
Received June 21, 2020, accepted July 16, 2020, date of publication August 4, 2020, date of current version August 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3014075

Multi-Resolution Texture-Based
3D Level Set Segmentation
DANIEL RESKA AND MAREK KRETOWSKI
Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland

Corresponding author: Daniel Reska (d.reska@pb.edu.pl)

This work was supported by the Polish National Science Centre under Grant 2017/25/N/ST6/01849.

ABSTRACT This article presents a novel three-dimensional level set method for the segmentation of
textured volumes. The algorithm combines sparse and multi-resolution schemes to speed up computations
and utilise the multi-scale nature of extracted texture features. Themethod’s performance is also enhanced by
graphics processing unit (GPU) acceleration. The segmentation process starts with an initial surface at the
coarsest resolution of the input volume and moves to progressively higher scales. The surface evolution
is driven by a generalised data term that can consider multiple feature types and is not tied to specific
descriptors. The proposed implementation of this approach uses features based on grey level co-occurrence
matrices and discrete wavelet transform. Quantitative results from experiments performed on synthetic
volumes showed a significant improvement in segmentation quality over traditional methods. Qualitative
validation using real-world medical datasets, and comparison with other similar GPU-based algorithms,
were also performed. In all cases, the proposed implementation provided good segmentation accuracy while
maintaining competitive performance.

INDEX TERMS Deformable models, GPU acceleration, image segmentation, level sets, texture analysis.

I. INTRODUCTION
Image segmentation can be defined as a process for
partitioning the image into distinct regions. Nowadays,
this task is often an important step in the analysis of
both two-dimensional (2D) images and three-dimensional
(3D) volumes. Applications such as autonomous driving,
intruder detection, and medical diagnosis constantly pose
new challenges for segmentation algorithms, demanding high
quality results combined with reasonable performance. The
efficiency of the segmentation methods can greatly bene-
fit from acceleration by graphics processing units (GPUs)
[1]–[3], which are inherently well equipped to handle parallel
processing of 2D and 3D image data.

Deformable models [4] are a popular class of segmentation
methods, based on the idea of a shape (a 2D curve or a
3D surface) that deforms in order to encompass a desired
region. The shape evolution is usually driven by external
image characteristics and internal forces (e.g. controlling the
smoothness of the shape). Typically, edge information [5] or
region intensity statistics [6], [7] are used as image properties
for guiding amodel’s adaptation to the target area. For regions
without clear borders or with non-uniform texture, however,

The associate editor coordinating the review of this manuscript and
approving it for publication was Nilanjan Dey.

these approaches are usually inadequate. To solve the prob-
lem, many texture feature extraction techniques, such as grey
level co-occurrence matrices (GLCM) [8], [9], Gabor fil-
ters [10], matrix factorisation [11], [12], or wavelets [13], are
integrated with deformable models. Typically, these methods
use a single feature [11], [14], [15] or ad hoc combinations
of descriptors [16], [17]. Moreover, the vast majority of the
associated algorithms are limited to 2D images and are often
designed with specific applications in mind [10], [18].

This research proposes a texture-based method for the
segmentation of 3D volumes. The method uses a level
set-based active surface model that evolves under the influ-
ence of 3D texture features. The model evolution employs
a multi-resolution scheme [19] and sparse level set optimi-
sations to speed up computations. The segmentation process
starts at the coarsest resolution of the input volume andmoves
to progressively higher scales. The texture features are com-
puted for each separate scale. In this article, we demonstrate
a realisation of this approach, which utilised features based
on GLCM and discrete wavelet transform (DWT) [20], [21].
GPU acceleration was used for the GLCM feature gener-
ation and the level set evolution. The experimental valida-
tion was performed on synthetically generated test volumes
and real medical imaging datasets, for which both the qual-
ity of the segmentation and the computational performance

143294 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2367-7546
https://orcid.org/0000-0001-9175-2678

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

were analysed. The proposedmethodwas also comparedwith
state-of-the-art GPU-based methods.

The main contribution of this work is a new fast segmen-
tation method that is not tied to specific texture features and
can successfully be applied to diverse texture volumes. The
high performance of the method was achieved, first, by the
integration of multi-resolution and sparse approaches in both
the level set and feature extraction methods and, second, its
efficient implementation using a GPU.

This article is organised as follows. Section II provides a
brief necessary background, followed by Section III, which
describes the proposed method in detail. Section IV presents
the experimental validation. The final section concludes the
article and suggests avenues for possible future work.

II. RELATED WORKS
In this section, we present some background information
regarding level set segmentation andGLCM- andDWT-based
extraction of texture features.

A. LEVEL SETS AND 3D SEGMENTATION
Level set methods, originally designed to model propagating
interfaces, are widely used in optimisation, computational
geometry and image processing [22]. The idea of level set
segmentation is based on an implicitly represented shape
defined within an image domain. An active surface S can
be defined as a set of zero-level points p = (x, y, z) of the
function φ(p, t). This formulation gives S = {p : φ(p, t)
= 0}, where φ(p, t) : <3 7→ < and t is the evolution time
step. The surface evolves in its normal direction according to
the following partial differential equation (PDE):

∂φ

∂t
= |∇φ|F, φ(p, 0) = φ0(p), (1)

where φ0 is the initial surface and F is a speed func-
tion F(p, t), which allows the surface to expand or con-
tract in order to encompass the segmented region. Notable
level-set based models include geometric [23] and geodesic
active contours [24], as well as active contours without
edges (ACWE) [6]. While the first two models rely on image
edge information, the ACWE method takes a region-based
approach, inspired by the Mumford–Shah formulation a seg-
mentation problem [25]. TheACWEvariational approach can
provide a piecewise smooth partitioning of an image into
separate regions, even if their edges are not well defined.

Level sets have an inherent ability to change their topology
(divide or merge), which gives them an advantage over tradi-
tional parametric models [5]. The traditional explicit models,
however, often have a computational advantage, since the
computations can be limited to a relatively small number
of contour control points. By contrast, solving a level set
PDE using a finite difference-based method for an entire
image domain, is much more computationally and mem-
ory intensive. Furthermore, the numerical stability of the
method may be compromised due to irregularities that can
appear during the evolution of the level set function. Periodic
re-initialisation of the function is a common solution for this

problem [22], but it may adversely affect the accuracy of the
method and is time-consuming.

