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ABSTRACT High-temperature superconducting (HTS) cables are expected to be installed in cable tunnels
that are already constructed in urban districts. Therefore, the installation of normal joint boxes is inevitable,
and it is necessary to develop a diagnostic methodology that considers both the existence of the joints
and the electrical characteristics of HTS cables. In this work, temporal sliding long short-term memory
(TS-LSTM) is proposed to estimate the locations of the joints that can be hidden by multiple reflections.
TS-LSTM includes short-term TS-LSTM and long-term TS-LSTM for analyzing various time dependencies.
The reflected signals of the actual joints, which are distinguished from multiple reflections, are analyzed
via the chirplet transform (CT) which is one of the time-frequency (TF) analysis methods. The proposed
condition monitoring method is applied to an AC 154 kV 600MVAHTS cable system (1 km) connected to a
real power grid network in Jeju, South Korea. For the validation of the proposed methodology, the dielectric
and electrical characteristics of the 154 kV HTS cable system are monitored during the cooling process.

INDEX TERMS Condition monitoring, long short-term memory (LSTM), superconducting cable, temporal
sliding LSTM (TS-LSTM) networks, time-frequency analysis.

I. INTRODUCTION
THE increasing use of electric vehicles and residential elec-
tricity usage accompanying the urbanization process have led
to rapid increases in electricity demands. A high-temperature
superconducting (HTS) cable can transmit large capacities
even at low voltages; therefore, the use of HTS cables is
desirable for reducing the size of new electric power facil-
ities in urban areas where the underground infrastructure is
already dense [1]. According to a study of the worldwide
commercialization of HTS cables, two substations in Essen
were connected by a 1 km-long 10 kV HTS cable as part of
the Ampacity project in Germany [2], while in New York,
a 600 m-long 138 kV HTS cable was successfully integrated
with the Long Island Power Authority grid [3]. In Baiyin,
China, an HTS power substation consisting of supercon-
ducting transformer, superconducting fault current limiter,
superconducting magnetic energy storage system, and 10 kV
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HTS cable was designed and demonstrated [4]. South Korea
completed a demonstration test of a 1 km-long 154 kV HTS
cable in Jeju and commenced commercial operation of a
1 km-long 23 kV HTS cable in 2019 [5].

The improvement of power quality and reliability is
another major requirement for future urban energy planning
and management [1]. A literature review of studies on the
safe and stable operation of conventional power cables in
recent years shows various condition monitoring and fault
diagnosis techniques, such as partial discharge (PD), sheath
testing, loss tangent, and reflectometry. For PD tests, in [6],
a random-forest-based feature selection algorithm for the PD
of high voltage (HV) cables was presented. Additionally,
chaos synchronization–based characteristic extraction and
clustering were recently used to improve the identification of
defect types [7]. High-frequency-current transformer-based
approaches include extraction of the HV cable transfer func-
tion [8], fault localization [9] and finite-difference time
domain models of PD sensors [10]. In addition to the PD
tests, as demonstrated in [11], a numerical model of cable
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sheath current was revised, and the revised phasor-domain
model was used to estimate the fault location. Even for
cross-bonded cable systems that pose challenges for diagnos-
tic method, fault detection methodologies via sheath currents
have been developed [12], [13]. In addition, the method-
ologies for the monitoring of the effects of moisture and
temperature on cable insulation have been developed based
on loss tangent measurements [14], [15]. Lastly, based on the
type of incident signals, reflectometry methodologies such
as time domain reflectometry (TDR) [14], spread spectrum
time domain reflectometry (SSTDR) [16], time-frequency
domain reflectometry (TFDR) [17], and power line modems
TFDR [18] have been applied to fault detection in power
cables. Additionally, a diagnostic technique for underground
DC cables using high-frequency noise patterns [19] and a
Raman spectroscopic measurement technique for monitoring
the degassing process of cross-linked polyethylene cables
have been developed [20]. However, HTS cables are still in
relative infancy compared to conventional cables, and con-
dition monitoring techniques optimized for HTS cables have
rarely been developed.

