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ABSTRACT This article combines the sequential artificial neural network (NN) machine learning with
finite element (FE) modeling to assess the solder joint thermal cycling performance. A glass wafer-level
chip-scale package (G-WLCSP) is used for this study. This article investigates the network structure that can
achieve prediction capability both inside and outside the design domain with the minimal required training
dataset. First, a detailed FE model for G-WLCSP is developed to obtain the accumulated plastic strain per
cycle for thermal-cycling loading. Three critical input parameters are defined to generate a dataset based
on finite element analysis. Then, applying the supervised machine learning procedure, both the recurrent
neural network (RNN) and the gate-network long short-term memory (LSTM) architecture are used to train
the obtained dataset. The network complexity of the sequential NN model is carefully controlled to prevent
numerical overfitting. Among the total 81 FE generated data pairs, only 27 data pairs have been applied to
the sequential NN learning. These 27 data pairs are carefully selected to evenly distributed among the design
domain. The average error norms after the learning are 1.213 · 10−4 and 1.190 · 10−4of RNN and LSTM,
respectively. The prediction capability of the well-trained sequential NN model against the rest 54 data pairs
has been tested and a similar scale has been obtained. Furthermore, the prediction capability is tested against
the parameters outside the design domain. Approximately one order average error norm increased for both
the well-trained RNN and LSTM model.

INDEX TERMS Wafer level package, chip-scale package, reliability, machine learning, recurrent neural
networks, long short-term memory.

I. INTRODUCTION
Solder joint reliability is one of the most critical issues for
most ball-grid array packaging types. To verify the reliability
of the electronic packaging, a time-consuming accelerated
thermal cycling test is required, which requires 3-4 months
for a complete reliability test [1]. Because of the mechani-
cal characteristics, the nonlinear finite element (FE) method
has been often applied to predict the solder joint relia-
bility when the structure is subject to the cyclic thermal
loading [2]. A decent electronic packaging FEmodel requires
specialized modeling expertise and numerous experimen-
tal validation tests. A proper FE model with large mate-
rial/geometrical nonlinearities under thermal cycling loading
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costs considerable time to accomplish a single result [3], [4],
not to mention to achieve an optimal design of the packaging
with large design parameters.

To maximize the utilization of these valuable FE results
and accelerate the optimization of the design parameters,
scholars have developed many methods. van Driel et al. [5]
had applied the response surface model (RSM) to optimize
the product/process designs against the failure probability
estimation. The RSM has been generated from the numerical
approaches with the consideration of the nonlinearity of the
geometrical and material properties. Liu and Chiang [6] and
Liu et al. [7] applied the parametricmethod to study the solder
fatigue failure mode under the thermal cycling loading. The
model used in [7] had applied both material and geometrical
nonlinearity with the precise description of the solder joint
geometry. Yuan et al. [8], [9] applied the Taguchi matrix
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to establish a response surface of the estimated solder joint
lifetime based on a validated parametric finite element model.
Che et al. [10] applied the parametric method to investi-
gate the 3D IC packaging based on through-silicon inter-
poser and silicon-less interconnection technology by finite
element modeling with experimental validation. Zhang and
Zhang [11] applied RSM method to study the board level
reliability of LED packaging. The main gap of the RSM
method is that the accuracy highly depends on statistical
theory, and the prediction capability will decrease when the
design parameters move outside the fitting domain.

In recent years, the neural networkmethod has been widely
used in various research domains. It has been proven to
be able to handle complex with high nonlinearity and mul-
tivariate relationships. The NN can convert the individual
discrete samples into a network structure. Hence, since the
last century, ANN techniques have been applied to the elec-
tronic packaging design. Subbarayan et al. [12] applied ANN
to model the solder joint reliability and further applied to
the reliability of the ball grid array packaging. Law et al.
[13] had applied ANN in the thermal performance of QFN.
Yang et al. [14] had applied ANN in conditional monitoring
of power packaging. Chou et al. [15], [16] developed the
basic framework of the combination of machine learning and
finite element modeling, and has been applied the model the
long-term reliability of wafer level packaging using rather
large artificial neural network architecture with multiple key
design features. Yuan et al. [17] applied the ANN training
algorithm for the thermal response of the high power elec-
tronics. There are still two major scientific challenges for
the NN application. One is the complexity of the network
structure which can capture the response nature of the sam-
ples. Another is the size of the training dataset. Although
a complicated NN structure with large number of neurons
and hidden layers would be able to capture the nonlinearity
nature, it is also required enormous training datasets to pre-
vent the numerical overfitting. This vicious cycle limits the
application of the NN due to the training sample size and long
training time.