Many optimisations were introduced to address these prob-
lems. A narrow band approach can be used to limit the
φ updates to only the region around a propagating con-
tour [1], [26]. Schemes for sparse representations were also
proposed [27]–[29], allowing improved processing and more
space-efficient storage of the level set function. Furthermore,
additional regularisation terms [30] and global minimisation
schemes [31] were proposed to eliminate the need for the
costly φ re-initialisation and improve the performance and
accuracy.

Along with algorithmic improvements, the performance
issues have been addressed by GPU utilisation. Rumpf and
Strzodka [32] demonstrated an early application of GPU
acceleration for the segmentation of 2D images, where the
entire φ function was updated in each iteration. Lefohn et al.
[29] proposed an optimised 3D method that used a sparse
tile-based representation, which only processed the active
regions around the zero-crossing of the level set function.
The algorithm used a compaction scheme to transfer the data
between the CPU and GPU.

Roberts et al. [1] created another notable sparse
GPU-based algorithm. This solution used a narrow band
approach, but tracking of the active computational domain
was performed at the level of individual voxels. The number
of coordinates processed at each time step was therefore min-
imised. The algorithm was used for the segmentation of 3D
medical imaging datasets. A GPU-accelerated level set-based
method was also proposed by Jalba et al. [33]. Their algo-
rithmwas designed for the task of surface reconstruction from
point cloud data. The method achieved high performance due
to a multi-scale tile-based level set implementation.

More recently, Willcocks et al. [34] presented a model that
used a local Gaussian distribution fitting image term [35]. The
model can segment regions with intensity non-homogeneities
and can be resist noise. Although its GPU-accelerated algo-
rithm does not use a sparse level set scheme, it performs
efficiently enough to enable interactive parameter tuning and
visualisation of the results.

B. GREY LEVEL CO-OCCURRENCE MATRIX FEATURES
A GLCM is a square matrix of order equal to the number
of pixel grey levels. For a given spatial window of an image,
the GLCMcontains the probabilities of pair-wise occurrences
of pixels with two grey levels. Each of the (i, j) matrix ele-
ments holds a number of occurrences, where a pixel with
intensity i is adjacent to a pixel with intensity j. The adjacency
of the pixels is defined by the distance between them in a
given orientation. This matrix, after normalisation, is used to
calculate a set of texture feature descriptors, such as entropy,
correlation, homogeneity, contrast or energy [8]. In the gen-
eration process, a set of features is usually selected and com-
puted for a combination of parameters: window size, pixel
distance and orientation. In the 2D case, 4 orientations are
typically considered (see Fig. 1(a)), but in the 3D case [9] this

VOLUME 8, 2020 143295

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 1. Illustrations of spatial relations during the calculations of GLCMs. Multiple directions and offsets can be used for a given pixel of
interest. In the 2D case (a), four main directions are typically employed. In the 3D case with a voxel in the 3× 3× 3 neighbourhood (b),
13 directions can be defined for the adjacent voxels (c–e).

FIGURE 2. DWT decompositions of 2D and 2D data sets: (a) schema of 2-level 2D Mallat DWT decomposition with low-pass
(L) and high-pass (H) filters, (b) coefficients of decomposition of a brain MRI image, (c) 3D 3-level hyperbolic DWT
decomposition, and (d) visualisation of the coefficients of a hyperbolic decomposition of a spherical volume.

number can increase to 13 (see Figs. 1(b) to 1(e)). A GLCM
is, therefore, a relatively computationally demandingmethod.
It can also result in a high-dimensional space, requiring
selection [15] or fusion [17] schemes.

C. DISCRETE WAVELET TRANSFORM
DWT creates a multi-resolution representation of an image
that captures its spatial and frequency information. The pro-
cessed image is recursively decomposed by being filtered by
low-pass (L) and high-pass (H) filters along its dimensional
direction. Fig. 2(a) shows a 2D Mallat [20] decomposition,
with the image filtered by four combinations of H and L
filters (horizontally, vertically, and diagonally). The H filters
(HH, HL, and LH) give the detail wavelet coefficients, while
the decomposition continues on the low-pass sub-band (the
approximation coefficients LL). In this way, each level of
decomposition gives a set of four bands of features.

A slightly different approach is used in hyperbolic wavelet
transform (HWT). In this case, an image is first fully
decomposed in each direction before moving to the next
decomposition level. This approach is more computation-
ally intensive but has the advantage of representation of
anisotropic data [21]. Fig. 2(c) illustrates the HWT decompo-
sition of a 3D volume. A visualisation of the absolute values
of the coefficients is presented in Fig. 2(d).

III. THE PROPOSED METHOD
The proposed segmentation method is based on a 3D level
set representation of an active surface. The surface evolu-
tion uses a multi-resolution approach [19]: the input volume
is downscaled multiple times and the segmentation process
spans the lower-resolution volumes until it ends at the original

volume size (see Fig. 3). At each step, the level set method
analyses the texture features generated for the current scale of
the input. The algorithm is general in nature and not limited
to any specific descriptors.

The method requires an initial form of the surface to be
placed inside the target region. Next, this initialisation is
used to calculate the starting form of the level set function
φ, which evolves using the lowest resolution of the volume.
At this resolution, the evolution ends when φ achieves con-
vergence (the number of voxels added or removed from the
segmented region drops below a specified threshold) or when
a provided upper limit of iterations is reached. The resulting
level set function is then up-sampled, reinitialised and evolves
at a higher resolution. The progression scheme reduces the
amount of computation required by the level set evolution.
The algorithm naturally converges faster for a small input
volumes. Furthermore, only the features relevant to the con-
sidered scale are calculated. By the time the highest volume
resolution is reached, the bulk of the target region has already
been segmented.

This process continues until the final scale is reached. At
the original volume resolution, the level set method switches
to a sparse evolution scheme that works only in the neigh-
bourhood of the surface from the previous scale. The relevant
blocks of the φ function are compacted and processed fully
on the GPU. Furthermore, the texture features need to be
generated only for the relevant regions of the image, resulting
in a further reduction in computations.

