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ABSTRACT The rapid response characteristics and high-speed growth of electric vehicles (EVs) demon-
strate its potential to provide auxiliary frequency regulation services for independent system operators
through vehicle-to-grid (V2G). However, due to the spatiotemporal random dynamics of travel behavior,
it is challenging to evaluate the ability of EV cluster to provide ancillary services under the premise of
reaching the expected state of charge (SOC) level. To address this issue, a novel calculation model of charge
and discharge capacity of EV cluster based on trip chain with excellent parallel computing performance is
presented in this work. Following the introduction of the characteristic variables of the proposed trip chain
model, the user’s continuous travel behavior in a time scale of several weeks is simulated. In particular,
a bidirectional V2G scheduling strategy based on the five-zone map is designed to guide the charging and
discharging behavior of EVs, where the expected SOC levels are guaranteed. The results of a 3-week travel
simulation verify the effectiveness of the presented model in coordinating the V2G scheme and calculating
the charge and discharge capacity of the EV cluster.

INDEX TERMS Charge and discharge capacity, electric vehicles, expectation-maximization, trip chain,
vehicle-to-grid.

I. INTRODUCTION
In recent years, the development of renewable energy
sources, such as wind and solar power, has made great
progresses. By the end of 2018, China’s full-caliber power
generation capacity has reached to 1900GW, including
184.27GW of wind power and 174.33GW of solar power
with increases of 12.4% and 33.7% over the previous year,
respectively. The proportion of renewable energy installed
has reached 18.9%. The strong intermittence of renewable
energy sources may lead to inevitable frequency variations,
while conventional generating units cannot provide frequency
regulation services in a cost-effective manner [1]–[3]. Mean-
while, as an environment-friendly alternative to internal com-
bustion engine vehicles, electric vehicles (EVs) have been
widely promoted around the world. By 2030, the num-
ber of EVs in China will reach 60 million with a power
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consumption of about 1.3% of the national electricity con-
sumption. The peak charging loadwill reach to 479GW,while
uncoordinated charging may result in energy losses, volt-
age deviations, transformer overload, and electricity prices
increasing [4]–[7].

New methods to model EV charging loads are under
development. By assuming that the user’s initial states of
charge (SOC) follows a certain normal distribution, refer-
ences [8] and [9] use the method of Monte Carlo to draw
samples of the arrival time, driving mileage, and the initial
SOC of EVs to calculate the daily charging load profiles.
However, the conditions of using this method may be too
strict to fully reflect the randomness of user travel patterns.
The queuing models for calculating the load of the charging
station are proposed in [10] and [11] based on the assumption
that the arrival time of EVs at the charging station follows the
Poisson Distribution. This method is suitable for calculating
charging loads in centralized places such as shoppingmall car
park, highway service areas, etc. However, the effectiveness
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of this model to calculate decentralized charging loads needs
to be improved. By considering the impact of economics,
convenience, and driving preferences on the charging behav-
ior of EVs, an agent-based simulation model is proposed
in [12] and [13] to evaluate the impact of EV charging on grid
loads. In order to describe the spatial-temporal randomness
of the user’s travel behavior, the trip chain theory based on
the Markov Random Process is used in [14]–[18]. By fitting
the user’s travel characteristics on weekdays and weekends
such as the departure time, driving distance, and parking
duration, the charging loads under different parking scenarios
are calculated in [17]. An inhomogeneous Markov model is
presented in [18] to capture the diurnal variation in the use of
an EV, where a large number of parameters are reduced by
using B-spline. However, the complexity of the model may
limit its applications in scenarios with large-scale EVs.

EV cluster is a collection of a large number of EVs in
a certain area. By controlling the charging and discharg-
ing behavior of EV clusters to track Automatic Generation
Control (AGC) signals, vehicle-to-grid (V2G) could provide
ancillary services such as frequency regulation and voltage
regulation, even reducing wind and photovoltaic active power
curtailment. According to the studies in [2], [19]–[26], the
V2G control strategies could be broadly classified into two
main categories: unidirectional V2G and bidirectional V2G.

Unidirectional V2G is technically easy to be implemented,
through which power can only flow from the grid to the
EV [2], [19]–[20]. A unidirectional V2G hierarchical model
that satisfies both supplementary frequency regulation and
user travel needs is presented in [2], which allocates AGC
signals based on the EV’s regulation capability. However,
this model is similar to the one presented in [19], wherein
the V2G power of each EV is determined by the charging
station, which makes it unsuitable for decentralized charg-
ing scenarios. A V2G model for frequency regulation under
the performance-based compensation scheme is proposed
in [20], which maximizes the user’s income by improving
the EV’s ability to track AGC signals. However, this scheme
fails to consider the impact of frequency regulation on battery
losses.

Bidirectional V2G requires higher requirements on
the inversion performance of charging equipment, which
achieves a bidirectional power flow between the EV bat-
tery and grid [21]–[26]. A two-level hierarchical control
mechanism based on mixed-integer linear programming is
proposed in [21]. The EV charging and discharging scheme
is determined by estimating the EV frequency modulation
capability of the charging station and substation in each time
slot. The capability of EVs in executing the reactive power
compensation by trackingAGC signals is investigated in [22].
V2G-based EV supplementary frequency regulation has been
adopted bymany Independent SystemOperators (ISOs), such
as PJM, California ISO, New York ISO and Midcontinent
ISO [20]. However, the method of obtaining the intuitive
charging and discharging capabilities of EV clusters is still
under-researched.

To overcome these issues andmaximize the contribution of
bidirectional V2G to the grid, two major challenges still exist
as follows:

1) The primary purpose of EVs is to meet users’ travel
needs. Therefore, based on practical data, analyzing the user’s
travel pattern through the trip chain model with time-space
variation probability is the fundamental work to study the
impact of integrating large-scale EVs on power grids.

2) Evaluating the ability of large-scale EV clusters to
respond to AGC signals, i.e. charge and discharge capacity,
on the premise of obtaining the expected battery SOC level,
helps to guide the mid- and long-term planning of power
grids and the assessment of renewable energy consumption
capacity.

The contributions of this article include:
1) Based on the spatiotemporal-varying probabilistic char-

acteristics of starting and ending a trip, the probability distri-
butions of the trip chain characteristic variables are fitted.

2) The trip chains on a time scale of several weeks
of the EV clusters are simulated, which can reflect the
spatial-temporal distribution of EVs’ diurnal driving patterns.
Moreover, the simplified block structure makes it more suit-
able for the simulation of large-scale EV cluster travel behav-
ior than the method presented in [18].

