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ABSTRACT In recent years, the positioning technology for unmanned aerial vehicle (UAV) has been
developed rapidly. However, there are still challenges in terms of improving the computational efficiency,
accuracy, and robustness of the algorithm for applications in fast flight with UAV. In this paper, we present a
novel positioning system of UAV based on IMA-GPS (inertial measurement unit array - global positioning
system) three-layer data fusion, which effectively solves the positioning problem ofUAV. The first layer is the
distributed filtering layer, the unscented Kalman filter serves as the local filter to process the measurements
generated by each IMU in the IMA. The second layer is the IMA compensation fusion layer, the data of GPS
is introduced to compensate for the deviation of the navigation results calculated by each IMU. The third
layer is the GPS-IMA joint optimization layer, where the outputs of the IMA and GPS are fused to obtain
the attitude, speed, and position. Simulation results show that the proposed method can realize an integrated
navigation system which has low cost, high accuracy, and high computational speed, so that the performance
of the UAV positioning system will be improved greatly.

INDEX TERMS IMA, unscented Kalman filter, multi-sensor data fusion, UAV positioning system.

I. INTRODUCTION
For the past few years, unmanned aerial vehicles (UAVs) have
been rapidly developed and widely applied in many fields
such as national defense patrol, agricultural activity, moni-
toring, rescue, and so on. In these applications, the real-time
positioning of UAVs plays an important role. Although posi-
tioning technology has been developed for many years, it still
faces many challenges when it is applied to the UAVs plat-
form. For example, the traditional single sensor solution
of positioning is difficult to meet the needs of UAV for
rapid state change, high real-time, and complex environment.
Compared with a single model, multi-sensor fusion technol-
ogy can provide more accurate and reliable information for
the system [1]–[4], so the multi-sensor information fusion
technology applied to the UAVs platform has become one of
the hot research topics.

Global Positioning System (GPS) is frequently used for
UAV positioning and navigation around the world, it has
the advantages of long-term stability and no accumulation
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of error, but its positioning information is greatly prone
to jamming [6], [27]–[31], and it can’t output the flight
status of UAV in real-time due to its low sampling fre-
quency. In addition to GPS, INS is also often used in UAV
positioning. As an important measurement element in the
inertial navigation system (INS), the inertial measurement
unit (IMU) can obtain the acceleration and angular velocity
of the carrier at a high frequency. Over the past two decades,
with the rapid development of Micro-Electro-Mechanical
Systems (MEMS) technology, the advantages of low cost,
small size, and low power consumption of IMU are gradually
highlighted, so IMU has been expanded to a much wider
range of navigation applications [10]. However, an obvious
disadvantage of single IMU is the accumulated errors. With
the increase of time, the navigation results, which are cal-
culated by single IMU, become more and more unreliable.
Based on the advantages and disadvantages of the above two
navigation ways, the integrated system composed of GPS
and INS becomes a common navigation system of UAV
[5], [7]–[9], [25], [32], [33]. Although GPS can reduce the
influence of accumulated error to a great extent, the drift
of the integrated system after a long-time operation can’t be
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completely avoided. Besides, the UAV has high requirements
on the robustness of the system during the flight, and any
sensor fault in GPS or INS may cause serious consequences.

Although MEMS technology has made great progress,
the application of single IMU in practice is still limited by
precision and stability. A natural way to solve these problems
is to design a virtual high-performance IMU, which combines
the measurements of multiple low-cost IMUs. And some
work has been done on this issue. Rasoulzadeh and Shahri
implemented a high precision and low-cost IMU array (IMA)
and combined the measurements of all gyroscopes [13]. The
experiment of [13] demonstrates that the proposed method
can significantly reduce the impact of noise on the measure-
ments of angular rate and obtain a higher accuracy compared
with a single IMU. In [15] Chang et al. presented a method
that combined six identical gyroscopes to form a virtual
high accuracy gyroscope. However, as in reference [15], the
accelerometer measurements are not used for data fusion.
An open-source Multi-IMU(MIMU) platform, which con-
tains 18 cheap IMUs, is implemented in [16]. Skog et al.
have conducted many tests with both accelerometers and
gyroscopes, and qualitatively described the different potential
gains of the MIMU system. References [17] and [18] pro-
posed to apply an IMA to pedestrian navigation and stud-
ied the noise performance of the IMA. In [19], Skog et al.
presented an algorithm that used a maximum likelihood
estimation method to fuse the measurements of the IMA.
An example of an IMA which consists of 32 IMUs is shown
in Fig. 1. The abovework is only for the IMA,which is neither
fused with the information of other sensors nor applied to the
UAV.