A. TEXTURAL SPEED FUNCTION
At each resolution, the surface is deformed using the level set
formulation from (1), in which the speed functionF combines

143296 VOLUME 8, 2020

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 3. The stages of the proposed method. The segmentation process starts with the initial form of
the surface (bottom left) and runs through downscaled versions of the input volume (top right) until it
stops at the original resolution (bottom right). The employed texture features are generated separately
for each scale of the input volume.

image and curvature terms for a point p:

F(p) = αI (p)+ (1− α)C(p), (2)

where I (p) is the image data term that drives the deformation,
C(p) = div(∇φ(p)/|∇φ(p)|) is the surface curvature and
α ∈ [0, 1] is a user-defined balancing parameter. The original
version [29] defined the data term as:

I (p) = ε − |img(p)− T |, (3)

where img(p) is the image intensity in p, while T and ε are the
intensity target value and tolerance: the surface is prompted
to expand if img(p) is between T − ε and T + ε, and to
shrink if it is out of this range. In this work, we employ
a multi-feature image term Itex(p) [36] that takes into con-
sideration the features (denoted as a set M) generated for a
given volume resolution. For each surface point p, a subset of
features Sp is defined as:

Sp =
{
m ∈ M : |m(p)− x̄(m)| > θ · σ (m)

}
, (4)

where m is a feature in set M , x̄(m) and σ (m) are the feature
mean and standard deviation inside the initial surface, m(p)
is the value of feature m in the point/voxel p and θ is a
user-defined sensitivity parameter. In other words, the Sp set
will contain all the features that diverge from their mean
values inside the initial surface by θ standard deviations in
voxel p; hence, the texture data term is defined as:

Itex(p) =

{
v |Sp| = 0
−v otherwise,

(5)

where v is a predefined constant (equal to 2 by default to
balance the curvature influence and to ensure numerical sta-
bility). This term prompts the surface to expand into regions
where the features are similar to the interior of the initial
contour. When at least one feature is sufficiently different,
the surface is prompted to retract.

B. LEVEL SET EVOLUTION
The proposed method employs two distinct approaches to the
evolution of the surface at different resolutions. In the case
of downscaled volumes, all the discrete coordinates of the φ
function are updated. This reduces the chance of convergence
to a local minimum, while the GPU-accelerated implemen-
tation provides acceptable performance. While working on
the original volume resolution, the process switches to an
optimised block-based sparse implementation that updates
φ only in the neighbourhood of the second to last surface
(i.e. around the zero-crossing of the level set function). Both
methods are based on an upwind-like numerical scheme. The
φ update at point p and iteration n is according to:

φn+1(p) = φn(p)+1tF(p)|∇φ(p)|, (6)

where 1t is the time step and |∇φ(p)| is the length of φ
gradient, calculated according to the front direction, based on
the sign of F [22].

The block-based scheme is presented in Fig. 4. Firstly,
theφ function from the last iteration is upscaled to the original
resolution. Next, its volume is divided into blocks and a
neighbourhood with a given voxel radius is calculated around
the surface. The blocks with the voxels of this neighbourhood
are then extracted and compacted into a reduced volume.

VOLUME 8, 2020 143297

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 4. Compaction of the φ regions before the final stage of the
evolution. The blocks containing the surface neighbourhood are packed
into a smaller buffer that is sent to the GPU. After being processed,
the buffer is unpacked and the final form of the φ function is updated.

Such a packed dataset is processed on the GPU. Since the
compacted data contains only a fraction of the original vol-
ume, the computations and memory requirements are consid-
erably decreased. Ultimately, the result is unpacked and used
to update the φ function to its final form.

The proposed method provides two compaction modes
with different versions of the speed function F . Both modes
handle the φ curvature in a different way. The curvature
requires multiple finite differences to be computed for each
point, which causes an issue with the voxels on the borders
of the blocks, due to them being separated from their original
neighbourhood. The first mode is simplified, since it ignores
the curvature term altogether and only the Itex term is used.
To prevent irregular surface borders, the level set function is
post-processed after convergence and unpacking with a filter
that performs a box blur on each of the φ points. The filter
also slightly dilates the surface to compensate for eventual
shrinkage.

The second mode performs the compaction with a margin
of one voxel around each block. The curvature term is then
included in the speed function but is computed only for the
voxels inside the block and skipped for the margin. Given
the voxel set B as the border of the block, the speed function
Fblock (p) is defined as:

Fblock (p) =

{
αItex(p) if p ∈ B
αItex(p)+ (1− α)C(p) otherwise.

(7)

This version gives a better approximation of the full-domain
evolution at the cost of the increased size of the compacted
data (due to additional border voxels).

C. IMPLEMENTATION
In this section, we describe the implementation regarding
GPU utilisation and texture features.

1) FRAMEWORKS AND GPU UTILIZATION
The proposed implementation is based on OpenCLTM [37],
a cross-platform framework for heterogeneous parallel pro-
gramming, widely used for general-purpose computing on
graphics processing units (GPGPU). OpenCLTM enables
the utilisation of the GPU processing power, while reduc-
ing the necessity to fit the adapted algorithm into purely

graphics-specific primitives. At its core, GPUs are designed
for stream processing (i.e. for parallel application of a func-
tion (kernel) to each element of an input buffer, creating an
output stream).

The method is implemented in MESA [38]—a platform
for the design and evaluation of deformable model-based
segmentation methods. The implementation uses Java for the
main algorithm and the DWT. C language is used for the
GPU acceleration in OpenCLTM, which is applied in the level
set evolution and GLCM features calculation. Both algo-
rithms can process each voxel independently, which makes
them suitable for running on a GPU. The level set evolution
does not require a great deal of additional memory; for the
GLCM features, however, some optimisations are necessary
to conform to the specifics of the GPU.

2) TEXTURE FEATURES
At each step, the proposed method analyses the texture
features generated for the given scale. In fact, any texture
descriptor can be applied here, as long as it generates values
for every voxel.

The presented implementation employs DWT- and
GLCM-based features. These two algorithms work in notably
different ways: the GLCM features are calculated for each
separate resolution of the volume, which gives a vector of
values for each volume point. The input 3D volume is passed
to the GPU as a 1D buffer with values (voxels) stored in
row–major order. The buffer is accessed only for discrete
coordinates and no interpolation (which is possible with
OpenCLTM data-types) is necessary. During the computa-
tions, a complete co-occurrence matrix has to be computed
for the neighbourhood of each voxel. This can pose a prob-
lem for the GPU, since the private memory of a kernel is
limited and dependent on the specific GPU architecture. The
matrix is usually sparse; therefore, a quantisation scheme [9]
(32 greyscale levels instead of the typical 256) is applied to
reduce the memory consumption. This matrix is then used
to calculate the final GLCM features. The final number of
features depends on the combination of selected GLCM
windows, orientations and voxel distances. In the current
implementation, contrast, homogeneity and correlation are
generated. The voxel step is set to 1 and the calculations are
always performed for a 33 voxel cube since the scaling is
performed at the volume level. The features can be calculated
for 13 directions (see Fig. 1), or for all directions combined,
which drastically reduces the search space at the cost of losing
some directional information.

