise, =0
z Decision variable of the one station’s assignment
T; If task i is selected in the new pattern, =1; otherwise,=0

for each vehicle should be less than the cycle time of the
assembly line. Once a station has been assigned to a task, then
this station will be noted as open in the solution and the value
of variable y; = 1. Constraints set (4) describe the sequence
requirement for all tasks. Any preceding operation for one
specific task should not be assigned to stations later than the
station where its reference task locates. The predecessor’s
assignment is acceptable either before or in the same station
with its reference task.

C. DANTZIG-WOLFE REFORMULATION

Dantzig-Wolfe decomposition is a standard way to decom-
pose an integer programming model into a linear pro-
gramming master problem and one or several subproblems.
Dantzig-Wolfe decomposition has a close connection to col-
umn generation method. Instead of focusing on which station
a particular task is assigned to, the possible plans used to
design the solution for each station are regarded as variables
in the new formulation.

We construct a reformulation of SALBP-I:

Minimize) y;. N
jeJ

Subject to
YOS My =1, viel (8)
jeJ keT;
Y Y My <37y wmly Viel, heP)
jeJ keT; jeJ kel

&)

Z Ztik],;mék <ct-y; VjelJ (10)
keT; iel
Moel0,1) VkeT;,jed (11)
ye{0.1} Vjel (12)

The objective of the reformulation is still to calculate
the minimum number of work stations same as the original
model (1). Constraint set (8) is derived from assignment con-
straint set (2). Sequence constraints of set (4) are reformulated
in constraint set (9). Constraint (10) determines the cycle time
constraint. Also, the value of variable y; = 1 if the feasible
pattern k for station j is kept in the solution.

However, there will be an extremely huge number of
columns in the matrix m when the size of task set grows larger.
It is not feasible to enumerate all of the possible combinations

143612

of task assignment. We implement the column generation
method to solve the reformulated model of SALBP-I in
another section below. This method transforms a problem
into a master problem and pricing problems for improving
the tractability of large-scale problems.

D. COLUMN GENERATION METHOD
The fact that, there are a huge number of these combina-
tions between the tasks and stations, results in considerable
variables in the original model of SALBP-I. In the column
generation method, the line balancing problem is designed
as two parts: the restricted master problem and the subprob-
lem which is also called the pricing problem. The restricted
master problem covers partial sets of the assignment patterns.
Other solution patterns are generated through solving the
subproblem.

We derive the master problem based on the D-W decom-
position of the original problem model as follows.

Minimize Z Z zf (13)

jeJ peQ
Subject to

ZZA‘;z}”:I Viel (14)
JjeJ peQ
DITED) PR IENENT
jeJ peQ jeJ peQ

(15)
0= <1 (16)

The minimization of the station number forms as the objec-
tive function value in the master problem. The matrix A
consists of the current set of task distributions. Each column
represents an assignment pattern of one station. A heuristic
approach for solving SALBP-I is developed to obtain the
initial matrix. Details will be introduced in next section.

Task assignment constraints (8) and assembly sequence
constraints (9) in the reformulation of model are kept in the
restricted master problem. Constraints set (14) that matches
the constraints set (8) in the original formulation ensures
the task assignment constraints. Constraints set (15) makes
sure that original sequence constraints set (9) could still be
satisfied after the reformulation.

Variables in (16) which are relaxed binary variables of
(11) define the master problem as a linear programming.
The restricted master problem considers only a subset of the
columns. Additional columns can be generated for the RMP
by solving a subproblem. To check optimality, the subprob-
lem, also called the pricing problem, is solved to identify
columns to enter the basis of the master problem’s parameter
set A. Then the linear programming problem is reoptimized
after adding this kind of columns.

According to the theory of the simplex algorithm, a column
with the negative reduced cost value can improve the current
solution. Thus, we set the minimum reduced cost as objec-
tive value of the pricing problem, and the constraints inherit

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

from constraints of the original problem. The most negative
reduced cost rc of a column j in the master problem is defined
as:

n n
rc = Min <1 — me,-) =1— Max Zﬂixi (17

i=1 i=1
where 7 represents the dual cost vector consists of the dual
variables of the restricted master problem.
We formulate the subproblem as a 0-1 knapsack problem
with side constraints.

Max [Y mxi+ Y Y Jeud - i—) (18)
i=1

ieP0O hePre(i)

Subject to
Z tix; < ct (19)
iel
xi1+x3—xp <1 Vil € P(i2), i3 € F*(i2) (20)
xi€{0,1} Viel 2D

The objective function is equal to searching for the min-
imization of the reduced cost for the master problem. The
coefficients of variables in (18) are related to the dual variable
values associated with constraints set (14) and (15). Parts
of constraints of the knapsack problem are the same as the
cycle time constraints of the original line balancing problem,
namely the constraint set of (3). The cycle time value of
the original problem gives a weight limit in the knapsack
problem model. Another set of constraints is added to the
knapsack problem: task sequence constraints (20). These con-
straints guarantee that solutions could satisfy the sequence
constraints set (4).

The solution of the pricing problem represents one possible
pattern of task assignment. The new pattern can be added
into the master problem’s solution pool when its reduced cost
is negative. For each station, a specific pricing problem is
constructed to calculate the minimum reduced cost. Pricing
problems are designed to be solved in the order of the station’s
sequence. After getting an improved column, we add it into
the matrix A of the master problem.

IV. THREE-STAGE BRANCH-AND-PRICE ALGORITHM
A. OVERVIEW OF ALGORITHM
The three-stage branch-and-price algorithm consists of three
parts of computation. The flow chart of the algorithm is
illustrated in Fig. 5. In the first stage, an initial solution
for the instance of SALBP-I is given applying a heuristic
approach. The object value of the initial solution acts as the
upper bound Z,; in the algorithm. The lower bound in our
algorithm is calculated as the simple lower bound LB} =
[sum(t)/ct]. The initial solution also constructs the root node
of the branch and bound tree. Details of this initial algorithm
are described in the next subsection B.