For more than 60 % of the urban areas of South Korea,
the actual distance between any two adjacent substations is
1-3 km. Additionally, the installation of HTS cables between
such adjacent substations along the existing power cable
tunnels requires two or more joints [21]. Previous studies
have not considered the presence of multiple joints. Owing
to multiple reflections, distinguishing multiple joint boxes
especially using reflectometry is a challenging problem. The
multiple reflections imply that a signal is reflected repeat-
edly between the signal generator and the load. The current
multiple reflection analysis includes the application of TDR
to determine dielectric characteristics of both conductive and
non-conductive systems. From a measured TDR trace, all the
multiple reflections from the sensing probe section are con-
sidered [22], [23]. However, these conventional reflectometry
methods aim to measure the complex dielectric permittivity
of the entire material, not to analyze joint boxes individually.
Thus, in this work, a condition monitoring methodology is
proposed that takes into account both the electrical character-
istics and installation conditions of HTS cables.

First, TFDR is used as a localization method for estimating
the location of the cable termination and multiple joints to be
monitored. To overcome the challenge of distinguishing and
monitoring different joint boxes, time-frequency (TF) analy-
sis and temporal sliding long short-termmemory (TS-LSTM)
networks are applied. The TF analysis includes the use of
Wigner-Ville distribution (WVD) and chirplet transform (CT)
which have been previously applied in high-resolution spec-
trum analysis [24]–[26]. In this study, WVD is used to mea-
sure the information contents of the reflected signals, and CT
is used to monitor the reflected signals that depend on the
conditions of the HTS cable systems. Together with WVD,
a resolution enhancement method in the TF domain using
TS-LSTM networks is proposed. TS-LSTM was first intro-
duced in [27], [28] to improve the forget gates performance

of LSTM cells, and TS-LSTM enables the derivation of com-
binations of various signal attributes via time windowing.

The proposed condition monitoring method has been
demonstrated for an AC 154 kV 600 MVA HTS cable system
(1 km) connected to a real electric power grid in Jeju, South
Korea. In the cooling process of the 154 kVHTS cable system
from ambient temperature to 80 K, the results show that the
TS-LSTM-based monitoring is more effective than that using
conventional LSTM.

The remainder of this paper is organized as follows.
Section II describes the theoretical background of TS-LSTM
and the process of feature extraction. Section III describes
the monitoring methods via TF analysis in detail. Section IV
describes the method for training the data and experiments on
the 154 kV HTS cable system. The performance of the pro-
posed analysis method is also discussed based on experimen-
tal results. Finally, the results are discussed and conclusions
are presented in Section V.

II. TEMPORAL SLIDING LONG SHORT-TERM MEMORY
A. FEATURE EXTRACTION
TS-LSTM networks were originally proposed for the
modeling of temporal dynamics for skeleton-based action
recognition [27], [28]. This method differs from the con-
ventional skeleton-based action recognition in that the time
series of human actions is partitioned and analyzed, and
the features of the discriminative components are finally
combined [27]–[30]. In particular, TS-LSTM can consider
various temporal dependencies of action dynamics using dif-
ferent representations of the partition segment in short-term
and long-term. In other words, TS-LSTM is useful for ana-
lyzing time series data with different time intervals or for
analyzing signal information concentrated at specific time
intervals.

Meanwhile, for reflectometry, an electrical signal transmit-
ted through the tested cable depends on the characteristics of
each section of the target cable, and the sectional character-
istics are reflected in the corresponding time position of the
electrical signal. Thus, it is also possible to apply TS-LSTM
to cable monitoring results obtained using reflectometrymea-
surements.