The DWT (performed using the Haar wavelet) is calculated
at the beginning of the method. The initial 3D hyperbolic
decomposition is performed with the JWave library,1 which
results in a coefficient volume equal in size to the input
data. Next, the coefficients at a given decomposition level
are selected for the specific stage of the method according
to the resolution (the first level for the last stage, the second

1https://github.com/graetz23/JWave

143298 VOLUME 8, 2020

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 5. Synthetic texture mosaic volume: (a) 3D volume rendering, two cross-sections at (b) z = 149 and (c) z = 189, and (d) DWT
features at z = 189.

level for the second to the last stage, etc.). Since the DWT
coefficients are sparse in nature, they are smoothed with
a Gaussian filter (with σ of 1 voxel) after upsampling to
the current scale. Next, two approaches are possible: each
separate coefficient set can be used in the level set evolution
(seven in total for a given scale) or they can be combined
according to the method proposed in [14]. In contrast to the
GLCM, the initial DWT computation is a one-time operation
and is performed as a standard CPU procedure. The Gaussian
smoothing during the extraction of the DWT coefficients is
actually more computationally intensive, but benefits from a
multi-threaded implementation.

Similarly to the level set evolution, the texture feature gen-
eration process undergoes some optimisations during the last
stage of the method (original volume resolution). Instead of
sending a merged set of texture feature volumes to the GPU,
a single volume containing the textural data term (defined
in (5)) is pre-computed before the start of the evolution.
This operation provides only limited performance gains but
significantly reduces the GPU memory consumption (only
one buffer instead of separate buffers for each feature). Since
the last stage works only on a subset of the image domain,
the feature generation can be limited to only the relevant
regions inside the corresponding φ blocks. In the proposed
implementation, this approach was applied to the GLCM
features.

IV. EXPERIMENTAL VALIDATION
The proposed method was evaluated using synthetic datasets
containing volumetric textures as well as real 3D medical
images. During the experiments, the initial surfaces were
manually placed inside the desired regions. The method was
run with three scales (0.25, 0.5, and 1.0) of the input volume,
up to 500 level set iterations at each scale and the balancing
parameter α was set to 0.25. Unless otherwise specified,
the combined feature volumes were used, i.e. one for the
DWT coefficient and three for the GLCM features, which
resulted in 12 separate feature volumes at all scales. The
experiments were performed on a workstation with an Intel R©

Xeon R© E5-1620v2 CPU, 16 GB RAM and Nvidia Titan
Xp GPU. More detailed execution time analysis was per-
formed with different GPUs. The proposed method was also
compared to two state-of-the-art GPU-accelerated level set
methods: interactive GPU active contours (IGAC) proposed
by Willcocks et al. [34] and work-efficient GPU level set
(WELS), developed by Roberts et al. [1].

FIGURE 6. Segmentation result for the texture mosaic (θ = 4.0): (a) sliced
3D rendering of the volume with the initial surface visible,
(b) visualisation of the segmented surface, and (c) cross-sections of the
segmented region after each stage of the process.

A. SYNTHETIC DATA SETS
Firstly, the method was tested on a synthetic 2563 volume that
contained a mosaic of five texture classes (see Fig. 5). The
textures were created using a 3D noise generation library2

and images from the Brodatz texture album. The results
shown in Fig. 6 indicate that the obtained segmentation
took about 7 s. The method could successfully differentiate
between multiple regions with textures of different types and
scales. Most of the target region was segmented during the
first two stages (see Fig. 6(c)), which amounted to only 18%
of the execution time. To match this result without the benefit
of the multi-resolution approach, the algorithm required over
3200 level set iterations and needed to be run 2.5 times longer.
The segmentation was also performed with the DWT features
disabled (see Fig. 7). In this case, the surface exhibited a
significant ‘leakage’ of the target region at the 0.5 resolution,
but managed to correct itself in the final stage. Without
the DWT-related calculations, the segmentation time was
reduced to about 5.5 s.

The method was also tested using synthetic volumes from
the RFAI database of 3D textures [39]. The database provides

2https://github.com/Auburns/FastNoise

VOLUME 8, 2020 143299

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 7. Segmentation of the texture mosaic (θ = 3.5) with only GLCM
features enabled: (a) slice of the φ function after each stage at z = 128,
(b) the compaction region after the second stage, (c) the results after
the second stage, and (d) the final surface.

multiple classes of 3D solid textures, as well as mosaics with
the ground truth for segmentation evaluation. The datasets
contain 1283 volumes composed of two, three and four
classes. The segmentation accuracy was assessed with four
error measures: volume overlap error (VOE), relative volume
difference (RVD), Dice coefficient (DC) and average sym-
metric surface distance (ASSD). Given two sets of voxels R
and G, where R is the tested result and G is the ground truth
segmentation, the first three measures were defined as:

VOE(G,R) = 100 (1− |G ∩ R|/|G ∪ R|),

RVD(G,R) = 100 ((|R| − |G|)/|G|),

DC(G,R) = 2 |G ∩ R|/(|G| + |R|). (8)

The ASSD takes into consideration the distances between
the surfaces of the sets (i.e. the voxels that have at least
one background voxel in their vicinity). For each point sG
in the surface set S(G) the function d(sG, S(R)) denotes the
Euclidean distance from sG to the closest voxel in S(R). These
distances are also symmetrically calculated from the voxels of
R to G. All distance values are then averaged, which defines
the ASSD as:

ASSD(G,R) =
1

|S(G)| + |S(R)|

(∑
sG∈S(G)

d(sG, S(R))

+

∑
sR∈S(R)

d(sR, S(G))
)

(9)

The experiments were performed on five volumes
composed of two classes (named image1 to image5 in the
2-class RFAI dataset). The average execution time was
between 1 and 2 s. Fig. 8 shows the results for the first volume
(image1). The method achieved high accuracy, in contrast to
3D implementations of a classical intensity-based level set

method (ILS) [29], geometric active contour (GAC) [23],
and ACWE [6]. The quality assessment is presented in
Table 1 and Fig. 9 shows sample cross-sections with the
segmented regions. The proposed method achieved DC equal
to or exceeding 0.95 and VOE lower than 10 in all but one
case. These values were quite good and the errors were
located only on the borders of the regions. Although the voxel
count of the border was low compared to the entire volume,
the low values of ASSD were in line with the other quality
measures. The first three datasets (image1–3) showed clearly
acceptable results. The region border in image3 (see Fig. 9(b))
was more irregular, but this could be improved by adjusting
the α parameter to increase the influence of the curvature.
The image4 volume had a greater directional texture and
required the calculation of the GLCM features for separate
orientations (see Fig. 9(f)). The combined features were not
sufficient to fully discriminate between the two regions and
resulted in a significant under-segmentation: RVD = −32.29
and ASSD = 5.58, compared to final RVD = −9.73 and
ASSD = 1.48 (see Fig. 9(e)). The last dataset (image5) was
also challenging, since it contained two similar texture classes
with difficult to distinguish borders, but the method managed
to find most of the general outline of the region.