In the second stage, we implement the iteration procedure
of column generation. At children nodes in the searching tree,
the LP relaxation model of the line balancing problem is

VOLUME 8, 2020

The first stage
Initial solving

v

Lower bound and upper
bound calculation

,, +,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
v

Select Node

The second stage

A,
Solve Restricted master
problem

Add column

Update Zbest
Yes
< 7B > Zbest -1
l No
Branch
___ *.____,__,__,_______________,__,__,_____
2
Solve IP model
Fathom

Termination

The third stage

FIGURE 5. Three-stage branch-and-price algorithm.

solved using the column generation method. We define this
problem as “‘restricted master problem’ because the initial
reformulation of master problem only includes a subset of

143613

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

the solution. Other columns with negative reduced cost are
generated iteratively by solving the pricing problems. Given
the optimal dual solutions which act as the multipliers in the
subproblem’s objective function, we use Gurobi optimizer to
solve subproblems. To identify a new column, the negative
reduced cost requirement of the master problem needs to
be satisfied by checking the optimal value of subproblem.
We add the optimal solution into the master problem as a new
column of the parameter set and repeat this iteration until the
negative reduced cost no more exists.

Iterations between the master problem and the pricing
problem stop when three cases happen: The first condition
works if the basic solution value of the master problem
reaches the lower bound Zp < LB. Secondly, the iteration
breaks when the reduced cost got from the new pricing prob-
lem is nonnegative rc > 0 which means that current solution
of the master problem cannot be improved any more. The
third condition interrupts the iteration when the value of the
reduced cost rc is small enough. Since the number of the work
station is integer, the final result should not be smaller than
the rounded up value of the basic solution value. Thus the
final result will not be smaller when the reduced cost locates
within a certain range Zp = [Zp/(1 — rc)].

When the iteration stops, we analyze the possible result
obtained at the current phase. Options should be taken under
different conditions:

1) Whenever an integer solution in node /4 is found,
if Z, < Zpest, then solution of node h becomes the
new incumbent solution, and the node # is pruned after
updating Zpes; .

2) For fractional node i which holds Z; > Zp.,; — 1, then
node i is fathomed for bounding.

3) The node with no feasible solution should also be
fathomed.

4) Branching is performed on fractional node i with a
solution that Z; < Zpee — 1.

If we cannot obtain an integer solution at the second stage,
branching takes place and it generates two new children nodes
in the branch-and-bound tree. In the third stage of the branch-
and-price algorithm, an IP model of the Dantzig-Wolfe
reformulation (7)-(12) is applied to solve SALBP-I. The
parameters of the IP model are based on the columns gen-
erated in the second stage. This procedure is designed to
seek integer solutions. If we achieve the optimal solution,
the algorithm terminates and the final solution is updated,
otherwise calculation on active nodes continues. The list of
active nodes in the searching tree consists of nodes that are
either not solved or solved but with fractional solutions. When
no active node left in the branch-and-bound tree the algorithm
terminates. The current incumbent solution becomes the final
solution.

The lower and upper bounds used in the branch-and-price
algorithm could improve the efficiency of tree searching.
A good lower bound of optimal IP solution value decreases
the iteration times of column generation as the first stopping

143614

criteria stated above. The lower bound is set to the minimum
value of work station over all active nodes in this algorithm.
And the upper bound value is updated according to the value
of [Zp] when the column generation process finishes in the
2" stage and the value of IP solution in the 3" stage. The
upper bound is the current optimal integer solution value.
Nodes with the value exceeds the upper bound could be
pruned without further branching. If an integer solution is
obtained, this is the best feasible integer solution that can be
obtained in this part of the tree, thus no more branching is
needed on this node [33]. Zp.s; can be updated to reduce the
gap between the lower bound and the upper bound.

B. INITIAL SOLUTIONS

We need to determine the initial restricted master problem
to start the branch-and-price algorithm. The optimal values
of dual variables can be obtained through solving the initial
restricted master problem. Based on these values we devise
the object function of subpricing problems. Not only do we
need to set an initial restricted master problem, but also at
every branching node in the searching tree of the branch-
and-price algorithm, an available restricted master problem
has to be initialized to kick off the iteration process of column
generation. A heuristic algorithm is designed to construct the
initial solution of the restricted master problem in this work.
The pseudo-code is described below.

Heuristic Algorithm 1 Pseudo-Code of Initial Solution
1: while the Pool not empty do

2 if t; > the time capacity of active station j then
3 Set a new station j + 1 active
4: end if
5: for task in Pool do
6 if L = 0 and R = () then
7 assign the current task to active station
8: update the pool set
9: end if
10: if L = () and R # () then
11: exclusive tasks checking
12: end if
13: if L # () then
14: search tasks for packing
15: assign the packing tasks to active station
16: update the pool set
17: end if
18: end for

19: end while

Since the branching is realized through adding constraints
in the pricing problems, the initial restricted master problem
should not be violent against these constraints. As the search-
ing trees grow, the number of task pairs that should be com-
bined or disjoint will increase in deeper layers. Thus, we need
to construct the specific initial master problem which has a
feasible LP relaxation at different nodes. The methodology
of the heuristic algorithm for the initialization is based on the

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

task oriented approach. Tasks in the pool, whose preceding
operations are totally assigned already, will be updated during
the process of solution searching. Tasks are classified into
three categories after checking their feasibility of fixing to
current station: Firstly, task without any related constraint
pair can be assigned directly according to the current station’s
time capacity. Secondly, tasks, which are included in the
disjointing pair, should satisfy exclusive constraints that their
exclusive tasks are not in current station. Thirdly, we must
pack tasks that appear in one joining pair constraint together
through grouping them as one task in later computing process.
Tasks which belong to the set of middle range of the joining
pair in the precedence relationships need to be packed simul-
taneously. New station will be created when the capacity of
current station is not enough to accept any unassigned task
in the pool. Searching for a feasible solution continues until
the pool set is empty which means that every task has a
corresponding assignment.

C. SEARCH STRATEGY

The search strategy controls how to select unexplored nodes
in the branch-and-bound tree. Search strategies affect the
computer memory requirements and computation time of the
branch-and-price algorithm. Different search strategies have
specific characteristics which are suitable to variant prob-
lems. Depth-first search, breadth-first search and best-first
search are three common search strategies widely used in the
branch-and-bound algorithm.