This section describes how the features of long-term and
short-term TS-LSTMs are extracted to construct a TS-LSTM
model. As shown in Fig. 1, an arbitrary signal, s(t), which
is transmitted and reflected on the cable can be rectangularly
windowed over a chosen interval,WL . Additionally, the win-
dowed signal is partitioned by the number of sections, n, and
converted to the TF domain by WVD calculating. The WVD
of the transmitted signal is obtained as follows [31]:

WVs(t, ω) =
1
2π

∫
s∗(t − τ/2)s(t + τ/2)e−jωτdτ. (1)

Conventional monitoring techniques using WVD have ana-
lyzed reflected signals by assuming that multiple reflec-
tions do not exist [24], [32], [33]. However, if, for example,
the location of the second joint and the multiple reflection
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FIGURE 1. Feature extraction process.

location of the primary joint are similar, it is difficult to iden-
tify which of the joints is the target of the analysis. To resolve
this ambiguity, TS-LSTM utilizes the quadratic nature of
WVD to measure the information contents in the analyzed
window. Owing to the non-linearity of the WVD, the WVD
of multiple components produces cross-terms. As shown
in Fig. 1, even for the same signal, theWVD of the windowed
signal (n = 1) is distinct from the sum of the partitioned
WVDs (n = 2 or 3) because the cross-terms in each section
are generated differently. Thus, in the configuration of the
long-term TS-LSTM, theWVDs of both the windowed signal
(n = 1) and the signal reassembled after partition (n = 2 or
3) can be used as the input features.

Fig. 2 presents the input features of the short-term
TS-LSTM with a length that is lesser than that of the
long-term TS-LSTM. First, the WVD for each section can
be expressed as a two-dimensional array as follows:

ˆWVs(t) = [WVs(t, 1), · · · ,WVs(t,B)], t ∈ [t1, t1 + L] (2)

where B is the length of the fast Fourier transform (FFT) and
L = WL/n (n = 2, 3, · · · ) is the length of TS-LSTMmodule.
The start point of the temporal stride is given by

t1 = STL · m, m ∈ [0, (WL/STL)− 1] ⊂ Z (3)

where STL is the temporal stride size. In this work, short-term
TS-LSTMwith temporal strides of size STL = L and L/2 are
used as two input features.

To summarize, the total model is obtained by integrat-
ing two long-term TS-LSTM modules and two short-term
TS-LSTM modules. The integrated model uses different

FIGURE 2. An illustration of the proposed short-term TS-LSTM module
when n = 2 (L = WL/2, and STL = L/2).

lengths of the segmented signals as inputs, so that the model
can support the role of forget gates in the conventional LSTM.

B. NETWORK ARCHITECTURE
X kt is used to denote the input of the k th LSTM in a TS-LSTM
module, as depicted in Fig. 2, and is related to the input
features X kt =

ˆWV k
s (t). Then, the equations of the LSTM cell

are obtained as:
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where sigmoid function σ and hyperbolic function tanh are
non-linear activation functions, and f kt , i

k
t , and o

k
t are forget,

input, and output gates vectors, respectively. hkt and c
k
t denote

hidden state and internal cell state vectors, respectively. Also,
W k
xj, W

k
hj, W

k
cj, and b

k
j (j = f , i, c, o) are the weight matrices

and bias vectors to be trained.
As shown in Fig. 3, the architectural arrangement consists

of the TS-LSTM, sum-pooling, softmax activation, and clas-
sification layers. In the TS-LSTM layer, the number of LSTM
cells, memory units, and activation functions are variable
factors. The architecture of the proposed model varies with
the change in the number of sections. Fig. 3 describes the

144354 VOLUME 8, 2020



G. S. Lee et al.: Condition Monitoring of 154 kV HTS Cable Systems

FIGURE 3. Overview of the proposed architecture of TS-LSTM model when
n = 2.

details of the architecture when the number of sections is
selected as n = 2. For two short-term TS-LSTM modules,
temporal strides of L and L/2 are used as input features.
For two long-term TS-LSTM modules, the WVD of the win-
dowed signal (n = 1) and the sum of the partitioned WVDs
(n = 2) are used as input features. After the TS-LSTM layer,
the proposed model is constructed in the same structure. The
value for hidden units in dropout layer is 0.4. In particular,
in the classification layer, a cross-entropy cost function is
used to train the TS-LSTM model, and average pooling is
used to calculate and test the final output from softmax out-
puts [27], [28]. The variation in the performance difference of
TS-LSTM with the number of sections, n, will be discussed
in Section IV.