The ILS method used the image term presented in (3) and
a GPU-based implementation. The T parameter was set to
the mean intensity inside the initial surface, α was equal
to 0.25 and only the ε tolerance was tuned. As expected,
ILS was not well adapted to non-homogeneous regions. Its
quality was relatively close to the proposed approach only
for the first texture in image1 (see Fig. 8(f)). In all other
cases, the segmentation was largely unsuccessful (similar
to Fig. 8(g)), with both high VOE and RVD and excessive
ASSD. Furthermore, the ILS took more time to converge:
about 11 s on average.

The GAC relied on an edge-based energy that pushed
the surface towards the boundaries of the segmented region.
This energy used a gradient of a smoothed version of the
volume and diminished the closer the surface got to an
edge. The smoothing was performed with a Gaussian filter
with the σ parameter in a range from 2 to 4 pixels, which
seemed appropriate for the dimension of the input volumes.
The GAC approach was mostly inadequate for the RFAI
dataset and usually resulted in significant undersegmenta-
tion, as indicated by high negative values of RVD that cor-
responded with VOE. The simple Gaussian filter was not
able to simultaneously smooth the textures and preserve a
sharp border between the patterns, therefore the surface was
typically stopped before it could cover most of the segmented
region.

Finally, the results of the proposed algorithm were
compared with a 3D piecewise-constant version of the
ACWE method. This approach partitions the dataset into two
classes (phases) by minimizing their internal intensity vari-
ance. ACWE has an ability to deal with noise and the lack of
clear borders between the regions, but works well only when
the average intensity values of the phases are distinct enough.

143300 VOLUME 8, 2020

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 8. Segmentation result for the first RFAI 2-class volume (image1): (a) slice of the volume at z = 64, (b) 3D rendering of the volume,
(c–d) cross-sections with the results of the proposed method (z = 64), (e) values of |Sp| for the slice corresponding to z = 64 (mapped to
greyscale), (f–g) 3D visualisations of the intensity-based level set results, and (h–i) 3D visualisations of the proposed method results.

TABLE 1. Accuracy of the RFAI 2-class dataset segmentation performed with the ILS, GAC, ACWE, and the proposed method (sensitivity parameters ε, σ ,
and θ also provided).

FIGURE 9. Example results for RFAI database volumes: (a) image2 volume at z = 64, (b) image3 at
z = 64, (c–d) results of the intensity-based level on the two previous slices, (e) image4 at z = 100
(undersegmentation of class1), (f) image4 at z = 100 (final result of class1), (g) image5 at z = 96
(class1), and (h) example result on a volume with multiple classes.

This condition was met for the image1 volume, where the
ACWE, unsurprisingly, achieved a high-quality segmenta-
tion. The other volumes, however, did not fit this criterion,

as their textures differed more in scale, pattern, and orienta-
tion, rather than just in mean intensity. Ultimately, the ACWE
segmentation of these volumes was largely unsuccessful.

VOLUME 8, 2020 143301

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

FIGURE 10. Segmentation of white matter in the brain MRI. Results of the proposed method at scales of
(a) 0.25, (b) 0.5 and (c) 1.0, as well as (d) an example contour at z = 79. Surfaces in (a) and (b) are up-scaled
for better presentation. Results of (e) WELS and (f) IGAC methods captured with their native software (the
perceived perspective differences are due to the distinct rendering capabilities of the programs).

B. REAL DATA SETS
The proposed method was also tested using real 3D medical
imaging data. The resulting quality and runtime performance
was compared with the WELS and IGAC algorithms, since
both of those methods are used for medical image segmenta-
tion. Although the accuracy of the outcomes is the ultimate
goal for medical applications [40], [41], the complexity and
time performance of the algorithms is also an important
factor, especially considering the size of 3D imaging data [3].

The examples show the segmentation results of two volumes:
a brain MRI provided in [1] (with 256 × 256× 174 voxels)
and a thoracic CT scan from the 2017 Lung CT Segmentation
Challenge (LCTSC) database [42]–[44] (256 × 256 × 168,
cropped from 5122 images for better scaling).

The segmentation of white matter in the brain dataset is
presented in Fig. 10. The visualised surfaces show increas-
ing segmentation fidelity at each scale. The method used
the source data intensity and GLCM contrast as the image
features and took about 3 s to complete. This performance
was comparable with the WELS method (see Fig. 10(e))
which completed in a similar time. Regarding the IGAC
(see Fig. 10(f)), the segmentation took between 20 and 35 s.
Qualitatively, all three methods were able to obtain accept-
able results, but runtime disparity was evident. The proposed
approach was much faster than IGAC and on a par with
WELS, despite the usage of more complex image feature
descriptors.

The lung segmentation of the thoracic CT was performed
according to the LCTSC guidelines (i.e. one lung should
be separate from another and hilars and the trachea/main
bronchus should be omitted). The results (see Fig. 11) show
a successful segmentation with DC close to 0.98. The texture

stopping term |Sp| (see Fig. 11(d)) prevented the ‘leakage’ of
the surface into the bronchus. Such behaviour ismore difficult
to achieve using only the image intensity, as observed for the
segmentation using the WELS method (see Fig. 12). IGAC,
due to its more advanced image term, is much more robust
in segmenting only the lung region. The proposed method
ran in 4.5 s, whereas WELS took 3 s and IGAC finished in
about 40 s.

C. RUNTIME PERFORMANCE EVALUATION
The performance of the method was tested on three Nvidia
GPUs: GTX 980, Titan Xp, and Tesla P100. The experiments
were performed on the mosaic volume from the first example
(2563 voxels). Three default scales were used and level set
iterations were fixed to 500 for each stage. Only the GLCM
features were employed, since theDWTalgorithmwas imple-
mented on the CPU. Table 2 shows the specifications of the
cards and execution times for the final stage. Three modes
were compared: an un-optimised version (Full), a sparse
mode with a margin (Mrg.), and a sparse mode with smooth-
ing and curvature disabled (NoC.). The execution times for
the non-sparse version were included to illustrate the per-
formance gains. The results showed that the sparse schemes
significantly decreased the total time taken for segmentation.
The combined time of the first two stages, independently of
the last stage mode, took less than 20% of the total time in the
un-optimised mode, indicating that most of the computations
were performed in the final stage. Such disparities between
the stages were expected, since each subsequent resolution
increased the total voxel count eightfold.