Depth-first search (DFS) strategy navigates the search path
in the order of relation of the current node. At current node
in the branch-and-bound tree, new branching nodes gener-
ated from this node will be explored first for further study.
This is realized through setting a stack to store the list of
unexplored nodes. We select the top item in the stack for
exploration, and then remove it after obtaining a feasible
solution. Children nodes based on the branching procedure
of this fractional solution are inserted on the top of that stack.
Thus, in the depth-first search tree, the node which is created
most recently will be calculated first.

Breadth-first search deals with the list of brand-and-bound
nodes in the data structure of a queue. Contrary to the
depth-first search method, breadth-first search manage the
unexplored nodes in a first-in, first-out sequence. Breadth-
first search runs well on unbalanced search trees since this
strategy could always detect the optimal solution that is clos-
est to the root of the tree.

Best-first search compare the values of lower bound of
active nodes and select the node with smallest value as the
next branching node. Best-first search is conducted by man-
aging the active nodes list in a data structure of heap and
setting the lower bound value as the key. As a result, best-first
search often discover good solutions earlier in the search
tree. The last strategy tested in our algorithm is called cyclic
best-first search. This approach, which is originally named
distributed best-first search, is a hybrid method between
depth-first search and best-first search. Unexplored nodes list

VOLUME 8, 2020

is divided into a group of heaps according to the depth of node
in the searching tree. Cyclic best-first search picks out the
smallest node from each heap to branch and takes the same
operation at the next heap until all heaps are empty. Cyclic
best-first search will explore the node with the best value at
depth 0, then depth 1, and so on; upon reaching the deepest
layer of the search tree, it will repeat the process starting
from depth 0. The choice of search strategy has potentially
significant consequences for the amount of computation time
required for the branch-and-price procedure, as well as the
amount of memory used.

V. IMPLEMENTATION DETAILS

A. BRANCHING RULES

The restricted master problem used in the column generation
method is a LP relaxation model. The optimal solutions of this
model are not necessarily integers when column generation
iterations finish at one node. Then the branching works to
create new nodes on the searching tree aiming to obtain the
integer solution. In the standard branch-and-bound algorithm,
branching always acts on fractional variables of the original
problem. However this method cannot guarantee obtaining an
optimal integer solution in the branch-and-price algorithm.
Since the solutions pruned out after branching may appear
again in the children nodes’ column generation process.

We apply the Ryan-and-Foster branching rule in our
branch-and-price algorithm. This branching strategy is based
on the following proposition.

Proposition 1: If a basic solution to the master problem is
fractional, then there exist two tasks / and m of the master
problem such that

o< ¥

j,p:AZ.:] AP =1

mji—

<1 (22)

Proof: Consider fractional variable zf , Let task [be any

task with AZ = 1. Since and z]p is fractional, there must exist
/ /

another basic column with 0 < sz, < 1 and AZ., = 1. Since

there are no duplicate columns in the basis, there must exist

a task m such that either A[r;. =1or Aﬁ; V= 1, but not both.
This leads to the following relations:

2. A

JjeJ peQ

2 X5

AP 1 AP —
j.Alj—l p.Alj_l

> Z Z (23)

j,p:AZ-:l,Ap =1

mj

1

The pair [and m gives the pair of branching constraints.

Z z;’zl and Z

C AP p C AP p
j,p.AI_/=1,Am_/-=l],p.AU=1,Amj=1

20

We follow the structure of binary trees when act branching
in the branch-and-bound tree. On the left branch tasks / and

143615

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

m are required to be covered by the same column. Thus, all
feasible columns must have A} = A, = 1 or Aj; = A} - = 0.
While tasks [and m are requlred to be covered by the dlfferent
columns on the right branch, and feasible columns must have
A=Al =0o0r Al = 0,A). = lor A = 1,A), = 0.
Branching constraints on the left branch equals to combining
tasks I and m into a new task. On the right branch, tasks /
and m are required to be disjoint. Proposition 1 implies that
if no branching pair can be identified, then the solution to
the master problem must be integer. The branch-and-price
algorithm must terminate after a finite number of branches
since there are only a finite number of pairs of tasks.

B. KNAPSACK SUBPROBLEM WITH SIDE CONSTRAINTS
The strategy of branching in this work is preventing the
fractional solution from being regenerated in the column
generation process. Adding constraints set to the master prob-
lem can introduce new dual variables to the pricing prob-
lem. Thus, instead of adding the branching constraints to
the variables of master problem directly, we guarantee the
branching constraints through constructing and solving the
pricing problem. Branching constraints can be integrated into
the column generation subproblems. On the left branch we
have:

Max Z ity Y i (i =) (24)
i€P0 hePre(i)

s.t.
Dt <ct (25)
iel
xX1=xn VimelL (26)
X1 +x3—xp <1 Vil € P(i2), i3 € F*(i2) (27)
x;e{0,1} Viel (28)

The new constraint set (26) requires that the pair of
tasks / and m must appear together in new patterns in the
left branch. As a result, fractional columns eliminated by
the addition of these constraints will not be regenerated
again.

Subproblems on the right branch can be formulated as:

Max Zn,x, + > w29
i€ PO hePre(i)

s.t.
Z tix; < ct (30)
iel
xi+xy, <1 VimeR (31
X +x53—xn <1 Vil € P(i2),i3 € F*i2) (32)
xi€{0,1} Viel (33)

On the right branch we add the constraint set (31) to the
subproblem. This constraint will prevent columns with tasks
assignments x; = x,; = 1 from being generated.

143616

VI. COMPUTATIONAL RESULTS

In this section, we present and analyze experiment results
of the proposed algorithm. Benchmark data sets and real
production data of the assembly line are employed to test
the algorithm. We implement our experiments in Python
3.0 programming environment that constructs an interface
with Gurobi 7.5.2 optimizer. The computer on which experi-
ments are conducted has an Intel® Core™ i7-3770 3.40GHz
CPU and 8GB RAM memory using the Windows 7 operating
system.

