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ABSTRACT Wave-coefficients (WCs) based target recognition can be theoretically applied to any a
frequency range, with increased sensitivity to aspect angle at higher frequencies. When it is utilized to a
frequency range in resonance region, the WCs can tolerate fairly big aspect variation and contain enough
target information, bringing a competitive advantage in multitudinous target features. Four polarization
channel WCs are introduced and independently utilized to identify four aerospace targets under noise and
noise-free circumstances. To take full advantage of the WCs in different polarization channels, a novel radar
aerospace target recognition method based onmulti-polarization channelWCs is proposed in this article. The
majority vote rule and a maximum discrepancy rule are combined to identify a target when four polarization
channelWCs are available at the same time. Simulation results on four aircraft models show that the proposed
technique achieves a recognition performance at least comparable to the best single channel performance.

INDEX TERMS Pattern recognition, radar target recognition, radar target classification, wave-coefficient.

I. INTRODUCTION
Real-world empirical target recognition using some target
feature is one of the most challenging section in radar tech-
nology. Substantial research work has been conducted on
this topic. Selection of a proper target feature is of essen-
tial importance to a successful target recognition [1], and a
variety of target features are exploited for target identifica-
tion. The high resolution range profile (HRRP) represents
the distribution of the scattering centers along the radar line-
of-sight (LOS). HRRP based radar automatic target recog-
nition (RATR) is intensively studied and numerous relevant
literatures have been reported openly [2]–[6]. Poles based
RATR has drawn considerable attention due to its tremen-
dous advantage that it is irrelevant to the target azimuth
[7]–[11]. The synthetic aperture radar (SAR) image offers an
intuitionistic contour profile of the target, besides, it has the
advantages of penetration ability through obstacles and day-
night operation. Thus, it makes SAR image a well-known
radar target feature [12]–[15]. There is a general consen-
sus among the researchers that no single feature vector is
optimal on all occasions. Developing new target features
is still a significant research aspect in RATR community.
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Micro-doppler signatures were utilized to discriminate mov-
ing target in [16]–[19]. The polarization scattering charac-
teristics of chaff clouds were studied and a support vector
machine (SVM) classification method was presented in [20].
In [21], the authors proposed a linear polarisation images
based method for target recognition in passive millimeter-
wave imaging system.

Two-dimensional (2D) target identification with a feature
vector termed wave-coefficients (WCs), was proposed in
[22]. WC concept was extended to three-dimensional (3D)
targets in [23], where four aerospace targets were considered.
Experimental results show that the WCs are with increased
sensitivity to aspect angle at higher frequencies. Theoreti-
cally, the WCs’s sensitivity to aspect angle can be effectively
relaxed by reducing the operating frequency of the radar.
However, if the operating frequency is chosen too low, the tar-
gets are equivalent to a scattering point, andWCs based target
recognition will lose effectiveness. An operating frequency
range in resonance region was proposed in [23], in which
the WCs can tolerate big aspect variation, bringing a decided
advantage in a large number of target features. Because there
are few target features for aerospace target which are able
to provide reliable target recognition in resonance region.
Besides, the WCs method has merits such as flexible applica-
tion, easy acquisition, etc. However, literature [23] only took
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one single polarization channel WCs into account. At some
aspect angles, the WCs are not able to provide enough dis-
tinction, resulting in a comparatively poor recognition perfor-
mance. It needs to be pointed out that echoes from different
polarization channels (for instance, in this article, horizontal-
φ component H-H, horizontal-θ component H-V, vertical-
φ component V-H, vertical-θ component V-V) contain or
enhance certain target information [24]. Echoes from dif-
ferent polarization channels can be obtained simultaneously
by polarimetric radars. A comparison among the recogni-
tion performances with different polarization channels is an
important work. Besides, if WCs extracted from different
polarization channels are fused to recognize a target, it is
expected that the recognition performance can be improved
or guaranteed.Motivated by this purpose, we propose amulti-
polarization channelWCs algorithm to raise the identification
rate and enhance the robustness of the WCs scheme in this
article.

The rest of the article is organized as follows. Section II
introduces the WCs of a 3D target. Section III elaborates
the recognition procedures of the proposed algorithm. A dis-
cussion of the characteristics of the WCs and the detailed
recognition performance in noise and noise-free environment
are provided in Section IV. Section V comes the conclusions.