This article investigates the network structure that can
achieve prediction capability both inside and outside the
design domain with the minimal required training dataset.
This article applies two sequential NN methods to model the
solder joint risk of glass wafer level chip-scale packaging.
An experimental validated FE method will be applied to
generate the training datasets with respect to three major
design parameters. The complexity of the NN network is
carefully controlled to prevent overfitting, which allows using
less training datasets. Only 27 from the 81 FE generated
datasets have been applied for the training purpose, and the
rest 54 ones are used for the validating of the trained NN
model. Moreover, the prediction capability of the trained
RNN and LSTM model will be tested by introducing the
parameters that are outside the training domain.

This article will be organized as follows: In ‘‘Theory’’
section, the sequential neural network architecture,

FIGURE 1. The general ANN structure with input (h0), output layer(hn),
and the hidden layers (h1, h2 . . . hn−1).

including the RNN and LSTM will be addressed, as well as
the definition of the average error norm. The design target
of this research, a glass wafer level chip-scale packaging and
its FE model will be described in the next two sections. The
‘‘Supervised Machine Learning’’ section, the selection of the
training set, and RNN and LSTM training procedure and
the validation, will be addressed. A brief conclusion will then
summarize this article.

II. THEORY
Artificial neural network (NN) is based on a collection of con-
nected units called artificial neurons or network nodes/cells
(Fig.1), which loosely mimic the neurons in a biological
brain. The connections, like the synapses in a biological brain,
can transmit a signal to other neurons. An artificial neuron
that receives a signal then processes it and can signal neu-
rons connected to it. Learning is the adapting process of the
network to better handle a particular task by considering the
sample observations. Learning involves adjusting the weights
and bias of the network to improve the accuracy of the
result. Werbos’ backpropagation algorithm [18] that effec-
tively made the training of multi-layer networks feasible and
efficient. Most NN models in the literature focus on the end
effects, e.g. the lifetime under thermal loading, and the static
junction temperature of the chip. This article focuses on mod-
eling the solder joint risk by accumulating the intermediate
states during the cyclic loading in order to gain more inside of
the reliability problem. However, when the time/temperature-
dependent material and/or geometrical nonlinearity and the
thermal cyclic loading dominates the physical phenomena of
the solder joint fatigue, it may not be reasonable to remain
in the ANN method but seeking for sequential modeling
techniques, in order to simultaneously consider the nonlin-
earity and time-dependency. Moreover, the complexity of the
network structure, including the number of hidden layers and
neurons at each layer, is controlled, to prevent the numerical
overfitting and accelerate the network training.

As illustrated in Fig.1, the value of each i neuron at the l-th
layer can be computed from (l − 1)-th layer by the:

hi = ϕ(
∑

Wijhj + b) (1)

where hj are the neuron values from the (l − 1)-th layer, the
Wij is the weightings and b is the layer bias and the ϕ is the
activation function. By repeating (1), one can convert an input
vector h0 to an output vector hn.
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FIGURE 2. The RNN concept.

FIGURE 3. Typical unit cell of the LSTM.

The dataset is composed of multiple data pairs, which is
a combination of the input and output values, (t̂ input , t̂output ).
All data points in the dataset are assumed to be independent
with each other.

RNN is a network of nodes, including the input, hidden,
and output nodes. Similar to ANN, each node in RNN is
connected with a fixed, directed connection to every other
node, as shown in Fig.2. However, RNN will organize this
network into successive layers, which is used to represent
the characteristics of the sequential information. (Part of) the
output of this layer will be taken to the next input for the
layer. This makes each node has a time-varying real-valued
activation. This research applies the backpropagation through
time (BPTT) for the RNN training [18], [19].

Long short-term memory (LSTM) is a special RNN
architecture with a feedback connection. A standard LSTM
unit is a cell, including an activation, input, output and forgets
gate, as indicated in Fig.3. Via the state variable shown in
Fig.3, the cell remembers values over arbitrary time intervals
and the four gates regulate the flow of information into and
out of the cell. LSTM networks are well-suited to classifying,
processing and making predictions based on time series data
since there can be lags of unknown duration between essential
events in a time series.

This article defines each gate at , it , ft and ot are four
independent neural networks, with the internal relationship
of:

st = at � it + ft · st−1
outt = ϕout (st)� ot (2)

ϕout is the activation function for LSTM, and � represents
the Hadamard (elementwise) multiplication.