TABLE 4. Characteristics of precedence graphs.

Name n tmin tmaz sum(t;) OS(%) TV
Arcusl 83 233 3691 75707 59.09 15.84
Arcus2 111 10 5689 150399 40.38 568.9
Barthold 148 3 383 5634 25.8 127.67
Bartho12 148 1 83 4234 25.8 83
Bowman 8 3 17 75 75 5.67
Buxey 29 1 25 324 50.74 25
Gunther 35 1 40 483 59.5 40
Hahn 53 40 1775 14026 83.82 44.38
Heskiaoff 28 1 108 1024 22.49 108
Jackson 11 1 7 46 58.18 7
Jaeschke 9 1 6 37 83.33 6
Kilbridge 45 3 55 552 44.55 18.33
Lutzl 32 100 1400 14140 83.47 14
Lutz2 89 1 10 485 77.55 10
Lutz3 89 1 74 1644 77.55 74
Mansoor 11 2 45 185 60 22.5
Mertens 7 1 6 29 52.38 6
Mitchell 21 1 13 105 70.95 13
Mukherje 94 8 171 4208 44.8 21.38
Roszieg 25 1 13 125 71.67 13
Sawyer 30 1 25 324 4483 25
Scholl 297 5 1386 69655 58.16 277.2
Tonge 70 1 156 3510 59.42 156
Warnecke 58 7 53 1548 59.1 7.57
Wee-Mag 75 2 27 1499 22.67 13.5

A. BENCHMARK DATA SETS
In this part, our experiments use three referenced data sets of
SALBP, which is data set of Talbot et al. [39], Hoffmann [40]
and Scholl [41] respectively. The reported best-known solu-
tions of the instances studied in these data sets provide a
benchmark for numerical computations. These three data sets
include a total of 25 precedence graphs. Table 4 presents
characteristics of these precedence graphs.

The column headings in the Tables of data sets and exper-
iment results mean as follows.

Name: name of the precedence graph.

n: the number of tasks.

ct: cycle time.

tmin: the minimum task time in the instance set.

tmax: the maximum task time in the instance set.

sum(t):the summation of task time in the instance set.

OS: the ‘Order Strength’ (OS) is equal to the number of
all precedence relations divided by the maximum
number of precedence relations.

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

TV: the ‘Time Variability Ratio’ is the ratio of maximum
task time to the minimum task time.
UB: upper bound found by the heuristics used to initial-

TABLE 6. Optimal results for different problem characteristics.

Problem

Optimal value getting from 3 stages

ize the column generation. Characteristics Ist stage 2nd stage 3rd stage
LB;: lower bound which equals to [sum(t)/ct]. Low — 73.81% 11.90% 14.29%
Z*: best-known solution in the literature NT Middle 34.69% 28.57% 36.73%
: wh sofu ure. High 43.90% 23.17% 32.93%
Nodes:the number of nodes searched in the branch- Low 41.38% 34.48% 24.14%
and-bound tree. (6N Middle 44.55% 22.77% 32.67%
. . High 62.79% 11.63% 25.58%
Tterations: _ , Low 46.75% 19.48% 33.77%
the total times that the column generation procedure v Middle 51.61% 25.81% 22.58%
runs for finding the final solution. High 47.06% 20.59% 32.35%
CPU: time needed for CPUs to solve the instance of Total 48.55% 21.97% 29.48%
SALBP-I problem.
TABLE 7. Data of real production sample.
TABLE 5. Average computing time.
Line Station
Name Gurobi 3-stage B&P area n tmin tmac sum(ti) ct number
(CPU/s) (CPU/s) Frontend
ronten
Arcusl 200+ 160.507 assembly 0 3 45 813 80 12
Arcus2 200+ 200+
Barthold 2.738 200+
Bartho12 - - Lo
Bowman 0.817 0.047 TABLE 8. Optimization results of Frontend assembly.
Buxey 1.28 7.601
Gunther 0.82 25.5) Station)
Hahn 0.146 0.012 Algorithm b Nodes Iterations CPU
Heskiaoff 0.209 11.748 number
Jackson 1.14 0.089 Classi
Jaeschke 0.718 0.095 ass1c 11 3 82 37.421
Kilbridge 0.268 9.155 B&P
Lutzl 0.744 2.72 3-stage
Lutz2 500+ 213.079 B&P 11 2 58 12.884
Lutz3 17.817 477.206
Mansoor 0.087 0.048
Mertens 0.154 0.051
Mitchell 0.252 0.574 . . o J . .
Mukherje 5.37 616.042 integer programming, which is the 3’ stage in the algorithm,
EOSZieg (3)63423 g-ggg solved 29.48% of the instances sets optimally.
awyer
Scholl - i Add1t10nally, the propertles of the pregedence graph of
Tonge 500+ 290.134 the instance have an impact on the operation process. The
Warnecke 200+ 62.725 data sets are classified into three categories, the Number of
Wee-Mag 80+ 73.262

The average CPU time results of the benchmark data
sets are listed in Table 5. The three-stage branch-and-price
algorithm outperforms Gurobi optimizer for 13 of 25 data
sets. Gurobi optimizer calculates faster in 9 of 25 data sets.
There exist 2 data sets (Barthol2 and Scholl) that the average
computing time is too long to obtain the optimal solution for
both Gurobi optimizer and the three-stage branch-and-price
algorithm. We set the limitation of average CPU time as
1000s, computing time beyond this value is noted as (-).