3) Inspired by the nine-zone map model applied in the
control of substation voltage and reactive power [27], [28],
a five-zone map model with closed boundaries is proposed,
which is a new tool to describe the ability of an EV to
respond to AGC signals more intuitively than the methods
in [20], [21], [23] under the premise of meeting the owner’s
travel needs.

4) The charge and discharge capacities of the EV cluster
are calculated based on the trip chains and the five-zone map.

5) The simulation of travel and charge-discharge behaviors
are parallelized to increase the calculation speed based on the
consideration that the EVs in the cluster are independent of
each other.

The rest of this article is organized as follows. Section II
introduces the modeling of trip chains. Section III provides
the mathematical model of the five-zone map. Section IV
illustrates the calculation process. Section V presents the
details of the proposed model and the results of a case
study. The conclusion drawn from the study is provided in
Section VI.

II. TRIP CHAIN THEORY
A. STRUCTURE OF THE TRIP CHAIN
Analyzing the EV user’s travel pattern with time-space vari-
ation probability is the fundamental work to study the charg-
ing demand of EVs. The trip chain model can be used
to reflect the dynamic characteristics of the travel pattern.
A trip chain model is proposed based on the related studies
in [15], [17], [18], [29]–[31], its structure is illustrated in
Figure 1. Bi is the i-th trip block in the trip chain, Ts,i, Ta,i, and
Tg,i are the departure time, arrival time, and parking end time
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FIGURE 1. Structure of a trip chain.

of the i-th trip, tv,i and tp,i are the driving time and parking
duration of the i-th trip, pi−1 and pi are the departure type
and destination type of the i-th trip, di is the driving mileage
of the i-th trip.

FIGURE 2. Examples of typical trip chains.

Six typical trip chains composed of daily activities are
shown in Figure 2. Some references limit the length of the
trip chain, for instance, by reducing the number of trips in
one day [15], [16]. In order to fully consider the randomness
and continuity and explore the diversity of travel laws on a
long timescale, this article does not reduce the length of the
trip chain and does not force EVs to return home at the end
of the day during the simulation.

The U.S. Federal Highway Administration released the
latest National Household Travel Survey (NHTS) in 2017.
It is assumed that EV owners have the same travel patterns as
the survey, hence the TRIPPUB.csv file released in the survey
is used as the dataset in this article.

B. CHARACTERISTIC VARIABLES OF THE TRIP CHAIN
Each trip in the trip chain is abstracted into a trip block
consists of several characteristic variables that follow dif-
ferent distributions. The fitting methods of the characteristic
variables are described as follows:

1) THE FIRST DEPARTURE TIME OF A DAY
The frequency histogram of the first departure time of a
day is shown in Figure 3. It shows that the first departure
time follows a Gaussian mixture distribution. Therefore, the
Expectation-Maximization (EM) algorithm in [32] is used to
fit the parameters of the Gaussian mixture distribution.

According to the probability theory, the probability density
function (PDF) p(x) of a one-dimensional Gaussian mixture
distribution array X = {x1, x2, . . . , xN} can be expressed as:

p(x|2) =
M∑
k=1

ωkpk (x|θk)

pk (x|θk) =
1√
2πσ 2

k

exp

[
−
(x − µk)2

2σ 2
k

]
, (1)

FIGURE 3. PDF histograms of the daily first departure time.

where2 = (ω1,ω2, . . . , ωM , θ1, θ2, . . . , θM ) indicates that the
Gaussian mixture distribution is composed of a finite number
of M single Gaussian distributions, ωk is the weight of the
k-th single Gaussian distribution, which satisfies

∑M
k=1 ωk =

1, θk is the mean and standard deviation (µk , σk ) of the k-th
single Gaussian distribution, pk (x|θk ) is the PDF of the k-th
single Gaussian distribution.

For simplicity, the readers are referred to the proof of
parameter-estimation of Gaussian mixture distribution based
on the EM algorithm in Appendix A. The steps to use the EM
algorithm are given in (2)-(4).

According to the Bayesian theory, the probability that the
i-th sample xi is generated by the k-th Gaussian distribution
is:

p
(
k|xi,2(t)

)
=

p
(
k, xi|θ

(t)
k

)
p
(
xi|2(t)

) = ωkpk
(
xi|θ

(t)
k

)
∑M

j=1 ωjpj
(
xi|θ

(t)
j

) , (2)
where2(t) is the estimated value of2 at the beginning of the
t-th iteration.
The distribution parameter2(t+1)

k = (ω(t+1)
k µ

(t+1)
k , σ

(t+1)
k )

of each Gaussian distribution is calculated iteratively:

ω(t+1)
k
=

∑N
i=1 p

(
k|xi,2(t)

)
N

µ(t+1)
k
=

∑N
i=1

[
xip
(
k|xi,2(t)

)]∑N
i=1 p

(
k|xi,2(t)

) ,∀k ∈ {1, 2, · · · ,M}

(
σ 2
k

)(t+1)
=

∑N
i=1

[
(xi − µk)2 p

(
k|xi,2(t)

)]∑N
i=1

[
p
(
k|xi,2(t)

)]
,

(3)

The iteration ends when the difference of the probability
distribution parameters between two iterations meets the fol-
lowing condition:

max
(∣∣∣2(t+1)k −2

(t)
k

∣∣∣) < ε,∀k ∈ {1, 2, · · · ,M} , (4)

where ε represents the threshold error.
After calculating the parameters of every single Gaussian

distribution with the EM algorithm, the Gaussian mixture
distribution model of the first departure time of the day can
be obtained.

2) TRAVEL DESTINATION TYPE
This article considers Q types of travel destinations, i.e. pi ∈
{D1, D2, . . . , Dj, . . . , DQ}, wherein pi = Dj means the
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destination of the i-th trip is Dj. The transition probability
of the i-th trip P[pi|pi−1,Ts,i] between different destinations
is a conditional probability based on the departure time Ts,i.
Therefore, this article divides a day into H periods and cal-
culates the frequency of travel records in each period. Then,
an H ×Q×Q transition probability matrix R can be created,
where the element rk,i,j is the travel transition probability
from Di to Dj during the period of [tk−1, tk ].

TABLE 1. The most common travel destination types.

The most common travel destination types on weekdays
and weekends are given in Table 1 sorted by frequency.
It can be seen that the 6 types of travel destinations have a
cumulative probability of 90%, and there is a clear difference
between weekdays and weekends. Herein, it is assumed that
the destination for each trip in the trip chains is one of
the 6 types, i.e. Q = 6.
It is assumed that the starting and ending locations of the

trip chain are both Home. However, a trip with Home as the
destination does not necessarily mean Home is the end of the
trip chain. Taking this into consideration, trips with Home
as the destination are further divided into two categories:
a) Homea: temporary parking at home; b) Homeb: return
home and end the current trip chain. Therefore, the transition
probability matrix R can be expanded as H × Q× (Q+ 1).