The NN model prediction capability will be estimated by
the average error norm(e), by:

e =

√∑(
oj − nj

)2
n

(3)

FIGURE 4. Glass distributed wafer level packaging (a) wafer view with
the detail (a’), (b) schematic cross-section [8], [9].

where oj and nj are the expected values and themodel outputs,
respectively. n is the size of the dataset.

III. GLASS WAFER LEVEL CHIP SCALE PACKAGING
(G-WLCSP)
A glass wafer level chip scale package (G-WLCSP) model
has been used as the design target of this research. As shown
in Fig.4, the IC has been redistributed onto a glass wafer
and then the trace forming and solder bumping process.
Fig.4 (a) shows the wafer level picture and (a’) is the detail
view. From the schematic cross-section view in Fig.4(b),
the chip has been attached by UV adhesive to the glass wafer,
and the epoxy filler has been applied between chips to protect
the sidewall of the chip from cracking.

The CTE of the glass and chip are similar (TABLE 1),
the failure risk between chip and glass interface is low.
But the combination of chip and glass introduces large stiff-
ness. Due to the thermal mismatch of the glass wafer, chip
and printed circuit board (PCB), the solder joints are subject
to high deformation during the thermal loading. Therefore,
a polyimide (PI) layer is applied under the solder joint the
absorb the deformation energy during the thermal loading.
Therefore, from the perspective of the solder joint reliability
risk, the chip, glass and PI thickness are the most crucial
design parameters [8], [9].

On the other hand, from the manufacturability consider-
ation, a thin glass wafer will cause the excess warpage and
handling thin chip remains extra cost. Moreover, a thick poly-
imide (PI) will induce yield-loss in the spin-coating process.

It is required to provide an optimal solution of the glass,
chip and PI thickness with both reliability and currently
available manufacturability, but also provide a model that
can predict the solder joint reliability when themanufacturing
capability improves in the future. Hence, this research selects
the sequential NN method to build the solder joint regression
model.

IV. FINITE ELEMENT MODELING
All materials applied in the finite element modeling are
assumed as linear besides the solder joint and the polyimide
(PI). The eutectic solder joint and PI are considered as the
temperature-dependent, elastic-plastic materials [7] as shown
in Fig.5. The rest of the material properties are considered as
linear and listed in TABLE 1. Only one half of the full-scale
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FIGURE 5. Nonlinear mechanical response of (a) solder joint (63Sn/37Pb)
and (b) PI within different temperature.

TABLE 1. Material properties.

FIGURE 6. Finite element model for proposed G-WLCSP.

finite element approximation model is used owing to the
symmetrical condition, and the finite element result is used by
the commercial finite element code ANSYS R©(version 15).
Fig.6 shows the finite element model with the mesh density
of the most critical solder joint.

A G-WLCSP structure, fabricated by the currently avail-
able technologies, of the die size of 5.77 × 10.38×0.3 mm3

with a glass thickness of 0.5 mm has been attached to a test
board with 1.2 mm thickness. The 63Sn/37Pb solder ball with

TABLE 2. Parametric model settings.

0.45 mm in diameter has been applied onto the die-side pad
with its opening of 0.37 mm, and the solder joint stand-off
height has been reduced to 0.35 mm after the reflow. This
G-WLCSP is subjected to a thermal cycle loading between
-40◦ and 125◦ with a ramp rate of 11◦/min and a dwelling
time of 15 min. The initial stress-free reference tempera-
ture equals 25◦. 21 samples have been put into the thermal
cycling oven. According to the Weibull (63.2% failure cycle)
distribution, an average of 1,007 cycles has been reported.
The accumulated plastic strain of each thermal loading cycle
is taken as the solder fatigue risk indicator, following the
Coffin-Manson equation. The finite element fatigue life pre-
diction gives 1,444 cycles, with the average plastic strain per
cycle of 0.01608. A good agreement has been achieved.

Eighty-one parametric finite element models with the
control of the mesh density of the farthest solder joint cor-
ner are then executed to build the total dataset. Compared
to the validated finite element model, no simplification has
made and the temperature-dependent material nonlinearity
remains. These simulations consist of 5 sequential thermal
cycling loadings with all the abovementioned conditions. Key
parameters with the levels and noise factors are listed in
TABLE 2. Each simulation comprises a complete five thermal
cyclic loading.