To evaluate the effectiveness of the three-stage branch-
and-price algorithm, we analyze that at which phase the
optimal solution is obtained in the procedure of optimiza-
tion. Statistics are listed in Table 6. Totally, the algorithm
could found the optimal solution for 48.55% of the instance
sets at the 1% stage. And 21.97% of the instances sets got
the optimal solution at the 2" stage which represents the
iteration process of column generation. Finally, the added

VOLUME 8, 2020

Tasks (NT), the Order Strength (OS) and the Time Vari-
ability ratio (TV), depending on different characteristics to
study their influence: (i): Low-NT (0 < NT < 30),
Middle-NT(30 < NT < 70), High-NT(70 < NT < 300).
(i1): Low-OS (0 < OS < 30), Middle-OS(30 < OS < 70),
High-OS(70 < OS < 100). (iii)): Low-TV(5 < TV < 15),
Middle-TV(15 < TV < 70), High-TV(70 < TV < 600).
In sets of Low-NT, most (73.81%) instances could get
the optimal solution at the 1% stage. And that percentage
decreases in Middle-NT (34.69%) and High-NT (43.90%)
sets. The percentage value of optimal solutions obtained at
ond stage for Middle-NT (28.57%) and High-NT (23.17%)
sets are more than that for Low-NT (11.90%) set. Also
this trend is accordant with the percentage values of 3'¢
stage. The effectiveness of 3" stage is higher than the 2™
stage in all three different NT sets. As the order strength
increases, the optimal solution obtained at the 1st stage
becomes more. However, the percentage of optimal result
getting from the 2"? stage decreases when the order strength

143617

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

TABLE 9. Experiments results of data set of Talbot.

Classic Branch-and-Price

Name ct LB1

3-Stage Branch-and-Price

Final Best Nodes Iterations CPU Final Best Nodes Iterations CPU
Mertens 8 6 4 5 5 3 8 0.569 5 1 3 0.145
Jaeschke 10 5 4 4 4 5 45 2.253 4 1 7 0.267
Jackson 7 9 7 8 8 1 5 0.5 8 1 3 0.17
Jackson 10 6 5 5 5 5 43 2.165 5 1 5 0.213
Mitchell 15 9 7 8 8 15 241 48.372 8 1 34 3.058
Heskiaoff 216 6 5 5 5 3 138 30.377 5 2 40 3.182
Heskiaoff 342 4 3 3 3 9 603 122445 3 8 563 67.003
Sawyer 25 15 13 14 15 7 291 109.427 14 1 55 6.529
Sawyer 27 14 12 13 13 15 585 192.896 13 1 46 4.839
Sawyer 36 11 9 10 10 7 456 159.584 10 1 73 10.723
Sawyer 41 10 8 8 9 11 578 113959 9 11 495 51.968
Kilbrid 57 11 10 10 11 15 1726 974.083 10 6 400 91.487
Tonge 176 23 20 21 23 35 2884 314429 21 15 1964 1356.845
Arcusl 5048 17 15 16 16 5 517 367.896 16 4 204 105.307
Arcusl 6842 13 11 12 12 5 592 825.165 12 2 100 51.425

TABLE 10. Experiments results of data set of Hoffmann.
. « _ Classic Branch-and-Price 3-Stage Branch-and-Price
Name < UB LBL 7 Final Best Nodes Iterations CPU Final Best Nodes Iterations CPU
Sawyer 27 14 12 13 13 15 585 192.896 13 1 46 4.839
Sawyer 33 12 10 1111 11 521 164.186 11 2 95 10.743
Sawyer 36 11 9 10 10 7 456 159.584 10 1 73 10.723
Sawyer 41 10 8 8 9 11 578 113.959 9 11 495 51.968
Tonge 160 25 22 23 25 43 4412 1746.174 23 4 672 441.319
Tonge 168 25 21 22 24 15 1782 711.837 22 1 207 139.696
Tonge 185 21 19 20 21 13 1678 1291.687 20 2 473 333.216
Tonge 195 20 18 19 20 9 1071 846.873 19 1 247 174.678
Tonge 220 18 16 17 18 5 998 1411.125 17 14 2116 1278.591
Tonge 234 17 15 16 16 3 120 46.558 16 2 149 47.324
Arcusl 3786 22 20 21 22 26 4253 4167.398 21 12 2527 2038.536
Arcusl 6883 13 11 12 12 3 101 65.545 12 2 100 51.766
Arcus2 6837 25 22 23 24 5 1250 3078.478 24 3 403 471.613
is high. In both Middle-OS and High-OS sets, more opti- For standard branch-and-price algorithm, there are

mal solutions, 32.67% to 22.77% and 25.58% to 11.63%,
are obtained at 3™ stage than at 2"? stage. Nearly half of
instances obtain their optimal results at the 1% stage in three
different TV sets. The percentage of the 2" stage and the
3" stage changes little from the Low-TV to High-TV sets.
The influence of the time variability ratio did not affect the
operation results as much as the number of task and the order
strength.

In order to assess the efficiency of the proposed three-stage
branch-and-price algorithm, the numerical tests of a clas-
sic branch-and-price algorithm are done on the benchmark
instance sets. We list the computational results whose upper
bound is not equal to the best-known solutions in Table 9,
Table 10, and Table 11. Since the solving process did not enter
into the column generation procedure if the initial heuristics
could find the best value of solution in a short time. Results
of the classic branch-and-price algorithm and the three-stage
branch-and-price algorithm are both reported.

Table 9 presents the results of 15 instances of the data set
of Talbot. Table 10 shows the detailed results for 13 instances
of the Hoffmann set. Results of 51 instances of the Scholl set
are listed in Table 11.

143618

38 instances which did not achieve the optimal solu-
tion. Using three-stage branch-and-price algorithm, only
4 instances got the final solution with a gap of one station
to the known best value. There is one instance of Gun-
ther data set (ct = 49) that obtained the optimal solution
which is superior to the known best value. The three-stage
branch-and-price algorithm is more effective than the stan-
dard branch-and-price algorithm, especially for the instances
which belong to the High-NT set.

The three-stage branch-and-price algorithm can prune the
branching nodes effectively exploring fewer nodes than the
classic branch-and-price algorithm. The number of column
generation iteration also decreases in the three-stage branch-
and-price algorithm. These result in a shorter computing time.
There are only 8 of the total instances whose CPU time
consumed in the three-stage branch-and-price algorithm is
longer than that of the classic branch-and-price algorithm.

B. REAL PRODUCTION CASE

An industry case study for the frontend part assembly of
vehicle on the assembly line in BMW Brilliance Automotive
Ltd. is conducted to validate our algorithm. The frontend

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

TABLE 11. Experiments results of data set of Scholl.