II. CONCEPT OF THE WCS OF A 3D TARGET
The scattered far fields of an unknown target are expressed
by the superposition of the spherical waves, and the superpo-
sition coefficients are termed WCs. Suppose a plane wave is
illuminating on a conducting target with arbitrary shape along
the z-axis, and the electric field is polarized in x-axis. The
scattered field far away can be written in the form as follows:

Esθ (θ, φ, k)

=
jE0 cosφ0

k

∞∑
n=1

(2n+ 1)
n (n+ 1)

{Pn(θ, φ)an (k)P(1)n (cos θ0)

+Qn(θ, φ)bn(k)
[
cos θ0P(1)n (cos θ0)− τnP2n (cos θ0)

]}
(1)

Esφ(θ, φ, k)

=
jE0 sinφ1

k

∞∑
n=1

(2n+ 1)
n (n+ 1)

{
Mn(θ, φ)bn(k)P(1)n (cos θ1)

+ Ln(θ, φ)an(k)
[
cos θ1P(1)n (cos θ1)− τnP2n (cos θ1)

]}
(2)

where Esθ and Esφ denote θ and φ component of the scat-
tered field respectively. n is the subscript of the summation.
Coefficients Pn,Qn,Ln and Mn are the WCs. k = ω/c is the

wave number, and τn =
{
0 n = 1
1 n = others

. Pmn (cos θ ) denotes

the associated Legendre Polynomial, and P(1)n (cos θ ) =
∂P1n(cos θ )/∂(cos θ ). an and bn are defined as

an(k)= Ĵn(kae)/Ĥ (2)
n (kae), bn(k)= Ĵ ′n(kae)/Ĥ

(2)′
n (kae) (3)

where Ĵn(χ ) and Ĥ
(2)
n (χ ) are the Ricatti-Bessel and Ricatti-

Hankel functions expressed as Ĵn(χ ) = χ jn(χ ) and
Ĥ (2)
n (χ ) = χh(2)n (χ ) with jn(χ ) and h(2)n (χ ) the spherical

Bessel and Hankel functions, respectively. ae is the effective
radius defined by ae = d/2 with d the minimum diameter of
the sphere which enclose the target in this work.

There are many ways to obtain the WCs [25]–[27].
A method termed ‘‘Galerkin match’’ [28] is applied to extract
the WCs. Take θ component for example, match (1) by using
a∗m(k) and b

∗
m(k) as the ‘‘weighting’’ function respectively,

where ‘‘∗’’ represents the complex conjugate, then integrate
over the operating frequency band, we have:

2N∑
n=1

Z1
mn
Bn = g1

m
, m = 1, 2, · · ·M , M ≥ N (4)

2N∑
n=1

Z2
mn
Bn = g2

m
(5)

where Bn are the cascade of Pn and Qn, N is the truncation
term of Pn and Qn, and M is the truncation term of a∗m(k).
Z1
mn and g

1
m can be expressed as follows:

Z1
mn=



jE0 cosφ0P
(1)
n (cos θ0)

∫ kmax

kmin

an(k) ∗ a∗m(k)/kdk

1≤n≤N

jE0 cosφ0 cos θ0P
(1)
1 (cos θ0)

∫ kmax

kmin

b1(k) ∗ a∗m(k)/kdk

n = N+ 1

jE0 cosφ0
[
cos θ0P

(1)
n−N (cos θ0)− P

2
n−N (cos θ0)

]
∗∫ kmax

kmin

bn−N (k) ∗ a∗m(k)/kdkN+ 2 ≤ n ≤ 2 ∗ N

(6)

g1m=

kmax∫
kmin

a∗m(k) · E
s
θ (θ, φ, k)dk (7)

Z2
mn and g

2
m share the same form as Z1

mn and g
1
m respectively

just by replacing a∗m(k) with b∗m(k). Combine (4) and (5),
we obtain the following linear equations:

2N∑
n=1

ZlnBn = gl, l = 1, 2, · · · 2M (8)

Zln and gl are given as follows:

Zln =
[
Z1
mn
Z2
mn

]
, gl =

[
g1m
g2m

]
(9)