There only 27 data points will be applied for the sequential
NN training, and the remaining 54 data points will be used to
validate the accuracy of the RNN and LSTM model.

V. SUPERVISED MACHINE LEARNING
This article applies RNN, and LSTM architectures to learn
the task of the risk estimation of the solder joint using a small
portion of the total dataset.

The training set has been selected carefully to ensure these
data pairs are nearly even distributed within the parameter
domain of the total dataset. Based on the design parameter
ranges listed in TABLE 2, each design parameter has been
split into three groups, and each group consists of three levels.
The combination of three groups of three design parameters
introduced 27 data pairs, listed in TABLE 3.

The training dataset will be fixed through the rest studies
of RNN, and LSTM. Afterward, the accuracy of the trained
model will be computed not only against these 27 training
data pairs but the rest 54 data pairs.

There are five input parameters for sequential NN learn-
ing for RNN and LSTM. Besides the geometrical design
parameters that listed in TABLE 2 and TABLE 3, there are
two computation parameters used, including the temperature
change and the plastic strain per cycle (1εpl). The concept of
the simplest hypothesis that consistent with the data, follow-
ing Ockham’s razor [21], has been applied to this research.
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TABLE 3. The 27 selected data pairs for the network training.

Two different RNN structures of (5,5,5,1) and (5,5,5,5,1),
as illustrated in Fig.7, where the geometrical design parame-
ters, i.e., die thickness, glass thickness and the PI thickness,
as well as the loading condition, the 1T , and the 1εpl per
cycle will be used as the inputs. The structure of (5,5,5,1)
represents in Fig.7 (a), where two hidden layers with equally
five neurons and 1 output are listed. Equation (1) will be
applied to compute from input to output. Notably, the output
(1εpl) from the current time step will be treated as the input
for the next time step, as the nature of RNN that illustrated in
Fig.2. The same concept applies to the structure (5,5,5,5,1).

Machine learning has been done by the in-house developed
software based on.net framework 4.6.1. The overfitting will
be strictly prevented by the network structure design and
by continuously comparing the loss function between the
training and testing sets. The accuracy will be computed by
applying the trained model to the total dataset with 81 data
points. We choose the rectified linear unit (ReLU) as the
activation function with the formation of ϕ (x) = max(0, x),
in order to represent the nonlinearity of the data and fast
convergent rate.

With the learning rate of 0.2, Fig.8 shows the typical
error norm (L2Norm) during the machine learning procedure.
The Y-axis and X-axis represent the error L2norm and the
iteration epochs. The black and red lines of Fig.8 repre-
sent the error of the training and testing sets, respectively.
The testing set is organized by randomly choosing from the
54 remaining data points. These testing datasets only used
to monitor the overfitting probability and not involved in the

FIGURE 7. The (a) (5,5,5,1) and (b) (5,5,5,5,1) RNN structure.

FIGURE 8. Typical RNN L2 Norm change of structure (5,5,5,5,1).

training algorithm. Due to the initial guessing of the network
weightings, the error will be high in the beginning. With the
help of BPTT algorithm, the error will be reduced gradually.

LSTM consists of four independent networks as its gates.
Fig.9 visualizes a (5,5,5,1) gate network structure of LSTM,
where the four gates, including at , it , ft and ot are represented
by four independent gate-network, with the size of (5,3,1),
(5,5,5,5,1), (5,5,1) and (5,5,1), respectively. The black square
represents one single LSTM cell. When the input parameters,
enter the LSTM cell, these will be treated as the inputs of
those independent gate networks. In this research, two kinds
of it gate network structures have been applied, as listed in
TABLE 4. By (2), one can compute the output parameter
of LSTM cell, i.e., the 1εpl . Similar to RNN, the current
1εpl .output will be taken as the input for the next compu-
tation step. Note that hyper tangent equation is chosen for the
ϕout in (2).
A typical error norm (L2norm) decreasing curve of the

training and testing sets during the learning procedure,
as shown in Fig.10. The Y-axis and X-axis represent the error
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FIGURE 9. Gate-Network LSTM structure for (5,5,5,1).

TABLE 4. The gate network structure, activation function and the initial
learning rate in LSTM.

FIGURE 10. Typical LSTM L2 norm versus epoch.

L2norm and the iteration epochs. The solid and dashed lines
of Fig.10 represent the error of the training and testing sets,
respectively. The error norm is high at the beginning of the
learning process, and the error norm decreases as the iteration
continues. However, comparing to Fig.8, and a rugged con-
vergence history can be found in LSTM. This phenomenon
is because the L2 Norm of LSTM is a combination of the
performance of all independent gates.