Classic Branch-and-Price

3-Stage Branch-and-Price

Name c UB LBI 2% Final Best Nodes Iterations CPU Final Best Nodes Iterations CPU
Buxey 27 14 12 13 14 13 415 155.059 13 1 46 7.595
Buxey 30 13 11 12 12 13 505 185.763 12 1 59 9.907
Buxey 33 12 10 11 11 5 253 94.309 11 1 62 10.311
Buxey 36 11 9 10 10 9 617 159.31 10 1 60 10.188
Lutzl 1414 12 10 11 11 3 100 15.102 11 1 24 3.134
Lutzl 1572 11 9 10 11 7 249 86.833 10 2 99 20.136
Gunther 41 15 12 14 14 5 184 70.042 14 4 121 21.043
Gunther 44 13 11 12 12 7 346 133.763 13 11 205 31.954
Gunther 49 12 10 11 11 17 710 305.24 10 1 83 19.895
Gunther 61 10 8 9 9 5 353 155.371 9 2 204 52.86
Gunther 69 9 7 8 8 3 273 128.93 8 2 196 52.734
Warnecke 54 36 29 31 35 25 1259 1121.97 31 1 67 30.225
Warnecke 56 32 28 29 30 7 302 85.121 29 1 90 41.672
Warnecke 58 32 27 29 29 27 1022 833.718 29 2 119 49.298
Warnecke 60 30 26 27 30 17 995 971.398 27 1 84 24.776
Warnecke 62 30 25 27 30 21 1265 1230.578 27 1 78 35.53
Warnecke 65 29 24 25 29 27 1503 1410.5 25 1 96 46.359
Warnecke 68 27 23 24 24 31 1604 459.486 24 1 121 63.877
Warnecke 71 26 22 23 23 35 1478 402.94 23 1 80 35.667
Warnecke 74 25 21 22 22 29 2024 1835.062 22 1 105 52.084
Warnecke 78 23 20 21 21 29 1705 473.673 21 1 150 90.354
Warnecke 82 22 19 20 22 31 1010 248.116 20 1 129 69.739
Warnecke 86 21 18 19 21 47 2271 2312.996 19 1 140 78.268
Warnecke 97 18 16 17 17 51 2190 1330.847 17 2 320 197.574
Wee-mag 28 64 54 63 63 3 13 5.782 63 1 9 3.203
Wee-mag 29 64 52 63 63 1 3 1.944 63 1 6 2.17
Wee-mag 30 64 50 62 62 1 10 4.682 62 1 11 3.858
Wee-mag 31 63 49 62 62 1 4 2.251 62 1 10 345
Wee-mag 32 62 47 61 61 1 5 2.628 61 1 6 2.098
Wee-mag 33 62 46 61 61 1 5 2.584 61 1 6 2.1
Wee-mag 35 61 43 60 60 3 16 6.708 60 2 13 4.522
Wee-mag 42 56 36 55 55 1 6 2.775 55 1 16 6.89
Wee-mag 43 51 35 50 50 1 11 4.189 50 1 12 4.693
Wee-mag 46 39 33 34 35 9 516 235471 34 8 537 294.774
Wee-mag 47 36 32 33 35 25 942 368.761 33 1 123 73.727
Wee-mag 49 33 31 32 33 13 488 172.748 32 6 376 183.033
Wee-mag 50 33 30 32 33 35 1453 557.667 32 20 971 431.613
Wee-mag 52 33 29 31 32 21 755 271.156 31 36 1442 611.123
Lutz2 11 52 45 49 51 13 244 273.084 49 1 103 123.235
Lutz2 12 49 41 44 44 7 336 302.536 44 1 112 132.331
Lutz2 13 44 38 40 41 19 799 689.439 40 1 137 161.122
Lutz2 14 41 35 37 40 39 1841 1578.235 37 2 260 298.951
Lutz2 15 37 33 34 36 31 1469 1198.571 34 4 352 349.756
Lutz3 75 25 22 23 25 7 1203 1936.181 23 3 576 841.972
Lutz3 79 23 21 22 23 31 1526 2455307 22 3 609 930.247
Lutz3 83 23 20 21 23 26 2154 3470.094 21 3 614 920.81
Lutz3 87 22 19 20 22 15 2940 4729448 20 11 1733 2267.173
Lutz3 97 19 17 18 19 12 1266 1565.075 18 5 344 288.953
Mukherje 222 21 19 20 21 7 1100 2087.254 20 4 800 820.156
Mukherje 234 20 18 19 20 17 2747 5103.27 19 24 3905 3888.872
Mukherje 248 19 17 18 19 17 2789 4905.645 18 1 200 219.01

pre-assembly line consists of 12 work stations as shown
in Fig. 6. Asillustrated in Section 3, some parts are assembled
on the pre-assembly areas in the assembly shop. After the
completion of total assembly of the frontend, this part is
delivered to the main assembly line for its installation on
the vehicle as indicated in Fig. 4. The production pattern,
for which there is one operator working on each station,
is same as the model of SALBP we study. Twelve workers are
assigned to this section. Apart from movement time (15 sec-
onds) of the conveyor transiting from one station to the next

VOLUME 8, 2020

station, the reference cycle time is set as 80 seconds for the
operator. The data of the test instance is shown in Table 7.
Current line balancing solution needs 12 workers to finish
the pre-assembly work of frontend parts. Results after opti-
mization show that the station number can decrease to 11 with
the cycle time of 80s. Finally, the percentage of the total idle
time of test area dropped to 7.61% from 15.31%. We also
list the results of our method and that of classic branch-
and-price in Table 8. Compared to the standard branch-
and-price algorithm, the number of searching nodes is lesser

143619

IEEE Access

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

§ & _8 .8 L5 _E -
- - (o R — (=1 o= ON et 00 - 0~ o=
! =g =§ 2§ %3 8% 8%
w 1’7) w w w w

] L] o o [o
, - » ® o & &
RN TR . TR . TURNAE . TR . T . U N

P LA M | Ml A % L B e B M | Pl M L B | A B o }

e _

-

-
it e B Lo n L o R ol a D DS o b e DR L o o bl

e e O U‘”{U Do atgly” | Dol luly” Meelogly” | (W Cilgy
° i o o [

-

osSTTO

) -) -
g 5 g g g 5
— o = o = ISE = v - O =
Eh= S8 88 &% SEERN e
s 8 8 8 s s
172} w w 17} w w

FIGURE 6. Pre-assembly line of the vehicle’s frontend part.

in the three-stage branch-and-price algorithm (2 to 3), and its
total iteration time is also lesser (58 to 82) which result in a
faster computing time (12.884s to 37.421s).