III. TIME-FREQUENCY ANALYSIS
To assess the efficacy of the proposed TS-LSTM, it is
necessary to compare its performance to those of the pre-
viously used signal information measurement techniques.
Therefore, this section introduces the conventional process of
signal information measurement using TFDR and the Rényi
entropy, respectively. Furthermore, new conditionmonitoring
methods via CT are introduced, and the previously used
method of anomaly malfunction detection in HTS cables for
the performance evaluation comparison is also presented.

A. CONVENTIONAL Rényi ENTROPY
The generalized Rényi entropy is introduced as a tool that
can quantify the concentration of energy. For performance
comparison with TS-LSTM, the signal is converted into the
TF domain via WVD in the same manner as for TS-LSTM,
and the third-order Rényi entropy of (1) is written as:

H3(WVs) = −
1
2
log2

∫∫
WVs(t, f )3dtdf . (9)

whereWVs is the normalized distribution [34], [35].
A small value of the third-order Rényi entropy implies

that a large amount of signal information is concentrated.
Therefore, the point used to separate the signal to be analyzed

and other signals that will not be used can be identified by
comparing the size of the entropy values.

B. CONVENTIONAL TIME-FREQUENCY DOMAIN
REFLECTOMETRY
TFDR can be used to calculate the amount of signal infor-
mation as well as detect cable anomalies as follows: 1) TF
cross-correlation (TFCC) is conventionally used in TFDR,
particularly to resolve multiple elementary signals by mea-
suring the signal information and indicating the separation
points [32]. 2) The conventional methodologies for anomaly
malfunction detection of HTS cables include the phase dif-
ference spectrum [24], [33] at the points where the reflected
signals are measured using TFDR.

First, regarding the calculation of TFCC via TFDR, as the
incident signal, a chirp signal with a Gaussian envelope is
used and the incident signal is described by

s(t) = (
α

π
)1/4e−α(t−t0)

2/2+jβ(t−t0)2/2+j(ω0(t−t0)+ϕ) (10)

where t0, ω0, and ϕ are time center, center frequency, and
phase, respectively. α and β are signal design parame-
ters [36]. WVD in (1) is used to convert the signal s(t) in the
time domain into a distribution in the TF domain. LetWVs be
the WVD of the incident signal and WVr be the WVD of the
reflected signal; then, the TFCC between the two signals is
calculated as follows:

Csr (t) =

∫ t ′=t+Ts
t ′=t−Ts

∫
WVr (t ′, ω)WVs(t ′ − t, ω)dωdt ′∫ t ′=t+Ts

t ′=t−Ts

∫
WVr (t ′, ω)dωdt ′ ·

∫∫
WVs(t, ω)dωdt

(11)

where Ts is the time duration of the incident signal [32]. The
TFCC function quantifies the similarity between the incident
and reflected signals as a value between 0 and 1, thereby
indicating the presence of a reflected signal. Thus, the TFCC
can also be used to measure the signal information that is
similar to the incident signal.

Second, for the monitoring of the TF phase difference
spectrum via TFDR, the equation that is obtained by substi-
tuting different signals s1 and s2 into s and s∗ of (1) is called
the cross-WVD, i.e. WVs1s2 . Then, the TF phase difference
spectrum is calculated as follows:

θs1s2 (x, t, ω) = tan−1
[
Im{WVs1s2 (x, t, ω)}
Re{WVs1s2 (x, t, ω)}

]
= x[kR2(ω)− kR1(ω)] (12)

where kR is the real part of the wave number and x is the
location of the reflected signal [24]. Assuming that s1 is
the first measured reflected signal at the impedance change
point, and s2 is the signal measured in real-time at the same
location, the TF phase difference spectrum can be used to
monitor the variable wave number of the cable system. This is
because the wave number varies depending on the electrical
characteristics of the HTS cable system.
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C. CHIRPLET TRANSFORM-BASED MONITORING INDEX
When two reflected signals are adjacent to each other, the reli-
ability of the monitoring index derived from theWVD in (12)
may be reduced owing to the cross-term. Thus, after the signal
to be analyzed is distinguished from the multiple reflections
via TS-LSTM, a new TF analysis method with a relatively
low impact on cross-term generation is required. In this work,
the new monitoring index is derived using the CT.