Similarly, when φ component is taken into account, use the
same procedure as θ component, linear equations of the same
form as (8) are obtained and corresponding Z1

mn and g
1
m can
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be given as follows:

Z1
mn=



jE0 sinφ1 cos θ1P
(1)
1 (cos θ1)∫ kmax

kmin

a1(k) ∗ a∗m(k)/kdk n = 1

jE0 sinφ1
[
cos θ1P

(1)
n (cos θ1)− P2n (cos θ1)

]
∗∫ kmax

kmin

an(k) ∗ a∗m(k)/kdk 2 ≤ n ≤ N

jE0 sinφ1P
(1)
n−N (cos θ1)

∫ kmax

kmin

bn−N (k) ∗ a∗m(k)/kdk

N+ 1 ≤ n ≤ 2 ∗ N
(10)

g1
m
=

kmax∫
kmin

a∗m(k) · E
s
φ(θ, φ, k)dk (11)

Z2
mn and g

2
m have the same form as Z1

mn and g
1
m respectively

by replacing a∗m(k) with b
∗
m(k).

The scattered far fields are obtained by simulation software
FEKO and the WCs are acquired through solving (8) by the
method of conjugate gradient (CG) under the least-square
(LS) constraint. The back-scattering scenario is considered in
this work. Thus the H-V and the V-H yield the same results,
and only three polarization channels are investigated.

III. IMPLEMENTATION OF MULTI-POLARIZATION WCS
FOR AEROSPACE TARGET RECOGNITION
The right hand of (8) changes with the incident angles,
however, the same basis functions are utilized to expand the
scattered fields. Therefore, matrix Z in (8) is irrelevant to
the aspect angle. The targets’ sensitivity to azimuth angle is
totally embodied in the WCs. Simulation results in [22], [23]
show that the WCs’ sensitivity to azimuth angle is directly
proportional to the working frequency. Due to the properties
of Ĵn(χ ) and Ĥ

(2)
n (χ ), the dimension of theWCs is augmented

with increasing of the operating frequency. An ideal target
feature should contain ample information of the target and
keep low sensitivity to the aspect angle. Thus, the operating
frequency should be appropriately chosen to strike a balance
between target information and sensitivity to the azimuth
angle. A frequency band in resonance region is proposed
in [23], in which the WCs are able to tolerate big aspect
variation and contain enough target information at the same
time. To take full advantage of different polarization channel
WCs, a multiple polarization WCs method is proposed in
this work to recognize aerospace targets. The correlation
coefficient (CC) is applied to evaluate the similarity between
two WCs.
Let B(i, j) = {Bn(i, j) : n = 0, 1, · · · ,N } denote the j-

th WC stored in the feature database for target i, and X =
{Xn : n = 0, 1, · · · ,N } denote a WC extracted from the
received radar echoes from a candidate target. The CC is

FIGURE 1. Coordinate system used in this work.

defined as follows:

C(i, j;X ) =

∣∣∣∣ N∑
n=0

Bn(i, j) · X∗n

∣∣∣∣√
N∑
n=0
|Bn(i, j)|2 ·

N∑
n=0
|Xn|2

(12)

Clearly, 0 ≤ C ≤ 1 and C = 1 if and only if the two WCs
are in proportion.

In view of the above-mentioned properties and the deci-
sion rule, multiple polarization WCs based aerospace target
recognition is performed following the procedure below:

(1) Study the WCs’ sensitivity to the aspect angle, and
determine the sampling interval angle along θ direction and
φ direction. Store the WCs of the candidate targets within the
aspect range of interest as the database. UseBi(θ, φ) to denote
the WC for target i at the azimuth (θ, φ).

(2) Extract the WCs from the received radar echoes. Esti-
mate the target aspect (θ0, φ0) with respect to the radar.
(3) Assume that the estimate errors in θ direction and φ

direction are within ±1θ and ±1φ, respectively. Find all
WCs in the azimuth angle scope, i.e. θo−1θ ≤ θ ≤ θo+1θ ,
φo −1φ ≤ φ ≤ φo +1φ, and calculate the CCs.
(4) Exploit each single polarization channel WCs to iden-

tify an unknown target independently.
Set a threshold CC, then identify the undecided target to be

the one in the candidate targets that provides the maximum
CC which is greater than the threshold CC at the same time.
Then use the majority vote rule to determine the unknown
target, that is, we identify the unknown target as the one
voted by the most polarization channels. Correspondingly,
the target is undetermined if there is at least another one target
which has the same poll.