Using (3), the average error norm of the RNN and LSTM
model has been computed against the training and validating
sets, listed in TABLE 5. Comparing the training and the
validating results, no significant difference can be discov-
ered. When the training dataset is evenly distributed over the

TABLE 5. The performance of RNN and LSTM model.

TABLE 6. The top 10 worst cases of the performance of RNN and LSTM
model within the design range.

TABLE 7. The performance of RNN and LSTM model outside the design
range.

total space, the well-trained model will be able to describe
the rest of the domain. Moreover, the (5,5,5,1) contains too
little information and doesn’t perform well, in both RNN and
LSTM models. However, an increase of 1 more hidden layer
will contribute approximately one order accuracy. The top
10 worst cases of RNN and LSTM are shown in TABLE 6,
where the ‘‘Errors’’ are the direct error, in order to meet the
requirement of Eq. (3). A similar trend of the RNN and LSTM
can be identified by comparing the difference between the
FEM results and RNN/LSTM predictions.

Since the (5,5,5,5,1) performs well in both RNN and
LSTM architecture, this structure will be applied to study
when the design parameters located outside the predefined
dataset. These design parameters of the pre-defined dataset
have been listed in TABLE 2. 10 extra design parameter com-
binations which are located outside the pre-defined parameter
domain, are selected to test the predictability of the sequential
neural network models in TABLE 7, where the ‘‘Errors’’ are
direct errors. As listed in TABLE 7, different combination
parameters will induce different levels of errors in both RNN
and LSTM, and there is no clear evidence to tell whether
RNN and LSTM are better than the other. Following (3),
the average error norms of RNN and LSTM are 1.533·10−3

and 1.453·10−3. Comparing to the average error norm within
the pre-defined dataset (TABLE 5 and TABLE 6), the one
outside the design parameter will increase the average error
norm in approximately one order.
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FIGURE 11. The response surface of parameter 1 and 2 with respect to
the strain increment of the LSTM model.

Fig.11 shows the LSTM plot of both P1 and P2 axis of the
range of [−0.5,1] with fixed P3 (The PI thickness) values, and
the Z-axis is the accumulated plastic strain per cycle(1εpl).
The nonlinear nature of has been depicted along the P1 and
P2 axis. It shows that the ReLU activation function with
proper multiple hidden layers can model the nonlinearity
by turning off some of the neurons within specific layers.
Moreover, the surface is smooth even outside the domain
of the total 81 data pairs and is continuous and piecewise
differentiable at all points. It could contribute the expand the
design domain and find the design optimal.

VI. CONCLUSION
This article investigates the network structure that can achieve
prediction capability both inside and outside the design
domain with the minimal required training dataset. Three
key reliability design parameters, including the die, glass and
PI thicknesses, for the G-WLCSP has been modeled by the
sequential NN with finite element modeling to assess the
solder joint thermal cycling performance. First, a detailed
finite element model for G-WLCSP is developed to obtain
the accumulated plastic strain per cycle for thermal-cycling
analysis. Then critical input parameters are defined to gener-
ate a data set based on finite element analysis. Then, applying
the supervisedmachine learning procedure, both the recurrent
neural network (RNN) and the modified long short-term
memory (LSTM) architecture are used to train the obtained
dataset. Moreover, this article studies the minimal required
NN structure and training data pairs to achieve acceptable
accuracy.

The RNN and LSTM architectures have been applied.
Besides the three key parameters, two more learning param-
eters, including the temperature cycling range and plastic
strain per cycle, are introduced. From the 81 data pairs
obtained by the validated FEmodel, only 27 has been selected
for the NN training purpose. The training of NN has been
accomplished by the backpropagation through time method.

The training results show that the sequential neural net-
work with 1 extra hidden will improve approximately 1 order
of average error norm. The average error norms of RNN and
LSTM with 3 hidden layers are 1.432·10−4 and 1.357·10−4,
respectively. Because these 27 data pairs have been carefully

chosen that uniformly distributed along with the design
parameter domain, the average error norms of the rest 54 data
pairs for RNN and LSTM are 1.213·10−4 and 1.190·10−4,
respectively. Extra design parameter combinations which
are located outside the pre-defined parameter domain, are
selected to test the predictability of the well-trained sequen-
tial NN. The result indicated that the well-trained model will
exhibit approximately 1 order average error norm increasing
for the parameter outside the training parameter domain.
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