The CT can be interpreted as a type of short-time Fourier
transform (STFT) because it uses a window to convert the
signal to a TF distribution. The modulated window of the
CT is a chirp signal with a Gaussian envelope which is a
complex-valued function. Since the incident signal of the
TFDR is also a chirp signal, the CT is expected to be able
to window the reflected signals of the TFDR more precisely
than a general Gaussian function. The window of the CT is
given by:

g(t) =
1

(σ
√
2π )1/2

e−
1
2 [(t−tc)/σ ]

2
+jωc(t−tc)2 (13)

where σ , ωc, and tc denote the spread of the signal, center
frequency, and time center, respectively. Then, the CT is
defined as:

CTs(t, ω) =
∫
s(t)g∗(t)e−ωtdt. (14)

with the complex window [25], [26]. Assuming that the
parameter of (13) is set equal to the signal design parameter
of the incident signal in (10), for the following relations σ 2

=

2/α, ωc = ω0, and tc = t0, the CT is calculated as:

CTs(t, ω) =
α

π
· e−

1
4α (ω−ω0)

2
· ej(ωt0+ϕ) (15)

and the phase spectrum of (15) in the TF domain will there-
fore be given by

2s(t = t0, ω = ω0) = ω0t0 + ϕ. (16)

The phase spectrum in (16) is a variable function that
depends on the temperature and pressure of a cable; therefore,
it can be used as an index for monitoring the status of the HTS
cable system.

IV. EXPERIMENTAL SETUP AND RESULTS
A. SOUTH KOREA 154 kV HTS CABLE SYSTEM (Jeju)
Fig. 4 shows the 154 kV 600 MVA HTS cable system that is
used to validate both the TS-LSTM and the phase spectrum
of the CT. In the three-phase 154 kV HTS cable system,
each phase is approximately 1 km-long and has two normal
joint (NJ) boxes. Meanwhile, liquid nitrogen flows from the
A-phase, located in the Gumak conversion station (C/S),
through the B-phase, to the C-phase in the HanLim C/S, for a
total distance of 3 km. Two sets of 4 kW Stirling Cryocoolers
are connected as the refrigeration system to cool the liquid
nitrogen to 80 K.

In themonitoring of the 154 kVHTS cable system, the inci-
dent signal of the TFDR is applied from the A-phase ter-
mination installed at the Gumak C/S. The incident signal

FIGURE 4. The configuration of the 154 kV HTS cable system.

is designed to have a bandwidth of 1 MHz, center fre-
quency of 1.9 MHz, and time duration of 1950 ns. Since the
three-phase HTS cables are not electrically connected to each
other, the condition of the HTS cable system in the cooling
process is monitored only for the A-phase in this work.

B. CONVENTIONAL TIME-FREQUENCY ANALYSIS RESULTS
The measurement of TDR is conducted to compare with
the results of TFDR. Fig. 5(a) shows the data sample of
TDR which normally uses a step pulse as an incident signal.
As shown in Fig. 5(a), it is a challenging task to localize
the position of NJ #1 and NJ #2 under the presence of noise
without prior information on the 154 kV HTS cable system.
Therefore, the use of a new incident signal and additional
signal processing are required to distinguish the reflected
signals from two NJs and to analyze the dielectric charac-
teristics of the HTS cable system depending on temperature
and pressure.

Fig. 5(b) shows the data sample of the TFDR in time
domain when the incident signal is applied to the A-phase.
The transmitted signal is reflected sequentially in the fol-
lowing positions: NJ #1 (296 m), a multiple reflection of NJ
#1 (592 m) and NJ #2 (627 m), and termination (1016 m).
As shown in the enlarged graph for the 500-850 m region
in Fig. 5(b), the voltage of the incident signal is reduced by
attenuation, and the multiple reflection of NJ #1 and reflected
signal of NJ #2 overlap. Fig. 5(c) presents the WVD of the
incident and reflected signals in the TF domain. Even in the
TF domain, the multiple reflection of NJ #1 and reflected
signal of NJ #2 including the cross-term are not distinguished
from each other.