FIGURE 1. An IMA consists of 32 IMUs.

In [20], [21], an effective multi-sensor fusion approach is
presented and applied to INS/GNSS (global navigation satel-
lite system) /CNS (celestial navigation system) integrated
navigation system to improve the positioning performance of
UAV. The method has a two-level fusion structure, the UKF
serves as local filters to integrate GNSS and CNS with INS
respectively to obtain the local state estimates at the bottom
level, then a data fusion approach is presented to fuse the local
state estimates to generate the final navigation result at the

top level. GNSS and CNS, like GPS, have high measurement
accuracy and good stability, but they are also prone to jam-
ming. Moreover, compared with IMA which was not used in
their work, the three sensors used in the integrated navigation
system are independent of each other and have disadvantages
of high cost and big size, so that they are not suitable for
small-sized UAV. Also, the system state vector contains the
bias of IMU in the filtering process, which increases the
iteration cost and reduces the real-time performance.

Given the shortcomings of the UAV positioning system
composed of GPS and INS mentioned above, we introduce
IMA to replace single IMU and employ multi-sensor fusion
technology to process the output of IMA and the measure-
ments of GPS, which can improve the accuracy, robustness,
and efficiency of the UAV positioning system. This paper
presents a novel and multilayer data fusion methodology
based on the unscented Kalman filter for IMA, which is aided
by a GPS. We innovatively propose a three-layer data fusion
structure, which can effectively solve the UAV positioning
problem. The first layer is the distributed filter layer, andUKF
serves as a local filter to process the measurements generated
by IMA. UKF is used to fuse information from different
IMUs in the IMA. The middle layer is the IMA compensation
fusion layer, the measurement of GPS is utilized to compen-
sate for the offset of navigation results, which are calculated
by IMA. The top layer is the GPS-IMA joint optimization
layer in which the navigation parameters obtained by the sec-
ond layer are integrated with GPS to get the attitude, speed,
and position of UAV. Besides, we calibrate the IMA before
it works, and get accurate calibration parameters. Therefore,
the calibration parameters do not need to be estimated in
the filtering process of the UAV positioning system, and it
reduces the dimension of state variables and improves the
real-time performance of the UAV. The main contributions
of this paper are as follows:

1) Different from some relatedwork, the calibration param-
eters of the proposed system are obtained off-line rather than
the on-line estimation and very accurate, therefore, it reduces
the dimension of state variables and improves the realtime
performance of the UAV.

2) IMA is introduced into the UAV positioning system to
replace the single IMU model, which greatly enhanced the
accuracy and stability of the system.

3) A three-layer data fusion structure is proposed to elim-
inate the accumulated errors of IMA and obtain accurate
positioning results.

The rest of this paper is organized as follows. The
details of the presented method are described in section II.
In section III, the simulation experiment is introduced and
discussed. Finally, the conclusions of this study are described
in section IV.

II. ALGORITHM DESCRIPTION
In this section, we give the details of the algorithm which
fuses measurements from both GPS and IMA with UKF for
the UAV positioning system.
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The proposed data fusion algorithm framework of
GPS-aided IMA for the UAV positioning system is shown
in Fig. 2. The framework has three layers, which are the dis-
tributed filtering layer, the IMA compensation fusion layer,
and the GPS-IMA joint optimization layer. At the distributed
filtering layer, the UKF serves as the local filter to process the
measurements generated by each IMU in the IMA to obtain
the local optimal state estimates. At the IMA compensation
fusion layer, the measurements of GPS are introduced to
compensate for the accumulated error of each local filter.
Then, IMA global data fusion is performed to merge the
results of IMA local data fusion into one. At the GPS-IMA
joint optimization layer, the output of IMA global data fusion
is fused with GPS to obtain the optimal system state, i.e. the
attitude, speed, and position, which is called heterogeneous
sensor data fusion.

FIGURE 2. The proposed data fusion algorithm framework of GPS-aided
IMA for UAV positioning system.

The navigation frame (n-frame) is chosen as the
E-N-U(East-North-Up) geography frame (g-frame), more-
over, i, e, b denote the inertial frame, the earth frame, and
the body frame, respectively.

A. OFF-LINE CALIBRATING THE IMA
The output of the IMA which consists of S+ 1 IMUs can be
described by the model [22]
f̃ bj=


[
K̄A
]i[Ā]if bi +∇bi + vi, if j = i[

K̄A
]j[Ā]j[ξ̄ (j)A ]

×

¯
R(j)(i)f

bi+∇bj+vj, otherwise

ω̃
bj
ib=


[
K̄G
]i[Ḡ]iωbiib + εbi + vi, if j = i[

K̄G
]j[Ḡ]j[ξ̄ (j)G ]

×

R̄(j)(i)ω
bi
ib+ε

bj+vj, otherwise

(1)

where f̃ bj ∈ R3 and ω̃
bj
ib ∈ R3 are the measurements (linear

acceleration and angular velocity) of j-th (j = 1, 2, · · · , S+1)
IMU.