For the undetermined target, the maximum discrepancy
rule is applied to determine the class. The discrepancy
is defined as the difference between the largest CC and
the second largest CC among all targets. Use the polarization
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FIGURE 2. Four scaled aircraft target models.

channel WCs that provide the maximum discrepancy at the
aspect range of interest to identify the target.

IV. NUMERICAL RESULTS
The coordinate system used in the simulation is shown
in Figure 1. θ represents the angle between the incident direc-
tion and -z axis, φ denotes the angle between the projection
of the incident wave on xy coordinate plane and -x axis and
η is the angle between −θ direction and the orientation of
the incident electric field. In this article, four scaled imitative
aircraft models as shown in Figure 2 are chosen as the candi-
date targets. For the convenience of description, we use T1,
T2, T3 and T4 to notate the four candidate targets in the rest
of this article. The sizes of them are illustrated in Table 1.
Zero degree azimuth is defined as the nose-on direction, and
90 degree is in the wing direction. The centers of the planes

TABLE 1. The dimensions of the four targets.

and the origin coincide. The simulation frequency band is set
to be 300 MHz-600 MHz in this study.

A. DISTINCTION OF THE WCS
The truncation term in (8) is set to be 20 according to the
simulation frequency and the length of the targets. Four single
channel WCs with randomly selected incident aspect are
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FIGURE 3. The θ component WCs of the four candidate targets with
θi = 174

◦
, φi = 59

◦
, η = 0◦: (a) real part and (b) imaginary part.

shown in Figure 3. As expected, the WCs are different from
each other, which indicates that they are a potential feature
vector that may be exploited for target recognition.

B. THE WCS’ SENSITIVITY TO ASPECT ANGLE
The WCs’ sensitivity to aspect angle determines the applica-
bility of the WCs based radar target recognition technique.
If the sample intervals of the aspects in both azimuth and
elevation directions are too small, too many WCs need to
be stored in the data base. The CCs with adjacent aspects
are studied to offer guidance on choosing the aspect sample
intervals. The aspect matching width (AMW) is introduced
to evaluate the WCs’ sensitivity to the aspect angle. Assume
that σ is a prescribed CC threshold, AMW is defined as
AMW = α1 − α2, where α1 and α2 are the minimum
and maximum aspect values, respectively, which satisfy the
following limitation

CC(Tm, αn, α0) ≥ σ, m = 1, 2, 3, 4 n = 1, 2 (13)

Here, α0 is called the middle angle. AMWs for each target
in three polarization channels are studied, and typical AMWs
of the candidate targets at two middle angles φ = 69◦ and
φ = 81◦ are plotted in Figure 4. It can be observed that
the AMW varies from target to target. For a given target,
AMW changes with the middle angles and polarization chan-
nels. Provided that σ is set to be 0.95, thebiggest AMW

FIGURE 4. AMWs of the four candidate targets for θi = 174
◦
: (a) middle

angle φ = 69◦, VH polarization, (b) middle angle φ = 69◦, VV polarization,
(c) middle angle φ = 81◦, HH polarization, (d) middle angle φ = 81◦,
HV polarization.

in Figure 4 is even bigger than the aspect search window
which is 20 degrees in this article. The smallest AMW shown
in Figure 4 belongs to target T2 at φ = 81◦ in HV polar-
ization channel, however, which still attains 6 degrees. When
constructing the WC database, if we study the AMWs in all
aspects range of interest (because of structural symmetry,
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FIGURE 5. The CCs between the testing target and the four known targets at all the testing azimuths angles in
VV channel.