Figs. 5(d) and 5(e) show the results for the TFCC and
the Rényi Entropy introduced in Section III, respectively.
An examination of the results shown in Fig. 5(d) by calculat-
ing TFCC according to (11) shows that the position ofNJ #1 is
detected with a 1.8 % error rate, but the peak at the 615.4 m
is located amidst the multiple reflection of NJ #1 and the
reflected signal of NJ #2. As depicted in Fig. 5(e), the Rényi
Entropy value decreases at the positions of each incident and
reflected signals, which means that the TF energy is concen-
trated at the NJs and terminations. However, at approximately
615.4 m, the Rényi entropy also cannot distinguish the two
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FIGURE 5. (a) TDR data sample in time domain, (b) TFDR data sample in
time domain, (c) WVD of the incident signal and reflected signals,
(d) TFDR results, and (e) Rényi Entropy.

different signals owing to the closeness of the multiple reflec-
tion of NJ #1 and the reflected signal of NJ #2.

C. DATASET AND PARAMETER SETTING
Since it is impossible to physically convert the already
installed HTS cable system into a large number (e.g. thou-
sands) of combinations, the training of TS-LSTM requires the
generation of a dataset via simulation. Therefore, to compare
the performance of the proposed TS-LSTM to the conven-
tional TF analysis results, in this work, the reflected signals
of the HTS cable system are modeled using MATLAB and
Advanced Design System simulations [37]. Three scenarios
are used to model the reflected signals: a single signal, two
overlapping signals, and three overlapping signals. Fig. 6(a)
shows an example of three overlapping signals, S1, S2, and S3.
The design parameters of the modeled signals are the same
as those of the TFDR incident signal used in this experiment.
The magnitude and time center of the three different signals
are randomly selected and a total of 450 cases are created. The
black straight line in Fig. 6(a) represents one example of the
sums of the three overlapping signals. Even in the case of two

FIGURE 6. Reflected signals with information of signal component:
(a) simulation data and (b) real-world data near NJ #2.

overlapping signals, a combination of two different signals
produces a total of 450 cases. For the single signal, only the
time center is changed, resulting in a total of 225 cases.

For the parameters of the proposed model, the number of
hidden units of the TS-LSTM concatenation is set to 650 for
short-term TS-LSTM and to 1500 for long-term TS-LSTM.
The window size WL that determines the module length L
of the TS-LSTM is set to be equal to the time duration
of the incident signal. Training is conducted by classifying
the dataset into the two categories of a maximum of two
signals in a window (case a), and a maximum of three signals
in a window (case b). We do not investigate the case of
four or more signals in a single window because the time
duration of the incident signal is narrow compared to the
resolution of the measuring equipment. Then, 80 % of the
dataset is used for training and the remaining 20 % is used for
testing.

D. RESULTS IN REAL-WORLD SYSTEM: TS-LSTM
An examination of the data presented in Table 1 shows that the
performance of the newly proposed TS-LSTM is improved
compared to that of LSTM. In the method column, a denotes
a case in which up to two signals are present in a window, and
b denotes a case in which up to three signals are present in a
window. For simply distinguishing between a single signal
and two signals (case a), better results are obtained when the
number of sections, n, is equal to 3 (99.27 %). However, it is
difficult to determine where n = 2 or n = 3 is superior for the
cases with up to three signals present in a window (case b).
n = 2 has superior performance for correctly estimating
that there are three signals (89.40 %), and n = 3 is more
accurate for the estimation of the cases where two signals
are present (88.62 %). In conclusion, the estimation of the
amount of signal energy within the chosen interval (WL)
shows that TS-LSTM further enhances the function of the
forget gate even though LSTM can choose which information
is relevant for remembering or forgetting. In addition, only the
partitioning process itself has the effect of improving LSTM,
and the increasing number of sections, n, has no significant
effect on improving the TS-LSTM performance.
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TABLE 1. Comparative Analysis of Simulation Results.