[
K̄A
]i
= [I + δKA]i,

[
K̄G
]i
= [I + δKG]i, I is the

identity matrix. [δKA]i and [δA]i denote the scale factor error
matrix and the sensitivity axis nonorthogonality matrix of
the i-th (i = 1, 2, · · · , S + 1) accelerometer. Similarly,

[δKG]i and [δG]i denote the scale factor error matrix and the
sensitivity axis nonorthogonalitymatrix of the i-th gyroscope,
respectively. f bi and ∇bi are the true specific force and bias
of the i-th accelerometer in the b-frame. ωbiib and εbi are the
true angular velocity and bias of the i-th gyroscope in the
b-frame. [ξ (j)A ]× and [ξ (j)G ]× denote the alignment errors in
the mounting of the j-th IMU. R̄(j)(i) ∈ SO3 represents the
rotation matrix which describes the orientation from the i-th
IMU to the j-th IMU. vj is Gaussian white noise.

We calibrate the IMA offline by using the method which
is provided by [22] to get the calibration parameters before it
works. The calibration parameters include the accelerometer
scale factors δKAx , δKAy, δKAz, the accelerometer sensitivity
axis nonorthogonality δAx , δAy, δAz, the accelerometer biases
∇x , ∇y, ∇z, the gyroscope scale factors δKGx , δKGy, δKGz,
the gyroscope sensitivity axis nonorthogonality δGx , δGy,
δGz, the gyroscope biases εx , εy, εz and the alignment errors
ξx , ξy, ξz in the mounting of each IMU, where x, y, z denote
three axes of an IMU. The expressions of these parameters
are as follows,

[δKA] =

δKAx 0 0
0 δKAy 0
0 0 δKAz


[δA] =

 0 δAz −δAy
−δAz 0 δAx
δAy −δAx 0


[δKG] =

δKGx 0 0
0 δKGy 0
0 0 δKGz


[δG] =

 0 δGz −δGy
−δGz 0 δGx
δGy −δGx 0


∇ = [∇x ∇y ∇z ]T

ε = [ εx εy εz ]T

ξ = [ ξx ξy ξz ]T

The IMA is placed inside the Platonic solid and the cal-
ibration parameters are obtained with the maximum likeli-
hood estimation approach. Because the position constraints
between each IMU are rigid in the IMA, which limits the
navigation drift accumulated over propagation. Therefore,
the calibration parameters don’t need to be added to the state
vector, so the computation complexity is reduced, and the
computer resources are saved.

B. THE DISTRIBUTED FILTERING LAYER
The bottom layer is called the distributed filter layer which
processes all accelerations and angular velocities generated
by the IMA in a distributed manner. First, any IMU in the
IMA is selected as the reference IMU to be used as the refer-
ence of each local filter. Second, due to the advantages of high
convergence rate and high estimation accuracy, UKF is used
to fuse the measurement data of each IMU and reference IMU
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according to the array characteristics of IMA. Finally, the
results of each local filter are fed into the IMA compensation
fusion layer to complete the following steps.

Our system is similar to [26], the state vector of each local
filter can be described as

X (t) = [ϕE , ϕN , ϕU , δVE , δVN , δVU , δL, δλ, δh]T (2)

where, [ϕE , ϕN , ϕU ]T and [δVE , δVN , δVU ]T are the attitude
error and velocity error of the UAV in the East-North-Up
directions, [δL, δλ, δh]T denotes the latitude error, longitude
error, and altitude error of the UAV, respectively. The nonlin-
ear system model of each local filter can be formulated as

ϕ̇ = ϕ × ωnin + δω
n
in − C

n
b ([δKG]+ [δG])ωbib − ε

n

δV̇ n
= −ϕn × f n + Cn

b ([δKA]+ [δA])f b + δV n

×(2ωnie + ω
n
en)+ V

n
× (2δωnie + δω

n
en)+∇

n

δL̇ =
δVN

RM + h
− δh

VN
(RM + h)2

δλ̇ =
δVE

RN + h
secL + δL

VE
RN + h

tanL secL

− δh
VE

RN + h
δḣ = δVU

(3)

where ϕ = [ϕE , ϕN , ϕU ]T and δV = [δVE , δVN , δVU ]T ; Cn
b

is the 3 × 3 rotation matrix describing the rotation from b-
frame to n-frame.ωnin is the relative rotational angular velocity
between the i-frame and the n-frame, which is expressed in
the n-frame. εn is the bias of the gyro, and ∇n is the bias
of the accelerometer. f n is the true specific force. ωnie is
the rotational angular rate of the earth. ωnen is the rela-
tive rotational angular velocity between the e-frame and the
n-frame. δωnie and δωnen denote the corresponding errors.
RM and RN represent the median radius and normal radius
where the UAV locates. L, λ, h are the latitude, longitude,
and altitude of the UAV.