3) DRIVING TIME AND MILEAGE
The driving time tv,i follows a log-normal distribution when
the departure type pi−1 and destination type pi of the i-th trip
are determined [17], i.e. ln(tv,i) ∼ N [µv(pi−1, pi), σ 2

v (pi−1,
pi)] which takes the uncertain factors into account, such as
driving habits, traffic jam, and different distances to the same
destinations.

The driving mileage di follows a normal distribution when
the driving time tv,i is determined, i.e. di ∼ N [ µd (tv,i),
σ 2
v (tv,)i], and the power function characteristics are satis-

fied between µd(tv) with tv, and σd(tv) with tv as shown in
Figure 4. The driving time is divided into several equally
spaced segments, and the power function form y(tv) = a× tbv
is used to fit the distribution parameters of the drivingmileage
in each segment [17].

4) PARKING DURATION
The length of parking depends on the type of travel desti-
nation, i.e. where it is parked. As shown in Figure 5, the
parking durations at destinations of Homea, Shopping, Enter-
tainment and Pick-up follow log-normal distributions. The
parking durations at destinations of Work and Dining follow
Gaussian mixed distributions composed of 3 and 2 single
Gaussian distributions. It should be noticed that for the i-th

FIGURE 4. Power function relationship between driving mileage and
driving time.

FIGURE 5. PDF histograms of parking durations at different destinations.

trip with Homeb as the destination, the parking duration tp,i
is determined by the first departure time of the next day.

5) THE DIFFERENCE BETWEEN WEEKDAYS AND WEEKENDS
Data shows that there is a clear difference between the travel
preferences on weekends and weekdays. Therefore, each of
the above-mentioned characteristic variables needs to be fit-
ted separately.

Besides, since the daily trips in the NHTS 2017 dataset
are evenly surveyed, the ratio between the number of daily
trips that occur on weekdays and weekends can reflect the
user’s preference difference for starting a trip chain between
weekdays andweekends. Therefore, we define the probability
of starting a trip chain on weekdays asP1 =1. The probability
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of starting a trip chain on weekends P2 can be expressed as:

P2 =
Nwke/2
Nwkd/5

P1, (5)

where Nwke and Nwkd are the numbers of travel records on
weekends and weekdays.

III. EV SCHEDULING STRATEGY BASED ON THE
FIVE-ZONE MAP
A. MODEL OF THE FIVE-ZONE MAP
In order to intuitively reflect the ability of EVs responding to
AGC signals and participating in V2G under the premise of
meeting the owner’s travel needs, an EV scheduling strategy
based on the five-zone map is proposed as a new solution.
When the EV is plugged into the power grid, it will upload
necessary information such as whether it will participate in
V2G, the expected off-grid time and the expected off-grid
SOC to the charging pile. EV’s five-zone map is illustrated
in Figure 6.

FIGURE 6. Five-zone map of EV.

In Figure 6(a), Sl and Su are the minimum and maximum
SOCs during V2G, Ta and Tg are the time when the EV
is connected to and disconnected from the grid. Sa is the
SOC when it is connected to the grid, and Sf is the lowest
SOC meets the user’s travel demand when it is disconnected
from the grid. The closed area Z formed by the polyline
abcdef represents the safe operating zone based on the SOC
during the on-grid time, where the line segments bc and fe
represent the upper and lower boundary of the SOC, and the
line segment ed represents the forced-charging boundary, the
line segment dc represents the SOC range when the EV is
disconnected from the grid.

Assuming the slope of line segments ab and ed is kc, and
the slope of line segment af is kd, which can be expressed as:

kc =
ηcPc
Cb

kd = −
Pd
ηdCb

, (6)

where ηc and ηd are the charging efficiency and discharging
efficiency, Pc and Pd are the charging power and discharging
powermeasured at the grid side,Cb is the EV battery capacity.

Each point x(t , St ) in zone Z is a charging state of EV,
wherein St is the SOC at time t . The locations of the 6 bound-
ary points of zone Z are given in Table 2.

TABLE 2. Boundary points of zone Z.

The on-grid period of the EV is divided into sev-
eral sub-control periods with intervals of T . The behav-
ior of EV in each sub-control period can be charging,
discharging and standby. According to different results
caused by different behaviors of EV in each sub-control
period, the zone Z can be divided into five sub-zones,
i.e. free zone Z1, stop charging zone Z2, stop discharg-
ing zone Z3, forced charging zone Z4 and standby zone
Z5. The criteria for dividing each zone are described as
follows:

1) STOP CHARGING ZONE Z2
Charging in the stop charging zone will cause the SOC to
be higher than the upper limit Su. Therefore, the charging
behavior should be stopped in this zone. The criterion that
the charging state of the EV at time t in the stop charging
zone x(t , St ) ∈ Z2 can be expressed as:

Su − kcT ≤ St ≤ kc (t − Ta)+ Sa,

Ta +
Su − Sa
kc

− T ≤ t ≤ Ta +
Su − Sa
kc

Su − kcT ≤ St ≤ Su,

Ta +
Su − Sa
kc

< t ≤ Tg − T

kc
(
t − Tg

)
+ Su ≤ St ≤ Su,

Tg − T < t ≤ Tg

, (7)

2) STOP DISCHARGING ZONE Z3
Discharging in the stop discharging zone will cause the SOC
to be lower than the limit Sl or the SOC cannot meet the travel
need when the EV is disconnected from the grid. Therefore,
the discharging behavior should be stopped in this zone. The
criterion that the charging state of the EV at time t in the stop
discharging zone x(t , St ) ∈ Z3 can be expressed as:

kd (t − Ta)+ Sa ≤ St ≤ Sl − kdT ,

Ta − T +
Sl−Sa
kd
≤ t ≤ Ta +

Sl − Sa
kd

Sl ≤ St ≤ Sl − kdT ,
Ta +

Sl−Sa
kd

< t ≤ Tg −
Sf−Sl
kc
− T

kc
(
t − Tg+T

)
+ Sf≤St ≤ kc

(
t − Tg+T

)
+ Sf − kdT ,

Tg −
Sf − Sl
kc
− T < t ≤ Tg − T

Sf ≤ St ≤ kd
(
t − Tg

)
+ Sf,

Tg − T < t ≤ Tg

,

(8)
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3) FORCED CHARGING ZONE Z4
Discharging or standby in the forced charging zone will
cause the SOC to reach the forced-charging boundary ed. The
criterion that the charging state of the EV at time t in the
forced charging zone x(t , St ) ∈ Z4 can be expressed as:

Sl ≤ St ≤ kc
(
t − Tg + T

)
+ Sf,

Tg −
Sf − Sl
kc
− T ≤ t ≤ Tg −

Sf − Sl
kc

kc
(
t − Tg

)
+ Sf ≤ St ≤ kc

(
t − Tg + T

)
+ Sf,

Tg −
Sf − Sl
kc

< t ≤ Tg − T

kc
(
t − Tg

)
+ Sf ≤ St ≤ Sf,

Tg − T < t ≤ Tg

,

(9)

4) STANDBY ZONE Z5
The existence of the standby zone depends on the value of the
sub-control period T . If T meets the condition in (10), the stop
charging zone Z2 and the stop discharging zone Z3 will form a
closed intersection zone, which is the standby zone. Charging
or discharging in the standby zonewill cause the SOC to reach
the limit Su or the forced-charging boundary ed. If T does not
meet the condition in (10), the standby zone will not exist.
The five-zone map without Z5 is shown in Figure 6(b).