Fig. 6(a) shows an ideal result where the amount of signal
components in a moving window is recorded at the center of
the window. Only S1 is detected at the origin, and the infor-
mation of the signals component starts with 1, but increases
to 2 if S2 is included in the window, then to 3 by including
S3 near 0.6 µs. Lastly, after 2.5 µs, S1 disappears from the
window, and the number of components returns to 2.

Fig. 6(b) shows the real-world data for the 450-900 m
region where NJ #2 is located, as shown in Fig. 4. Using the
TS-LSTMb model of Table 1, the signal component informa-
tion is estimated. At approximately 8.7 µs, an increase in the
number of components to 2 means that NJ #1 (296 m) and
multiple reflection of NJ #1 (592 m) start entering the same
window. From 9 µs, only the multiple reflection is located in
the window, but from 10.1 µs, the reflected signal of NJ #2
(627 m) is also seen. Finally, at 11.1 µs, the reflected signal
of the termination appears in the window. In conclusion,
as shown in Fig. 6(b), the boundaries of the signal component
information indicate the sections where the multiple reflec-
tion of NJ #1 and reflected signal of NJ #2 are located.

Although conventional methods, TFCC and Rényi Entropy
in Fig. 5, cannot distinguish close signal components,
TS-LSTM can specify the reflected signal to be analyzed by
setting boundary criteria for signal component information.
In this work, the main role of the proposed TS-LSTM is to
enhance the resolution that distinguishes the reflected signal
component of NJ #2 from the multiple reflection of NJ #1.
Now, only the reflected signal of NJ #2 can be specified
and the phase spectrum of the CT can be extracted from the
reflected signal of NJ #2 for monitoring.

E. RESULTS IN REAL-WORLD SYSTEM: CHIRPLET
TRANSFORM-BASED MONITORING INDEX
To validate the efficacy of the use of the phase spectrum
of CT for the reflected signals distinguished by TS-LSTM,
the temperature and pressure data of the AC 154 kV HTS
cable systems are measured and compared to the results of
the proposed phase spectrum. The pressure and temperature
variations are shown in Figs. 7(a) and 7(b), respectively. Since
Jeju, South Korea, where the 154 kV HTS cable system
is installed, is an island, the supply of liquid nitrogen is
unstable and fluctuations are observed in the pressure profile.
In addition, the distance between the inlet in the Gumak C/S

FIGURE 7. Monitoring results of the cooling process in A-phase:
(a) pressure profile, (b)temperature profile, (c) phase spectrum of CT at
the NJ #1, (d) phase spectrum of CT at the NJ #2, (e) phase spectrum of
CT at the termination, (f) phase difference spectrum of WVD at the NJ #1,
and (g) phase difference spectrum of WVD at the NJ #2.

and the outlet in the HanLim C/S creates a delay for the both
pressure and temperature changes. Therefore, in this section,
a comparative analysis of performance is conducted for the
dependence of the reaction of the newly proposed phase spec-
trum of CT and the conventional phase difference spectrum
of WVD in previous studie [24], [32] to the fluctuations and
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delay. The performance of the two indices is compared for
three time periods. In the first time period, a rapid drop in the
temperature occurs from day 1 to day 4. In the second time
period, pressure fluctuations occur between day 1 and day 6,
and finally, a sudden change in both temperature and pressure
is observed on day 10.

Figs. 7(c)-(e) show the results of the phase spectrum of CT,
and Figs. 7(f)-(g) show the results of the phase difference
spectrum of WVD. The areas covered by a white box are
the data that are not measured owing to technical errors of
the measurement equipment and heavy rain. Because of the
limited space, the phase difference spectrum of WVD at the
termination is not shown in this paper. However, the results
for the two NJs and termination are similar, and the perfor-
mance of the two indices can be compared and analyzed using
the results for two NJs only.