Fig. 13 shows an in-depth analysis of the final stage.
The stacked execution time of the separate GLCM and level

143302 VOLUME 8, 2020

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

TABLE 2. Specifications of the graphics cards used for performance tests and total test volume segmentation times in different modes for the last
resolution stage. A summary time of the first two stages is also provided.

FIGURE 11. Lung CT segmentation using the proposed method: (a) sliced
volume rendering of the data with the resulting surface visible,
(b) resulting contour at z = 82, values of |Sp| for the slice with (c) only the
image intensity used and (d) with the GLCM features included.

FIGURE 12. Lung CT segmentation with the (a–b) WELS and (c) IGAC
methods. WELS was able to successfully segment the region (a), but
precise parameter tuning was required to prevent leakage into the
bronchus and trachea regions (b).

set (LS) stages are displayed for each GPU and final stage
mode. Taking into account the capabilities of the GPUs,
the results showed reasonable variation between the cards.
The weakest GTX 980 gained the most from the optimisation
schemes. Titan and Tesla differed in the GLCM and LS
stages, but their overall time was very similar.

FIGURE 13. Performance of the last algorithm stage on different GPUs.
Three modes are presented: unoptimised version (Full), sparse mode with
margin (Mrg.) and sparse mode with smoothing and curvature disabled
(NoC.). The stacked execution time consist of the level set evolution (LS)
and GLCM generation.

Although the sparse mode with a margin gave results
similar to the un-optimised mode, it took longer to complete
than the simplified sparse mode with smoothing, because
the margin mode had to perform the curvature computa-
tions. Furthermore, the additional border margin significantly
increased the size of the compacted volume. With a block
size of 8, an additional margin of 1 voxel almost doubled
the packed data size (83 vs 103 voxels). In the test example,
this resulted in a packed-to-original data ratio of 0.3 for the
margin mode, compared to 0.16 for the smoothing scheme.

To put these results into perspective, the GPU-based
3D GLCM algorithm was compared to a single- and
multi-threaded 2D CPU version. On an 8-core/16-thread
AMD RyzenTM 2700 CPU, the generation of 2D features
for each slice of the 2563 volume took 201 s on a single
thread and 39 s on all threads. Titan Xp could calculate
more demanding 3D features of the same volume in 3.6 s,
which provided×59 and×10.8 speedup over the CPU (using
4 GLCM orientations in 2D and 3D cases).

D. DISCUSSION
The proposed method demonstrated positive results for syn-
thetic data sets and performedwell on real volumetric images.
The algorithm was able to use full 3D texture features while
maintaining high performance, as supported by the com-
parison with other GPU-based level set implementations.
Notably, WELS is still one of the fastest methods available.
Its optimisations are based on maintaining a sparse narrow
band around the evolving surface. The algorithm does not use
tiling, but the band region is tracked in a per-voxel way, which
provides an even bigger reduction in computational load. Its
intensity-based image force, however, is similar to ILS and

VOLUME 8, 2020 143303

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

is not well-suited for handing textured regions. Despite the
costly generation of full 3D features, the proposed method is
very competitive with WELS in terms of its pure execution
time, obtaining segmentation results on real data sets in less
than 5 s.

The IGAC uses a variational region-based scheme [6].
This approach evolves the level set functions according
to the parameters of foreground and background regions.
The image fitting term is global and has to be constantly
updated during the evolution. Furthermore, the IGAC uses
a Gaussian distribution-based image term that applies better
to regions with non-uniform intensity. The work is there-
fore performed on the entire image domain and is bound to
the Gaussian kernel calculation. In comparison to the pro-
posed method, the IGAC was therefore significantly slower.
However, the model used in IGAC has some advantages,
such as lower dependence on initialisation—its global nature
makes it harder to stuck in a local minimum. It has also been
noted that the implementation focuses on interactive segmen-
tation, whereby the operator can use brush-like tools to aid or
block the surface progression. The algorithm parameters can
also be adjusted in real time.

V. CONCLUSION AND FUTURE WORKS
In this article, a texture-based level set method for the
segmentation of 3D volumes is proposed. The method takes
advantage of a multi-resolution and sparse scheme to speed
up computations and utilises the multi-scale nature of the pro-
vided texture features. The high performance is also enhanced
by GPU acceleration using OpenCLTM. The algorithm has
the advantage of possibly using different texture features.
The textural level set speed function utilises only the rele-
vant features at a given scale and is not bound to specific
descriptors. The experiments using synthetic datasets indi-
cated that it can handle a large variety of textured volumes.
Moreover, the performance evaluation of the method showed
that it can efficiently process typical datasets, even on a
current mid-range GPU, and does not require specialised
hardware.

The promising test using real datasets suggested possible
applications for medical image segmentation. 3D medical
imaging datasets are traditionally presented as a series of 2D
images and many previous methods were limited to slice-
by-slice processing of the volumes [40], [45]. Given the size
of modern imaging data, the segmentation of 3D structures
on individual images can be a tedious and error-prone task.
Full 3D algorithms [3], [41] offer significant advantages,
since the continuity of the segmented region is more naturally
maintained, without the need for post-processing of separate
images. There is also no need for re-initialisation for separate
slices. The presented examples show that the method is able
to successfully segment some typical medical datasets in a
matter of seconds, while the texture-based approach can be
beneficial for the quality of the results.

The current version of the method could be improved
in many ways. The textural level set speed function has

an ability to discard irrelevant features at a given moment.
The method, however, has to calculate the features anyway
before starting the evolution. A pre-selection scheme could
be applied here to limit those computations (e.g. by trying to
predict the most useful features, using data from the earlier
stages and scales). Integration with region-based models [6]
could also be an interesting direction to take. Currently,
the method relies on manual initialisation, which could also
be improved by using region-based and global minimisation
schemes [31].