T >
Su − Sf
kc − kd

, (10)

If the standby zone Z5 exists, the criterion that the charging
state of the EV at time t in the standby zone x(t , St ) ∈ Z5 can
be expressed as:

Su − kcT ≤ St ≤ kc
(
t − Tg + T

)
+ Sf − kdT ,

Su−Sf−(kc−kd)T
kc

+
(
Tg−T

)
≤ t ≤ Tg − T

kc
(
t − Tg

)
+ Su ≤ St ≤ kd

(
t − Tg

)
+ Sf,

Tg − T < t ≤ Tg +
Su − Sf
kd − kc

,

(11)

5) FREE ZONE Z1
The other area in Z is regarded as the free zone Z1, where EVs
can choose to charge, discharge or standby. The free zone Z1
can be expressed as:

Z1 = Z\ (Z2 ∪ Z3 ∪ Z4 ∪ Z5) , (12)

B. BEHAVIORAL DECISION-MAKING IN FIVE-ZONE MAP
1) FREE ZONE Z1
The decision-making strategy of charge and discharge behav-
ior in the free zone is shown in Figure 7(a). Point A represents
the charging state of the EV at the initial moment of the period
of [ nT, (n + 1)T ]. Segments AB, AC, and AD represent
the SOC updating trace with the EV’s state being charging,
discharging, and standby. None of the three behaviors will
reach the boundary of Z . Therefore, any behavior can be
selected in the free zone.

2) STOP CHARGING ZONE Z2
The decision-making strategy of charge and discharge behav-
ior in the stop charging zone is shown in Figure 7(b). The
upper boundary of zone Z can be reached with the battery
being charged during the period of [nT, (n+1)T ]. Therefore,
the battery should be charged first and then standby during
this period, as shown by line ABD. Discharge or standby can
also be selected in the stop charging zone.

3) STOP DISCHARGING ZONE Z3
The decision-making strategy of charge and discharge behav-
ior in the stop discharging zone is shown in Figure 7(c).
The lower boundary of zone Z can be reached with the
battery being discharged during the period of [nT, (n + 1)T
]. Therefore, the battery should be discharged first and then
standby during this period, as shown by line ACD. Charge or
standby can also be selected in the stop discharging zone.

4) FORCED CHARGING ZONE Z4
The decision-making strategy of charge and discharge behav-
ior in the forced charging zone is shown in Figure 7(d).
The forced-charge boundary ed can be reached both with the
battery being discharged or standby during the period [nT,
(n + 1)T ]. Therefore, the battery should be charged during
this period, as shown by line AB.

5) STANDBY ZONE Z5
In the standby zone, EV should remain standby to ensure the
SOC will not reach the boundary of the zone Z .

IV. CHARGE AND DISCHARGE CAPACITY OF EV CLUSTER
A. ANALYSIS OF THE CHARGE AND DISCHARGE
BEHAVIOR
The SOC at the arrival time of the i-th trip can be expressed
as:

STa,i = STs,i −
υdi

100Cb
, (13)

where ST a,i and ST s,i are the SOC at the arrival time and
departure time of the i-th trip, ST a,i is considered to be higher
than 15% to ensure the safety of driving, di is the diving
mileage of the i-th trip (km), υ is the power consumption per
100 kilometers (kWh/100km) and Cb is the battery capacity
(kWh).

In this article, two charging modes are considered, i.e. slow
charging with AC power of Pc and fast charging with DC
power of P’c.

For EVs do not participate in V2G, their charging behavior
depends on the SOC level ST a,i and the usual initial charging
SOC Ss. Their discharge capacity is regarded as zero.

For EVs participate in V2G, when arriving at the destina-
tion, information of Ta, Tg, Sl, Su, Sa, and Sf are uploaded to
the charging pile. Then, the five-zone map can be obtained
based on (6)-(12). The charging or discharging behavior in
each sub-control interval can be determined according to the
five-zone map scheduling strategy during the parking. It is
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FIGURE 7. Behavioral decision-making in the five-zone map.

assumed that the AGC signals of the power grid for the EV
cluster are known, and the authority to decide the charging or
discharging behavior is granted to the charging pile.

The analysis of the charging and discharging behavior of an
individual EV is shown in Figure 8. When the parking is over,
the charging and discharging power profile of the EV can be
calculated by merging the behaviors during the parking.

B. CALCULATION PROCESS OF THE CHARGE AND
DISCHARGE CAPACITY
According to the above methods, the simulation steps of
the trip chains and the calculation steps of the charge and
discharge capacity can be described as follows:

1) Fit characteristic variables of the trip chain, including
the first departure time of the day, the trip transition probabil-
ity, the driving time and mileage, and the parking duration.

2) Start to model trip chains. Specify the max simulation
time as Tmax, the number of EVs as N , and the current EV
index as n = 1.

3) Draw a sample of the first departure time of the day Ts,1,
and set the current trip index as i = 1.
4) Draw samples of the travel destination pi, driving time

tv,i, and driving mileage di of the i-th trip, calculate the arrival
time as Ta,i = Ts,i+ tv,i.

5) If the destination pi is Homeb, then end the current trip
chain and start a new trip chain for the next day; otherwise,
go to 6).

6) Draw a sample of the parking duration tp,i, calculate the
end time of the i-th trip as Tg,i = Ta,i + tp,i.
7) If the current time Tg,i exceeds the max simulation time

Tmax, go to 9); otherwise, go to 8).
8) Calculate the departure time of the (i + 1)-th trip as

Ts,i+1 = Tg,i, and let i = i+1, then go to 4).

FIGURE 8. Analysis of the charging and discharging behavior of an
individual EV.

9) If the current EV index n exceeds N , go to 10); other-
wise, let n = n+1 and go to 3).