FIGURE 6. The CCs between the testing target and the four known targets at all the testing azimuths angles in
VH channel.

aspect range of interest along θ direction and φ direction
are 0◦-360◦ and 0◦-180◦, respectively), the sampling interval

should vary with the themiddle angle, thus the number ofWC
stored in the template database can be greatly reduced.
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C. WC BASED TARGET RECOGNITION IN NOISE-FREE
ENVIRONMENT
As the AMWs for all the targets are large enough, there is
little burden to store the WCs within the aspect range of
interest. For each target, the recognition performance in all
three polarization channels are considered. In each channel,
the WCs of the candidate targets are uniformly stored with
an increment of 6 degrees along φ direction and θ is fixed
to 174

◦

. Therefore, 31WCs are stored for each object with
φ = 0◦, 6◦, 12◦ · · · 180◦. The azimuth angles for testing are
uniformly sampled and they are φ = 3◦, 9◦, 15◦ · · · 177◦.
For saving the space of this article, the CCs between the
testing target and the candidate targets in VV and VH channel
are shown in Figure 5 and Figure 6 respectively. In each
channel, target T1, T2, T3 and T4 are in turn taken as the
testing target.

All figures show that the CCs between the testing target
and the matched target are the biggest at all 30 azimuth angles
under examination, which indicates that the recognition rate
is 100% under the noise-free scenario. However, the tar-
get distinction exists significant difference between different
polarization channels. For example, in VV channel, there
are only nice distinctions between target T2 and T3 at some
testing azimuth angles, but there are much wider disparities
in WCs between the two targets in VH channel, as the CCs
between the two targets are fairly small. The same situation
happens among the other targets. This experimental result
reflects that WCs in different polarization channels embody
different structural information of the target, which urges
us to recognize a target by utilizing multiple polarization
channel WCs.

D. WC BASED TARGET RECOGNITION IN GAUSSIAN
NOISE CONTAMINATED ENVIRONMENT
In order to evaluate the recognition performance of the pro-
posedmethod under noise contaminated environment, we add
simulated Gaussian white noise to the received echoes. The
signal-to-noise (SNR) is defined as

SNR = 10 log10
P0
ρ2

(14)

where P0 denotes the power of the received sequence, and ρ2

represents the noise power. The WC at two randomly chosen
aspect angles φ = 70◦ and φ = 95◦ are investigated to com-
pare the performances of our proposed method to each single
polarization channel performance. Five hundred simulations
are conducted at each SNR level and the threshold CC is set
to be 0.9. Several representative correctly recognized ratios
versus SNR are plotted in Figure 7.

The experimental results show that the recognition perfor-
mances in different polarization channels of a given target
differs significantly. For example, the recognition rate of
target T1 at φ = 70◦ in HH channel under SNR= 0dB is even
greater than that obtained in VV channel under SNR= 15dB.
Meanwhile, different recognition performances are achieved
for different targets in a prescribed polarization channel.

FIGURE 7. The correct recognition ratio with respect to SNR at two
randomly selected aspect angles: (a) for T1, φ = 70◦, (b) for T2, φ = 70◦,
(c) for T1, φ = 95◦, (d) for T4, φ = 95◦.

Besides, the recognition performance is closely relevant to
the aspect angles. Therefore, it is hard to tell which single
channel is superior to the other channels. From the results
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given we find that if two polarization channels give a similar
performance that is better than that of the third channel,
the proposed scheme will yield a recognition performance
which is superior to all single channel results. The conclu-
sion holds the same when three channels produce a similar
recognition performance. The worst case happens when two
channels provide a similar result that is poorer than that of
the third channel, in which the proposed scheme will yield a
identification performance that is slightly inferior to the third
channel. However, the general circumstance is there is not
a prior information to tell which polarization channel gives a
more reliable recognition result. While the proposed scheme
is able to guarantee a performance that is superior to all single
channel performances or at least comparable to the best single
channel result.

V. CONCLUSION
Four polarization channel WCs are introduced and exploited
for aerospace target recognition in this article. The WCs
of a specified target show distinct differences in different
channels, which implies that WCs from different channels
contain different structural information. Every single channel
WCs can be utilized to identify a radar aerospace target
independently. It is difficult to tell which polarization channel
is superior to the other ones. To sufficiently take advantage
of the comprehensive target information, a multi-polarization
WCs method that combines the majority vote rule and the
maximum discrepancy rule is proposed to improve the identi-
fication performance. Simulation results on four aircraft mod-
els reveal that the proposed method guarantee a performance
that is superior to all single channel results or slightly inferior
to the best single channel recognition performance.
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