Regarding the performance, the employed optimisation
relies on limiting the computations to the locally relevant
data regions. To effectively run for a typical uniformly dis-
tributed GPU workload, this kind of approach requires rel-
atively complex packing and streaming schemes in order
to achieve an optimal GPU saturation. This issue could be
addressed by the utilisation of more advanced GPGPU com-
puting models, such as OpenCLTM non-uniform workgroups
or CUDA dynamic parallelism [46], which are designed
for irregular workloads. From an implementation standpoint,
the usage of private/local GPU memory for GLCM and level
set algorithms could be improved to better accommodate the
capabilities of modern hardware.

REFERENCES
[1] M. Roberts, J. Packer, M. Sousa, and J. Mitchell, ‘‘A work-efficient GPU

algorithm for level set segmentation,’’ in Proc. Conf. High Perform. Graph.
(HPG), 2010, pp. 123–132.

[2] J. Roels, J. De Vylder, Y. Saeys, B. Goossens, andW. Philips, ‘‘Decreasing
time consumption of microscopy image segmentation through parallel
processing on the GPU,’’ in Proc. Int. Conf. Adv. Concepts Intell. Vis. Syst.
(ACIVS). Cham, Switzerland: Springer, 2016, pp. 147–159.

[3] E. Smistad, T. L. Falch,M. Bozorgi, A. C. Elster, and F. Lindseth, ‘‘Medical
image segmentation on GPUs—A comprehensive review,’’ Med. Image
Anal., vol. 20, no. 1, pp. 1–18, Feb. 2015.

[4] P. Moore and D. Molloy, ‘‘A survey of computer-based deformable mod-
els,’’ in Proc. Int. Mach. Vis. Image Process. Conf. (IMVIP), Sep. 2007,
pp. 55–66.

[5] M. Kass, A. Witkin, and D. Terzopoulos, ‘‘Snakes: Active contour mod-
els,’’ Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, Jan. 1988.

[6] T. F. Chan and L. A. Vese, ‘‘Active contours without edges,’’ IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[7] R. Ronfard, ‘‘Region-based strategies for active contour models,’’ Int. J.
Comput. Vis., vol. 13, no. 2, pp. 229–251, Oct. 1994.

[8] R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Textural features for
image classification,’’ IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610–621, Nov. 1973.

[9] L. Tesař, A. Shimizu, D. Smutek, H. Kobatake, and S. Nawano, ‘‘Medical
image analysis of 3DCT images based on extension of haralick texture fea-
tures,’’Comput. Med. Imag. Graph., vol. 32, no. 6, pp. 513–520, Sep. 2008.

[10] J. J. Cerrolaza, N. Safdar, C. A. Peters, E. Myers, J. Jago, and
M. G. Linguraru, ‘‘Segmentation of kidney in 3D-ultrasound images using
Gabor-based appearance models,’’ in Proc. IEEE 11th Int. Symp. Biomed.
Imag. (ISBI), Apr. 2014, pp. 633–636.

[11] M. Gao, H. Chen, S. Zheng, and B. Fang, ‘‘A factorization based active
contour model for texture segmentation,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2016, pp. 4309–4313.

[12] Y. Dong, H. Zhang, Z. Liu, C. Yang, G.-S. Xie, L. Zheng, and
L. Wang, ‘‘Neutrosophic set transformation matrix factorization based
active contours for color texture segmentation,’’ IEEE Access, vol. 7,
pp. 93887–93897, 2019.

[13] Y. D. Cid, H. Muller, A. Platon, P.-A. Poletti, and A. Depeursinge,
‘‘3D solid texture classification using locally-oriented wavelet trans-
forms,’’ IEEE Trans. Image Process., vol. 26, no. 4, pp. 1899–1910,
Apr. 2017.

143304 VOLUME 8, 2020

D. Reska, M. Kretowski: Multi-Resolution Texture-Based 3D LS Segmentation

[14] A. Achuthan, M. Rajeswari, D. Ramachandram, M. E. Aziz, and
I. L. Shuaib, ‘‘Wavelet energy-guided level set-based active contour:
A segmentation method to segment highly similar regions,’’ Comput. Biol.
Med., vol. 40, no. 7, pp. 608–620, Jul. 2010.

[15] O. Pujol and P. Radeva, ‘‘Texture segmentation by statistical deformable
models,’’ Int. J. Image Graph., vol. 4, no. 3, pp. 433–452, Jul. 2004.

[16] X. Huang, Z. Qian, R. Huang, and D. Metaxas, ‘‘Deformable-model
based textured object segmentation,’’ in Proc. Int. Workshop Energy Min-
imization Methods Comput. Vis. Pattern Recog. (EMMCVPR). Berlin,
Germany: Springer, 2005, pp. 119–135.

[17] Q. Wu, Y. Gan, B. Lin, Q. Zhang, and H. Chang, ‘‘An active contour model
based on fused texture features for image segmentation,’’Neurocomputing,
vol. 151, pp. 1133–1141, Mar. 2015.

[18] S. Luo, L. Tong, and Y. Chen, ‘‘A multi-region segmentation method for
SAR images based on themulti-texturemodel with level sets,’’ IEEE Trans.
Image Process., vol. 27, no. 5, pp. 2560–2574, May 2018.

[19] F. S. Al-Qunaieer, H. R. Tizhoosh, and S. Rahnamayan, ‘‘Multi-resolution
level set image segmentation usingwavelets,’’ inProc. 18th IEEE Int. Conf.
Image Process. (ICIP), Sep. 2011, pp. 269–272.

[20] S. G. Mallat, ‘‘A theory for multiresolution signal decomposition:
The wavelet representation,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 11, no. 7, pp. 674–693, Jul. 1989.

[21] S. G. Roux, M. Clausel, B. Vedel, S. Jaffard, and P. Abry, ‘‘Self-similar
anisotropic texture analysis: The hyperbolic wavelet transform contri-
bution,’’ IEEE Trans. Image Process., vol. 22, no. 11, pp. 4353–4363,
Nov. 2013.

[22] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Inter-
faces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[23] V. Caselles, F. Catté, T. Coll, and F. Dibos, ‘‘A geometric model for active
contours in image processing,’’ Numer. Math., vol. 66, no. 1, pp. 1–31,
Dec. 1993.

[24] V. Caselles, R. Kimmel, and G. Sapiro, ‘‘Geodesic active contours,’’ Int. J.
Comput. Vis., vol. 22, no. 1, pp. 61–79, 1997.

[25] D. Mumford and J. Shah, ‘‘Optimal approximations by piecewise smooth
functions and associated variational problems,’’ Commun. Pure Appl.
Math., vol. 42, no. 5, pp. 577–685, Jul. 1989.