10) Start to calculate charge and discharge capacity. Let
n = 1.
11) Specify I as the number of trips of the n-th EV in the

cluster.
12) Initialize the SOC at the departure time of the first trip

to 1, and let the trip index i = 1.
13) Calculate the SOC at the arrival time of the i-th trip

based on (13).
14) Determine the charging and discharging behaviors, and

calculate the charging and discharging power profile during
the parking according to Figure 8.

15) If the current trip index i exceeds I , go to 16); otherwise
let i = i+1 and go to 13).
16) If the current EV index n exceeds N , then calculate

the charging and discharging power profile of the EV cluster;
otherwise, let n = n+1 and go to 11).
The flowchart of the charge and discharge capacity calcu-

lation is depicted in Figure 9.

V. CASE STUDY
The charge and discharge capacity of EV clusters is calcu-
lated based on the NHTS dataset released by the Federal
Highway Administration in 2017.

A. PARAMETERS OF THE EV CLUSTER
According to a report from the International Council on Clean
Transportation (ICCT) on the American EV market [33], the
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FIGURE 9. Flowchart of the charge and discharge capacity calculation.

top five EVmodels with the highest market share are used for
modeling EV clusters. Their battery parameters are listed in
Table 3. The power of slow charge and fast charge are set to
5kW and 50kW respectively. The size of the EV cluster is set
to 5000, and the proportion of various types of vehicles in the
cluster is determined according to the market share.

According to the EV Project Nissan Leaf Vehicle Sum-
mary Report jointly released by Nissan and the Office of
Energy Efficiency & Renewable Energy [34], the usual initial
charging SOC Ss of EV owners normally follows a normal
distribution, i.e. Ss ∼ N (0.48, 0.1522).

TABLE 3. Battery parameters of top 5 types of EVs.

The timeslot for observing SOC is set to 1 minute, and the
maximum simulation time is set to 3 weeks.

B. FITTING THE PROBABILITY DISTRIBUTION
PARAMETERS
1) DATA CLEANING
Trips of which the driving time and mileage are valid values
(i.e. non-zero or non-null value) with private cars are selected
from the dataset, including a total of 601,071 trips on week-
days and 183,777 trips on weekends. Hence, the probability
of a weekend trip is 0.764 according to (5).

2) TRAVEL DESTINATION TYPES
As mentioned before in Section II.B, it is assumed that the
destination for each trip is one of the 6 most common types,
i.e. Home,Work, Shopping, Entertainment, Pick-up, andDin-
ing. Home is further divided into Homea and Homeb.

Travel transition probability among different destinations
varies over time. Dividing a day into 24 periods, the trip
transition probabilities between destinations in each period
of weekdays and weekends are calculated. The comparison of
travel transition probabilities in 08:00-09:00 and 14:00-15:00
on weekdays and weekends is shown in Figure 10. The peak
value of the red curve in Figure 10(a) is 0.585, which means
a trip taking ‘‘Home’’ as the departure has a probability of
58.5% of taking ‘‘Work’’ as the destination during the period
of 08:00-09:00. It can be seen that the choice of the travel
destination is closely related to the type and time of the
departure.

3) THE FIRST DEPARTURE TIME OF THE DAY
The EM algorithm is used to fit the first departure time of
the day which follows a one-dimensional Gaussian mixture
distribution composed of 3 single Gaussian distributions, the
distribution parameters in hours are shown in Table 4. The
PDF histograms based on these parameters are shown in
Figure 11.

TABLE 4. Distribution parameters of the first departure time of the day.

4) DURATION OF PARKING AT DIFFERENT DESTINATIONS
As mentioned in Section II.B, models of log-normal distribu-
tions and Gaussian mixed distributions composed of 3 and
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FIGURE 10. Travel transition probabilities in typical periods.

2 single Gaussian distributions are used to fit the parking
duration under different types of destinations. The parameters
of the probability distributions are shown in Table 5.

5) DRIVING TIME AND MILEAGE
The driving time tv between different departure and destina-
tion types follows the log-normal distribution, the parameters

FIGURE 11. PDF histograms of the fitted daily first departure time.

TABLE 5. Distribution parameters of parking duration.

TABLE 6. Power function parameters of driving mileage.

of which are listed in Appendix B. Dividing the driving time
of all trips into several levels at a five-minute interval and
calculating the average mileage of each level, the power func-
tion is used to fit the relationship betweenmileage and driving
time, and the average absolute error (MAE) is calculated. The
fitted parameters are shown in Table 6.

Therefore, the driving mileage on weekdays and weekends
follow the conditional normal distribution as below:

N [0.2622× t1.2602v , (0.1500× t1.2476v )2],

N [0.1667× t1.3956v , (0.2019× t1.1571v )2].

C. SIMULATION OF THE TRIP CHAIN
The simulation of the EV cluster trip chain follows the steps
shown in Figure 9. The mileage for each trip is selected as
the verification object. The probability density function and
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FIGURE 12. Comparison of trip mileage in original and simulated data.

FIGURE 13. Charge and discharge behaviors of 20 selected EVs.

cumulative distribution function (CDF) of the mileage in the
original and the simulated data are shown in Figure 12, which
shows that the simulated trip chains conform to the actual
driving law.

D. CALCULATION OF THE CHARGE AND DISCHARGE
CAPACITY
It is assumed that owners charge or discharge only in residen-
tial areas, working areas, shopping areas, and entertainment
areas, and do not charge or discharge during pick-up and
meals. To reduce the impact of the simulation initialization
and compare the results on weekdays and weekends, the
charge and discharge capacity of the EV cluster on the second
Tuesday and the third Saturday are analyzed.

To illustrate the implementation of the proposed V2G
scheduling strategy, 20 EVs are randomly selected from the
EV cluster, in which No.1-12 will participate in V2G, and
No.13-20 will not. The charging and discharging behaviors
of the selected EVs within 24 hours of the second Tuesday
are drawn in a heat map together with the baseload of the
grid, as shown in Figure 13.

It can be seen that during the on-peak period of the
baseload, most of EVs No.1-12 discharge to feed energy back
to the grid, and a few of them charge to ensure the users’
travel needs. During the off-peak period of the baseload, EVs
No.1-12 charge to fill the valley of load curve and prepare
for next day’s trips. The charging decisions of EVs No.13-
20 depend on the users’ travel needs, and no discharging
decision is made.

The proportion of EVs participating in V2G in the cluster
is usually affected by objective factors such as the driving
demand, electricity price, and battery anti-aging technology.
Studies in [35]–[37] have shown that optimistic discharge

incentive policies can increase this proportion. In this article,
the proportion of EVs participating in V2G in the cluster
is defined as Kp, which is regarded as an adjustable preset
parameter to analyze the charge-discharge capability under
different objective conditions. Kp can be expressed as:

Kp =
Np

N
, (14)

where Np is the number of EVs participating in V2G in the
cluster; N is the size of the EV cluster, i.e. the total number
of EVs in the cluster.