As shown in Fig. 7(b), the temperature of the inlet first
drops rapidly on day 1, while the outlet temperature drops on
day 4. The results of both indices show a sudden change in the
middle of the reaction between the inlet and outlet tempera-
ture sensors. The lowest values are found between days 2 and
3 in Figs. 7(c)-(e), where the time positions at which these
values are found are in the order of NJ #1 (Fig. 7(c)), NJ #2
(Fig. 7(d)), and termination (Fig. 7(e)). On the other hand,
the phase difference spectrum of WVD of NJ #1 (Fig. 7(f))
and NJ #2 (Fig. 7(g)) both have the lowest value at the
same time position. The combination of TS-LSTM and phase
spectrum of CT detects the time interval between NJ #1 and
NJ #2. However, the result of phase difference spectrum of
WVD is calculated under the assumption that there are no
multiple reflections, so that this result cannot reflect the time
interval between two joints.

Second, for the erratic fluctuations of the pressure that
occur from day 1 to day 6, both TF-based indices show
variations similar to the pressure variation. However, there
is more noise in the result of the phase spectrum of CT than
in the result of the phase difference spectrum of the WVD.
The changes in the temperature and pressure affect the length
and the propagation characteristics of the HTS cable system.
As the propagation characteristics change, the speed of the
incident signal varies. Thus, there is less noise in the index
of (12) that responds predominantly to the speed.

Lastly, on day 10, the temperature of the inlet first
decreased and then the temperature of the outlet decreased
rapidly. As shown in Figs. 7(c)-(e), the index which is cal-
culated from the CT responds to the temperature change in
the order of the reflected signal position, i.e. NJ #1, NJ #2,
and termination. Conversely, similar to the result for the time
period between days 2 and 3, the index calculated fromWVD
begins to respond to the temperature at the same location.

In conclusion, both the phase spectrum of CT and the phase
difference spectrum of WVD respond similarly to the tem-
perature and pressure variations that occur during the cooling
process of the 154 kV HTS cable system. On the one hand,
the index obtained from CT with TS-LSTM networks has the
advantage of reflecting the time difference that occurs with

the location of the NJs. On the other hand, the index obtained
from WVD has the advantage of monitoring the electrical
characteristics of the HTS cable without noise. Therefore,
the use of both indices is recommended. If the safe operating
ranges of both indices are set during normal operation of the
HTS cable system, the two indices can be effectively used
to estimate the failure time and fault location of the HTS
cable system. In fact, the temperature sensors of the HTS
cables are installed in the cryostats of the HTS cables, so that
temperature data acquired from the sensors are different from
the actual temperatures of the superconducting layer. Both the
phase spectrum of the CT and the phase difference spectrum
of the WVD are expected to react faster than the temperature
sensors because these two indices are affected by the insula-
tion temperature and pressure.

V. CONCLUSION
This paper proposes a monitoring method considering the
installation environment and electrical characteristics of HTS
cable systems. The main contribution of the proposed moni-
toring method is that, by using the AC 154 kV 600MVAHTS
cable system connected to a real electric power grid, the phase
spectrum derived fromCT has shown to be able tomonitor the
real-time status of wave propagation characteristics during
the cooling process. Furthermore, TS-LSTM is introduced
to distinguish the multiple reflections and reflected signals
with higher resolution than conventional signal information
measurement methods.

In future work, controllable parameters of TS-LTSMmod-
ule such as partition number, length of module, and temporal
stride need to be optimized. Therefore, the searching method
to find optimal numbers for parameters of TS-LTSM module
will be studied. Additionally, a study on the feature extraction
other than time-frequency analysis by Wigner-Ville distribu-
tion is required. Thus, advanced signal analysis for electrical
signals, vibration signals, and audible signals will be studied
to develop robust features for the diagnosis of HTS cable
systems. Lastly, SouthKorea is currently preparing to connect
AC 22.9 kV tri-axial HTS cable systems near Seoul to the
actual electric power grid. Unlike conventional HTS cables,
a tri-axial cable is composed of three concentric phases, such
that the characteristics of the tri-axial HTS cable are expected
to be different. Therefore, a monitoring method optimized for
the tri-axial HTS cable will be studied.

The proposed monitoring method using TS-LSTM will
improve the utilization of HTS cable systems in urban
areas where power consumption is rapidly increasing. In the
operation of HTS cable systems, electrical characteristic
monitoring will enable maintenance and ensure operational
stability.
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