VIl. CONCLUSION

In this article, we have reformulated the SALBP-I apply-
ing the Dantzig-Wolfe decomposition. Sequence constraints
are maintained in the model of the master problem.
The three-stage branch-and-price algorithm for solving the
SALBP-I is presented. Considering the nature of solutions
created through the column generation process, a specific
branching strategy is introduced to assure the efficiency of
the optimal result searching. Details of the construction and
solving the pricing problems are described.

Experiments are conducted on the standard bench-
mark data sets which cover a wide range of the task
scale. The proposed three-stage branch-and-price algorithm
obtains competitive results compared to the commercial
solver. Three-stage branch-and-price algorithm is also supe-
rior to the classic branch-and-price algorithm in the terms
of the efficiency of solving and the quality of solution. The
analysis of the computational results shows that properties
of instances have effects on the optimization algorithm. The
number of tasks and the order strength has more impact on the

143620

optimization process than value of time variety ratio. A case
study on one production line in BMW Brilliance Automotive
Ltd. verifies the effectiveness of the proposed algorithm.
Following the principle of production (‘allowed workplace’,
Section_3_A2) the super-larger scale of assembly line bal-
ancing in the automotive industry can be decomposed into
smaller instances of different areas. Most of these instances
belong to the range of scale that the proposed algorithm
can deal with. Even under complex industrial conditions,
the practical application of our proposed algorithm is still fea-
sible to improve the productivity and reduce the production
cost. Although the SALBP-I is a basic issue of assembly line
balancing work, insights and comprehension of the proposed
method will guide further research works on more compli-
cated instances of assembly line balancing problem.

REFERENCES

[1] I. Baybars, “A survey of exact algorithms for the simple assembly line
balancing problem,” Manage. Sci., vol. 32, no. 8, pp. 900-932, 1986.
[2] A.Scholl and C. Becker, ‘State-of-the-art exact and heuristic solution pro-
cedures for simple assembly line balancing,” Eur. J. Oper. Res., vol. 168,
no. 3, pp. 666-693, Feb. 2006.
[3] J. M. Charlton and C. C. Death, “A general method for machine schedul-
ing,” Int. J. Prod. Res., vol. 7, no. 3, pp. 207-217, Jan. 1968.
J. R. Jackson, “A computing procedure for a line balancing problem,”
Manage. Sci., vol. 2, no. 3, pp. 261-271, Apr. 1956.
M. Held, R. M. Karp, and R. Shareshian, “Assembly-line balancing—
Dynamic programming with precedence constraints,” Oper. Res., vol. 11,
no. 3, pp. 442-459, Jun. 1963.
L. Schrage and K. R. Baker, “Dynamic programming solution of sequenc-
ing problems with precedence constraints,” Oper. Res., vol. 26, no. 3,
pp. 444-449, Jun. 1978.
[71 M. Queyranne, “Bounds for assembly line balancing heuristics,” Oper:
Res., vol. 33, no. 6, pp. 1353-1359, Dec. 1985.
[81 A. Bockmayr and N. Pisaruk, “Solving assembly line balancing
problems by combining IP and CP” in Proc. Discrete
Math., Prague, Czech Republic, 2001. [Online]. Available:
https://arxiv.org/pdf/cs/0106002.pdf
A. Pinnoi and W. E. Wilhelm, “A family of hierarchical models for the
design of deterministic assembly systems,” Int. J. Prod. Res., vol. 35, no. 1,
pp- 253-280, Jan. 1997.
[10] A.Pinnoi and W. E. Wilhelm, “Assembly system design: A branch and cut
approach,” Manage. Sci., vol. 44, no. 1, pp. 103-118, Jan. 1998.
[11] M. Peeters and Z. Degraeve, “An linear programming based lower bound
for the simple assembly line balancing problem,” Eur J. Oper. Res.,
vol. 168, no. 3, pp. 716-731, Feb. 2006.
[12] R. Pastor and L. Ferrer, “An improved mathematical program to solve the
simple assembly line balancing problem,” Int. J. Prod. Res.,vol.47,no. 11,
pp. 2943-2959, Jun. 2009.
[13] M. Vila and J. Pereira, ‘A branch-and-bound algorithm for assembly line
worker assignment and balancing problems,” Comput. Oper. Res., vol. 44,
pp. 105-114, Apr. 2014.
[14] J.Rubinovitz and G. Levitin, ““Genetic algorithm for assembly line balanc-
ing,” Int. J. Prod. Econ., vol. 41, no. 1, pp. 343-354, 1995.
[15] Y. K. Kim, Y. J. Kim, and Y. Kim, “Genetic algorithms for assembly
line balancing with various objectives,” Comput. Ind. Eng., vol. 30, no. 3,
pp. 397409, Jul. 1996.
[16] I. Sabuncuoglu, R. Erel, and M. Tanyer, “Assembly line balancing using
genetic algorithms,” J. Intell. Manuf., vol. 11, no. 2, pp. 295-310, 2000.
[17] S. G. Ponnambalam, P. Aravindan, and G. M. Naidu, “A multi-objective
genetic algorithm for solving assembly line balancing problem,” Int. J.
Adv. Manuf. Tech., vol. 16, no. 5, pp. 341-352, Jul. 2003.
[18] J. Yuand Y. Yin, “Assembly line balancing based on an adaptive genetic
algorithm,” Int. J. Adv. Manuf. Technol., vol. 48, nos. 1-4, pp. 347-354,
Apr. 2010.
[19] A.Baykasoglu, ‘““Multi-rule multi-objective simulated annealing algorithm
for straight and U type assembly line balancing problems,” J. Intell.
Manuf., vol. 17, no. 2, pp. 217-232, Apr. 2006.