The charge and discharge capacity on weekdays and week-
ends in each area when Kp = 0.6 are shown in Figure 14, and
the proportion of energy charged and discharged in each area
are listed in Table 7.

FIGURE 14. Charge and discharge capacity of EV cluster.

TABLE 7. Proportion of energy charged and discharged in each area.

In line with the AGC signals from the power grid, the
charge power of the cluster is concentrated on the off-peak
period of the baseload, i.e. 22:00 to 06:00 the next day, and the
discharge power of the cluster is concentrated on the on-peak
period of the baseload, i.e. 08:00-20:00. The short parking
duration and the small number of EVs lead to low charging
and discharging power in shopping and entertainment areas.

During the off-peak period of the baseload, the power grid
releases AGC signals of charging, EVs participating in V2G
are charged during this period to meet their daytime travel
needs. Since most EVs are at home during this period, the
energy charged in the residential area accounts for a propor-
tion of 95.1% in all areas.

During the on-peak period of the baseload, the power grid
releases AGC signals of discharging. The discharge capacity
in the working area on weekends is lower than on weekdays,
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and the energy-discharged in the working area on weekdays
increases by 19.7% compared to weekends. The discharge
capacity in the working area in the morning is higher than that
in the afternoon. This is because a large number of EVs arrive
at the working area in the morning and feed the remaining
power back to the grid. They charge in the afternoon to meet
the travel needs after work.

Besides, some owners set off late in the morning and some
owners end their trips in the early evening, which causes two
peaks in the discharge capacity profile in the residential area.

E. CHARGE AND DISCHARGE CAPACITY IN DIFFERENT
SITUATIONS
1) CHARGE AND DISCHARGE CAPACITY WITH
DIFFERENT KP
When Kp = 0, it is considered that the discharge capacity
of the EV cluster in response to the AGC signals is zero.
Charge demand comes from uncoordinated charging of EVs.
The charge demand on weekdays and weekends in each area
is shown in Figure 15, and the proportion of energy charged
in each area are listed in Table 8.

FIGURE 15. Charge and discharge capacity of EV cluster when Kp = 0.

TABLE 8. Proportion of energy charged in each area.

It can be seen that the peak charging load in the residential
area appears around 20:00 and is the highest among these
areas. The peak charging load in the working area appears
around 10:00. The energy-charged on weekends in the work-
ing area decreased by 16.7% than weekdays, which results
in a 10.0% increase in energy-charged in the residential area.
The charging demand in shopping and entertainment areas is
low, and the peak load appears in the afternoon. The propor-
tion of energy-charged in these two areas has increased from
7.5% on weekdays to 14.2% on weekends. However, it is still
lower than in other areas.

There is a significant peak-to-valley difference in the daily
charge demand profile. The charge demand is high in the
daytime and evening and low in the early morning. The
peak of the total charge demand on weekends is about 1.5
to 2 hours later than on weekdays. The energy-charged in
working area accounts for 32.7% on weekdays, a decrease to

FIGURE 16. Charge and discharge capacity of EV cluster when Kp = 0.3.

16.0% on the weekends leads to the daily load curve changing
from a double-peak to a single-peak, and the peak-to-valley
difference increasing by 10.9%.

When Kp = 0.6, the charge and discharge capacity of EV
cluster on weekdays and weekends in each area is shown in
Figure 14. It should be noticed that, because the power grid
released AGC signals of charging during the off-peak period
of the baseload, the energy-charged in the residential area has
increased by 166.5% compared to the case when Kp = 0,
which helps to reduce the wind power curtailment at night.

When Kp = 0.3, the charge and discharge capacity of EV
cluster on weekdays and weekends in each area is shown in
Figure 16. The energy charged and discharged on weekdays
have decreased by 29.5% and 48.2% compare to the case
when Kp = 0.6.

2) CHARGE AND DISCHARGE CAPACITY WITH DIFFERENT
CLUSTER SIZE N
When Kp = 0.6, the charge and discharge capacity and
energy on weekdays of the cluster with different sizes N are
shown in Figure 17. With the increase of cluster size, the
charge capacity during the off-peak period of the baseload
and the discharge capacity during the on-peak period have
been greatly improved, which has significantly increased the
dispatch capacity of the power grid. There is a strong linear
correlation between the energy charged and discharged with
the sizeN , which can be fitted as a linear function y = αx+β
whose parameters and root mean square error RMSE are given
in Table 9.

TABLE 9. Linear function parameters of energy charged and discharged.
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FIGURE 17. Capacity and energy of EV cluster of different sizes.

F. COMPARISON WITH OTHER METHODS
1) CHARGE DEMAND
An EV charge demand model is proposed in [38], which
assumes that the start charging time of EVs follows a normal
distribution N (17.5, 3.42), and the daily mileage follows a
log-normal distribution log-N(3.4, 0.52). Another EV charge
demand model is proposed in [39], which assumes that 30%
of the EVs in the cluster will charge in the working area
where the start charging time follows a normal distribution
N (9, 0.52), and 70% will charge in the residential area where
the start charging time follows a normal distribution N (19,
1.52). Besides, the initial charging SOC follows the normal
distribution N (0.6, 0.12). Neither model can calculate the
discharge capacity of EV clusters.

A comparison of the charge demand results between the
proposed model and the other two models has been carried
out. Assuming that the size of the EV cluster is 5000. The
charge demand of different models on weekdays are shown
in Figure 18, and the energy charged are given in Table 10.

TABLE 10. Energy-charged of different models.

It can be seen that the energy-charged in [38] are close to
the results in this article while the peak charging load appears
in the early evening. This is because this model does not
consider the charge demand in the working area.

Comparedwith themodel in this article, the charge demand
curve of the model in [38] has two peaks with higher peak
values and higher energy-charged. This is because the model
assumes that the initial charging SOC is concentrated around
0.6, but ignores the impact of the driving mileage on the
charge demand. As the driving range of EVs increases, own-
ers will allow EVs to start charging at lower SOC levels.

FIGURE 18. Comparison of charge demands of different models.

FIGURE 19. Comparison of charge and discharge capacity of different
models.

Therefore, the rationality of the assumption in [39] needs to
be further verified.