[26] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, ‘‘A PDE-based
fast local level set method,’’ J. Comput. Phys., vol. 155, no. 2, pp. 410–438,
Nov. 1999.

[27] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth, ‘‘Hier-
archical RLE level set: A compact and versatile deformable surface repre-
sentation,’’ ACM Trans. Graph., vol. 25, no. 1, pp. 151–175, Jan. 2006.

[28] M. B. Nielsen and K. Museth, ‘‘Dynamic tubular grid: An efficient data
structure and algorithms for high resolution level sets,’’ J. Sci. Comput.,
vol. 26, no. 3, pp. 261–299, Mar. 2006.

[29] A. Lefohn, J. Cates, and R. Whitaker, ‘‘Interactive, GPU-based level
sets for 3D segmentation,’’ in Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Intervent. (MICCAI). Berlin, Germany: Springer, 2003,
pp. 564–572.

[30] C. Li, C. Xu, C. Gui, and M. D. Fox, ‘‘Distance regularized level set
evolution and its application to image segmentation,’’ IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3243–3254, Dec. 2010.

[31] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher,
‘‘Fast global minimization of the active contour/snake model,’’ J. Math.
Imag. Vis., vol. 28, no. 2, pp. 151–167, Aug. 2007.

[32] M. Rumpf and R. Strzodka, ‘‘Level set segmentation in graphics hard-
ware,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), vol. 3, Oct. 2001,
pp. 1103–1106.

[33] A. C. Jalba,W. J. van der Laan, and J. B. T. M. Roerdink, ‘‘Fast sparse level
sets on graphics hardware,’’ IEEE Trans. Vis. Comput. Graphics, vol. 19,
no. 1, pp. 30–44, Jan. 2013.

[34] C. G. Willcocks, P. T. G. Jackson, C. J. Nelson, A. V. Nasrulloh,
and B. Obara, ‘‘Interactive GPU active contours for segmenting inho-
mogeneous objects,’’ J. Real-Time Image Process., vol. 16, no. 6,
pp. 2305–2318, Dec. 2019.

[35] L. Wang, L. He, A. Mishra, and C. Li, ‘‘Active contours driven by local
Gaussian distribution fitting energy,’’ Signal Process., vol. 89, no. 12,
pp. 2435–2447, Dec. 2009.

[36] D. Reska, C. Boldak, and M. Kretowski, ‘‘Toward texture-based 3D
level set image segmentation,’’ in Image Processing and Communications
Challenges 7 (Advances in Intelligent Systems and Computing). Cham,
Switzerland: Springer, 2016, pp. 205–211.

[37] J. E. Stone, D. Gohara, and G. Shi, ‘‘OpenCL: A parallel program-
ming standard for heterogeneous computing systems,’’ Comput. Sci. Eng.,
vol. 12, no. 3, p. 66, 2010.

[38] D. Reska, K. Jurczuk, C. Boldak, and M. Kretowski, ‘‘MESA: Complete
approach for design and evaluation of segmentationmethods using real and
simulated tomographic images,’’ Biocybern. Biomed. Eng., vol. 34, no. 3,
pp. 146–158, 2014.

[39] L. Paulhac, P. Makris, and J.-Y. Ramel, ‘‘A solid texture database for
segmentation and classification experiments,’’ in Proc. Int. Conf. Comput.
Vis. Theory Appl (VISSAPP), 2009, pp. 135–141.

[40] A. Mansoor, U. Bagci, B. Foster, Z. Xu, G. Z. Papadakis, L. R. Folio,
J. K. Udupa, and D. J. Mollura, ‘‘Segmentation and image analysis of
abnormal lungs at CT: Current approaches, challenges, and future trends,’’
Radiographics, vol. 35, no. 4, pp. 1056–1076, Jul. 2015.

[41] L. E. Carvalho, A. C. Sobieranski, and A. von Wangenheim, ‘‘3D segmen-
tation algorithms for computerized tomographic imaging: A systematic
literature review,’’ J. Digit. Imag., vol. 31, no. 6, pp. 799–850, Dec. 2018.

[42] J. Yang, G. Sharp, H. Veeraraghavan, W. van Elmpt, A. Dekker,
T. Lustberg, and M. Gooding, ‘‘Data from lung CT segmentation chal-
lenge,’’ Cancer Imag. Arch., 2013, doi: 10.7937/K9/TCIA.2017.3r3fvz08.

[43] J. Yang, H. Veeraraghavan, S. G. Armato, K. Farahani, J. S. Kirby,
J. Kalpathy-Kramer,W. van Elmpt, A. Dekker, X. Han, X. Feng, P. Aljabar,
B. Oliveira, B. van der Heyden, L. Zamdborg, D. Lam, M. Gooding, and
G. C. Sharp, ‘‘Autosegmentation for thoracic radiation treatment plan-
ning: A grand challenge at AAPM 2017,’’ Med. Phys., vol. 45, no. 10,
pp. 4568–4581, Oct. 2018.

[44] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,
S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, ‘‘The cancer
imaging archive (TCIA): Maintaining and operating a public information
repository,’’ J. Digit. Imag., vol. 26, no. 6, pp. 1045–1057, Dec. 2013.

[45] T. Ivanovska, K. Hegenscheid, R. Laqua, S. Gläser, R. Ewert, and
H. Völzke, ‘‘Lung segmentation ofMR images: A review,’’ inVisualization
in Medicine and Life Sciences III. Cham, Switzerland: Springer, 2016,
pp. 3–24.

[46] J. Wang and S. Yalamanchili, ‘‘Characterization and analysis of dynamic
parallelism in unstructured GPU applications,’’ in Proc. IEEE Int. Symp.
Workload Characterization (IISWC), Oct. 2014, pp. 51–60.

DANIEL RESKA received the M.S. degree from
the Bialystok University of Technology, Poland,
in 2010, where he is currently pursuing the Ph.D.
degree with the Faculty of Computer Science. His
research interests focus on image segmentation,
medical image analysis, and parallel computing.

MAREK KRETOWSKI received the joint Ph.D.
degree from the Faculty of Computer Science,
Bialystok University of Technology, Poland, and
the University of Rennes 1, France, in 2002.
He is currently a Professor with the Faculty of
Computer Science, Bialystok University of Tech-
nology. His research interests focus on the biomed-
ical applications of computer science (modeling
for image understanding and image analysis),
bioinformatics, and data mining.

VOLUME 8, 2020 143305

http://dx.doi.org/10.7937/K9/TCIA.2017.3r3fvz08