[4

[l

[5

—

[6

—

[9

—

VOLUME 8, 2020

Q. Yin, X. Luo: Three-Stage Optimization Method for Assembly Line Balancing Problem

IEEE Access

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]
[38]

[39]

S. A. Seyed-Alagheband, S. M. T. F. Ghomi, and M. Zandieh, ““A simulated
annealing algorithm for balancing the assembly line type II problem with
sequence-dependent setup times between tasks,” Int. J. Prod. Res., vol. 49,
no. 3, pp. 805-825, Feb. 2011.

S. D. Lapierre, A. Ruiz, and P. Soriano, “Balancing assembly lines with
tabu search,” Eur. J. Oper. Res., vol. 168, no. 3, pp. 826-837, Feb. 2006.
S. Annarongsri and S. Limnararat, “A hybrid tabu search method for
assembly line balancing,” in Proc. 7th Int. Conf. Simulation Modelling
Optim. Hangzhou, China, 2007, pp. 443-448.

P. Fattahi, A. Roshani, and A. Roshani, ‘A mathematical model and ant
colony algorithm for multi-manned assembly line balancing problem,” Int.
J. Adv. Manuf. Technol., vol. 53, nos. 1-4, pp. 363-378, Mar. 2011.
L.K.C.LaiandJ. N. K. Liu, “ALBO: An assembly line balance optimiza-
tion model using ant colony optimization,” in Proc. 5th Int. Conf. Natural
Comput., Tianjian, China, 2009, pp. 8-12.

J. P. Arabeyre, J. Fearnley, F. C. Steiger, and W. Teather, ““The airline crew
scheduling problem: A survey,” Transp. Sci., vol. 3, no. 2, pp. 140-163,
May 1969.

K. L. Hoffman and M. Padberg, ““Solving airline crew scheduling problems
by branch-and-cut,” Manage. Sci., vol. 39, no. 6, pp. 657-682, Jun. 1993.
P. C. Gilmore and R. E. Gomory, ““A linear programming approach to the
cutting stock problem,” Oper. Res., vol. 9, no. 6, pp. 849-859, 1961.

P. C. Gilmore and R. E. Gomory, ““A linear programming approach to the
cutting stock problem—~Part II,” Oper. Res., vol. 11, no. 6, pp. 863-888,
Dec. 1963.

M. L. Balinski and R. E. Quandt, ““On an integer program for a delivery
problem,” Oper. Res., vol. 12, no. 2, pp. 300-304, Apr. 1964.

F. Cullen, J. Jarvis, and D. Ratliff, “Set partitioning based heuristics for
interactive routing,” Networks, vol. 11, no. 2, pp. 125-144, 1981.

W. E. Wilhelm, “A column-generation approach for the assembly system
design problem with tool changes,” Int. J. Flex. Manuf. Sys., vol. 11, no. 2,
pp. 177-205, 1999.

G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Oper. Res., vol. 8, no. 1, pp. 101-111, Feb. 1960.

L. H. Appelgren, “A column generation algorithm for a ship scheduling
problem,” Transp. Sci., vol. 3, no. 1, pp. 53-68, Feb. 1969.

L. H. Appelgren, “Integer programming methods for a vessel scheduling
problem,” Transp. Sci., vol. 5, no. 1, pp. 64-78, Feb. 1971.

P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, ““Solving
binary cutting stock problems by column generation and branch-and-
bound,” Comput. Optim. Appl., vol. 3, no. 2, pp. 111-130, May 1994.

P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, “Branch-
and-price algorithms for the onedimensional cutting stock problem,” Com-
put. Optim. Appl., vol. 9, no. 3, pp. 211-228, 1998.

M. Savelsbergh, ““A branch-and-price algorithm for the generalized assign-
ment problem,” Oper. Res., vol. 45, no. 6, pp. 831-841, Dec. 1997.

W. E. Wilhelm, “A technical review of column generation in integer
programming,” Optim. Eng., vol. 2, no. 2, pp. 159-200, 2001.

F. B. Talbot, J. H. Patterson, and W. V. Gehrlein, “A comparative evaluation
of heuristic line balancing techniques,” Manage. Sci., vol. 32, no. 4,
pp. 430454, 1986.

VOLUME 8, 2020

[40] T.R.Hoffmann, “Eureka: A hybrid system for assembly line balancing,”
Manage. Sci., vol. 38, no. 1, pp. 39—47, Jan. 1992.

[41] A. Scholl, “Data set of assembly line balancing problems,” Schriften zur
Quantitativen Betriebswirtschaftslehre, vol. 16, no. 93, pp. 1-28, 1993.

QIDONG YIN received the B.Eng. degree
from Chongqing University, Chongqing, China,
in 2011, and the M.Eng. degree from North China
Electric Power University, Beijing, China, in 2015.
He is currently pursuing the Ph.D. degree with
Northeastern University, Shenyang, China.

He participated in BMW Brilliance Automo-
tive Ltd., Ph.D. Promotion Program, in 2015,
responsible for the new energy vehicle production
project. He has research experiences in the field
of parameter design of power system of electric vehicles and transmission
system design of wind turbine. His major research interests include power
system design and optimization of electric vehicles, modeling and simulation
of automotive manufacturing process for new energy vehicles, integer
programming, and optimization methods for large scale problems.

XIAOCHUAN LUO (Member, IEEE) received the
M.Eng. and Ph.D. degrees from the Harbin Insti-
tute of Technology, Harbin, China, in 1999 and
2002, respectively.

From 2002 to 2004, he held a postdoctoral posi-
tion at the University of Technology of Troyes,
Troyes, France. He is currently a Professor with
Northeastern University, Shenyang, China. His
current research interests include modeling and
optimization of processing industry manufacturing
systems, production planning and scheduling, and optimization methods.
He is a peer review expert of the National Natural Science Foundation
of China, the IEEE Reviewer, IJPR, EJIE, and other international journal
reviewers. He was selected into the 2008 Ministry of Educations New
Century Excellent Talents Support Program and the Million Talents Project
in Liaoning Province, in 2009.

143621