2) CHARGE AND DISCHARGE CAPACITY
A trip chain model is proposed in [15], which assumes
that users do not travel more than 3 times in one day. The
optional trip chains of this model includeHome-Work-Home,
Home-Other-Home, Home-Work-Shopping-Home, Home-
Other-Work-Home, and length of other chains does not
exceed 3. Another trip chain model is proposed in [16], which
considers only two types of trip chains, i.e. Home-Work-
Home, and Home-Work-Shopping/Dining-Home. The model
assumes that the arrival time at the working area follows a
uniform distribution U (8, 9), and the departure time from the
working area follows a uniform distribution U (17, 18.5), and
all EVs will return home before 22:30.

A comparison of charge-discharge capacity results
between the proposed model and the other two models has
been carried out. Assuming that the size of the EV cluster
is 5000 and Kp = 0.6, the charge-discharge capacities of
different models on weekdays are shown in Figure 19, and
the energy charged and discharged are given in Table 11.

TABLE 11. Energy charged and discharged of different models.

It can be seen that the energy charged and discharged
in [15] are close to the results in this article. However,
by specifying the type of trip chains and limiting the number
of daily trips, the model makes the distribution of users’
departure and arrival times more concentrated. Therefore,
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a peak appears in the daytime charging power curve, which
is 37% higher than that in this article.

The model in [16] puts forward stricter restrictions on
travel time distribution and the number of daily trips, which
leads to an increase of 91% in the daytime charging power
peak compared to [15]. The discharged-energy in its model is
13.4% lower than that in this article. This is because themodel
assumes that all EVswill leave theworking area before 18:30.
Therefore, the EVs which has been discharged are charged
during 13:00-17:00 to meet travel needs, which results in
charge capacity rises while discharge capacity falls. On the
contrary, the model proposed in this article believes that not
all users will leave the working area around 18:00, which
meets the actual travel laws.

G. PARALLEL IMPLEMENTATION OF THE METHOD
The existing models need to fit travel characteristics from
massive data and simulate the travel and charge-discharge
behavior of large-scale EV clusters, which may cause huge
calculation burdens. In recent years, the development direc-
tion of utilizing CPU computing power has shifted from
increasing single-core frequency to balancing multi-core
performance [40]–[42]. At the same time, cloud service
providers such as Amazon Web Services, Microsoft Azure
and Huawei Cloud can provide Elastic Cloud Server (ECS) to
meet the need of differentiated computing [43]–[45]. There-
fore, the proposed model is processed in parallel to increase
the calculation speed. The computing platform is the ECS
instance c6.4×large.4 provided by Huawei Cloud, which
has 16 CPU cores based on Intel Cascade Lake clocked at 3.0
GHz, as well as 64 GB of memory and 40 GB of hard disk
space. The operating system is CentOS 7.6.1810 (64-bit). A
multi-process parallel computing environment is established
based on Python 3.7. When the EV cluster size is 5000, the
running time of each module in single-process serial mode is
given in Table 12.

TABLE 12. Running time of each module in serial mode.

It can be seen that the calculation of M3 and M4 modules
takes longer time. Because the behaviors of EVs in the cluster
are independent of each other, the simulation of travel and
charge-discharge behaviors can be parallelized. Parallelizing
the calculations of M3 and M4 wherein the C processes can
run simultaneously and evenly distribute the computing tasks
for each process. The calculation process of each module is
shown in Figure 20.

The parallel acceleration ratio is defined as RC to reflect
the effect of multi-process on the calculation acceleration:

RC =
T1
TC
, (15)

FIGURE 20. Calculation process of each module.

where T1 is the total running time when only one process
is allowed to create under certain cluster size N . TC is the
total running time when C processes are allowed to create
simultaneously under the same cluster size N .

FIGURE 21. Parallel acceleration ratio under multiple processes.

Figure 21 shows the parallel acceleration ratio RC under
different numbers of processes C . It can be seen that:

1) RC increases with the increase of the number of pro-
cesses C . The acceleration effect is positively correlated with
the cluster size, which proves the excellent parallel computing
performance of the model.

2) When C is less than 16, i.e. the number of processes
is less than the number of CPU cores, the growth rate of
RC decreases with the increase of C . This is because the
proportion of the running time of the serial modulesM1,M2,
and M5 increases with the increase of C .

3) When C is greater than 16, RC decreases slowly. This is
because the increased resources consumed by process man-
agement results in a decrease of the computing efficiency.

The results have proved the excellent parallel computing
performance of the model. The number of processes should
be set as close as possible to the number of CPU cores to
achieve a higher computing efficiency.
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VI. CONCLUSION
This article proposes a novel calculation model of charge and
discharge capacity of EV clusters based on the trip chain.
Based on the NHTS 2017 dataset, the characteristic variables
of the trip chain are firstly fitted using probability distribution
models. The trip chains of the EV cluster on a time scale
of several weeks are simulated. In particular, a scheduling
strategy based on the five-zone map is designed to calculate
the charge and discharge capacities.

The following conclusions are unveiled by the studies:
1) The scheme based on the proposed five-zone map can

guide the EV cluster to operate as an energy storage sys-
tem by charging during off-peak periods and discharging or
standing-by during on-peak periods, which increases with the
growing of V2G participation rate Kp.
2) The charge capacity in the residential and working area

accounts for a total proportion of around 93%. The discharge
capacity of the working area in the morning is higher than that
in the afternoon. There are two peaks in the daily discharge
capacity curve of the residential area. The results have veri-
fied the effectiveness of the trip chain model in simulating the
commuting characteristics of the residents.

3) It shows that there is a nonlinear correlation between
the charge and discharge capacity with the cluster size, while
there is a strong linear correlation between the energy charged
and discharged with the cluster size.

4) The parallel acceleration ratio RC under different num-
ber of processes C proves that the proposed model has excel-
lent parallel computing performance.

The case study verifies the effectiveness of the model pro-
posed. This work is suitable for evaluating the responsiveness
of EV clusters to AGC signals, as well as the potential for
providing frequency regulation. It would be high-efficient to
apply the presented trip chain model to simulate the travel
behavior of large-scale EV clusters on a long-term scale.

APPENDIX A
PROOF OF PARAMETER-ESTIMATION OF GAUSSIAN
MIXTURE DISTRIBUTION BASED ON THE EM ALGORITHM
This is to demonstrate the parameter estimation of one-
dimensional Gaussian mixture distribution composed of a
finite number ofM single Gaussian distributions.
Supposing the observation value of a one-dimensional

Gaussian mixture distribution array composed of N samples
is X = {x1, x2, . . . , xN}, the PDF of which is expressed in (1),
then the log-likelihood function of X can be expressed as:

ln [L (2|X)] = ln

[
N∏
i=1

p (xi|2)

]

=

N∑
i=1

ln [p (xi|2)] =
N∑
i=1

ln

[
M∑
k=1

ωkpk (xi|θk)

]
(16)

The essence of the EM algorithm is to find the value of 2
that maximizes L(2|X ). However, (16) includes additions in
logarithm, so it is not feasible to directly calculate the extreme

value directly by derivation. To simplify the likelihood func-
tion expression, a set of random variable Y ={y1, y2, · · · ,
yN} is introduced, and yi ∈{1, 2, · · · , M}, i = 1, 2, . . . , N ,
yi = k indicates that the i-th sample xi is generated by the
k-th Gaussian distribution.
Then, the log-likelihood function of the complete data can

be expressed as:

ln [L (2|X ,Y )] = ln

[
N∏
i=1

p (xi, yi|2)

]

=

N∑
i=1

ln
[
p
(
yi|θyi

)
p
(
xi|yi, θyi

)]
=

N∑
i=1

ln
[
ωyipyi

(
xi|θyi

)]
(17)

The EM algorithm can be summarized in 3 steps:
1) E-Step: Calculate the log-likelihood function expecta-

tion of the complete data Q(2|2(t));
2) M-Step: Calculate the parameter2(t+1) that maximizes

Q(2|2(t));
3) Perform E-Step and M-Step alternately until conver-

gence.
The detailed process is as follows:
1) E-Step: Suppose that at the beginning of the t-th itera-

tion, the estimated value of 2 is 2(t)
= (ω(t)

1 , ω
(t)
2 , . . . , ω

(t)
M ,

θ
(t)
1 , θ (t)2 , . . . , θ (t)M ), then, the expectation of the log-likelihood
function of the complete data becomes:

Q
(
2|2(t)

)
= E

{
ln [L (2|X ,Y )] |X ,2(t)

}
=

∫
y∈D

ln [L (2|X , y)] p
(
y|X ,2(t)

)
dy

=

∫
y∈D

N∑
i=1

ln
[
ωyipyi

(
xi|θyi

)]
p
(
y|xi,2(t)

)
dy (18)

where D is the value space of y.
Assuming the probability that the i-th sample xi is gener-

ated by the k-th Gaussian distribution be p(yi = k|xi, 2(t)),
then (18) becomes:

Q
(
2|2(t)

)
=

M∑
k=1

N∑
i=1

ln [ωkpk (xi|θk)] p
(
k|xi,2(t)

)
=

M∑
k=1

N∑
i=1

ln (ωk) p
(
k|xi,2(t)

)
+

M∑
k=1

N∑
i=1

ln [pk (xi|θk)] p
(
k|xi,2(t)

)
(19)
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TABLE 13. Log-normal distribution parameters of driving time in minutes.

Base on Bayesian theory, the posterior probability p(k| xi,
2(t)) in (19) can be expressed as

p
(
k|xi,2(t)

)
=

p
(
k, xi|θ

(t)
k

)
p
(
xi|2(t)

) = ωkpk
(
xi|θ

(t)
k

)
∑M

j=1 ωjpj
(
xi|θ

(t)
j

)(20)
2) M-Step: Calculate the parameter2(t+1) that maximizes

Q(2|2(t)).
a) Calculation for ω(t+1)

k . Introduce Lagrange multiplier λ
into Q(2|2(t)), and let the partial derivative of Q(2|2(t)) to
ωk be 0:

∂

∂ωk

[
Q
(
2|2(t)

)
+ λ

(
M∑
k=1

ωk − 1

)]

=
∂

∂ωk

[
M∑
k=1

N∑
i=1

ln (ωk)p
(
k|xi,2(t)

)
+λ

(
M∑
k=1

ωk − 1

)]
+0

=
1
ωk

N∑
i=1

Mp
(
k|xi,2(t)

)
+ λM

= 0 (21)

Then, the following results can be derived:

N∑
i=1

p
(
k|xi,2(t)

)
+ λωk = 0 (22)

Sum k on both sides of (22):

M∑
k=1

[
N∑
i=1

p
(
k|xi,2(t)

)
+ λωk

]
= 0

M∑
k=1

p
(
k|xi,2(t)

)
= 1

M∑
k=1

ωk = 1

(23)

Then, it can be derived that λ = −N . Substituting it
into (22), the following result can be obtained:

ω
(t+1)
k =

∑N
i=1 p

(
k|xi,2(t)

)
N

(24)

b) Calculation for µ(t+1)
k . Assuming the partial derivative

of Q(2|2(t)) to µk is 0:

∂Q
(
2|2(t)

)
∂µk

= 0+
∂

∂µk

[
M∑
k=1

N∑
i=1

ln [pk (xi|θk)] p
(
k|xi,2(t)

)]

=
∂

∂µk

[
N∑
i=1

[
ln
(√

2πσ 2
k

)−1
−
(xi−µk)2

2σ 2
k

]
p
(
k|xi,2(t)

)]

=
1

σ 2
k

N∑
i=1

[
xip
(
k|xi,2(t)

)]
−
µk

σ 2
k

N∑
i=1

p
(
k|xi,2(t)

)
= 0 (25)

Then:

µ
(t+1)
k =

∑N
i=1

[
xip
(
k|xi,2(t)

)]∑N
i=1 p

(
k|xi,2(t)

) (26)

c) Calculation for σ (t+1)
k . Similarly, assuming the partial

derivative of Q(2|2(t)) to (σ 2
k )
−1 be 0:

∂Q
(
2|2(t)

)
∂
(
σ−2k

)
= 0+

∂

∂
(
σ−2k

) [ M∑
k=1

N∑
i=1

ln [pk (xi|θk)] p
(
k|xi,2(t)

)]

=
∂

∂
(
σ−2k

) [ N∑
i=1

[
ln
(√

2πσ 2
k

)−1
−
(xi−µk)2

2σ 2
k

]
p
(
k|xi,2(t)

)]

=

N∑
i=1

[
1

2σ−2k

−
(xi − µk)2

2

]
p
(
k|xi,2(t)

)
= 0 (27)

Then: (
σ 2
k

)(t+1)
=

∑N
i=1

[
(xi − µk)2 p

(
k|xi,2(t)

)]∑N
i=1

[
p
(
k|xi,2(t)

)] (28)
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3) Perform E-Step and M-Step alternately until convergence:

max
(∣∣∣ω(t+1)k

− ω(t)
k

∣∣∣ , ∣∣∣µ(t+1)k
− µ(t)

k

∣∣∣ , ∣∣∣σ (t+1)k − σ
(t)
k

∣∣∣) < ε

,∀k ∈ {1, 2, · · · ,M} (29)

where ε is the error threshold.

APPENDIX B
LOG-NORMAL DISTRIBUTION PARAMETERS OF DRIVING
TIME IN MINUTES
See Table 13.
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