Some key parameters in (3) can be calculated by the fol-
lowing equation [26]

Cn
b =

 cγ cψ+sγ sψsθ sψcθ sγ cψ−cγ sψsθ
−cγ sψ+sγ cψsθ cψcθ −sγ sψ−cγ cψsθ
−sγ cθ sθ cγ cθ


ωnie = [ 0 ωiecL ωiesL ]T

δωnie = [ 0 δLωiesL δLωiecL ]T

ωnen = [−
VN

RM + h
VE

RN + h
VE

RN + h
tL ]T

δωnen=


−

δVN
RM + h

+ δh
δVN

(RM + h)2
δVE

RN + h
− δh

VE
(RN + h)2

δVE
RN+h

tL+δL
VE

(RN + h)(c2L)
− δh

VE tL
(RN + h)2


RM = Re(1− 2e+ 3es2L)
RN = Re(1+ es2L)

(4)

where c denotes cosine, s denotes sine functions, and
t denotes tangent functions. Re and e are the semi-major axis
and ellipticity of the ellipsoid model of the earth, respectively.
ψ, θ, γ represent the yaw, pitch, and roll angles.
Equation (4) can be rewritten as the following standard

equation of state

Ẋ (t) = f̄ (X (t))+ B(t)u(t)+ w(t) (5)

where f̄ (·) is a nonlinear state transition function with contin-
uous form, B(t)u(t) is the control input of the system, w(t) is
the process noise.

The IMU samples the measurements f̃ b and ω̃bib with a
period T, and these measurements are used for state propa-
gation in the UKF. To deal with discrete-time measurements
from the IMU, we apply an improved Euler formula for (5)
to propagate the estimated IMU state [23]. The discrete-time
model of the system state equation can be described as

X (k) = f (X (k − 1))+ B(k − 1)u(k − 1)+ w(k − 1) (6)

where f (·) is a nonlinear state transition function with discrete
form. w(k − 1) is the process noise which is commonly
assumed as a zero-mean Gaussian white noise with covari-
ance Q(k − 1) > 0.

The measurement model of the s-th (s = 1, 2, · · · , S) local
filter is described as

Zs(k) = Hs(k)X (k)+ vs(k) (7)

where Zs(k) = [φEref − φEj, φNref − φNj, φUref − φUj,

VEref − VEj,VNref − VNj,VUref − VUj,PNref − PNj,PEref −
PEj, href −hj]T . [φEref , φNref , φUref ]T , [VEref ,VNref ,VUref ]T

and [PEref ,PNref , href ]T are the attitude, velocity and
position of the UAV, these navigation parameters are
calculated by the reference IMU. On the other hand,
[φEj, φNj, φUj]T , [VEj,VNj,VUj]T and [PEj,PNj, hj]T are
calculated by the j-th IMU. We take the difference
between these navigation parameters which are obtained
by these two IMUs as the measurement of the local
filter. The measurement matrix is defined as Hs(k) =
diag([ones(1, 6),RM ,RN cosL, 1]), ones(1, 6) denotes a
six-dimensional vector whose elements are all 1. vs(k) is
the measurement noise which is commonly assumed as a
zero-mean Gaussian white noise with covariance Rs(k) > 0.

The s-th local state is denoted as Xs, and the process of the
s-th local filter can be described as follows:
Step 1: Initialization{

X̂s(0) = E [Xs(0)]

Ps(0) = E
[
(Xs(0)− X̂s(0))(Xs(0)− X̂s(0))T

] (8)

Step 2: Calculate 2n+ 1 sigma points at time k− 1 as

χ
(0)
(j,k−1) = X̂s(k − 1), j = 0

χ
(s)
(j,k−1) = X̂s(k − 1)+ γ (

√
Ps(k − 1))j,

j = 1, 2, · · · , n

χ
(s)
(j,k−1) = X̂s(k − 1)− γ (

√
Ps(k − 1))j−n,

j = n+ 1, n+ 2, · · · , 2n

(9)
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where γ =
√
n+ λ, λ = α2(n+κ)−n, κ = 3−n,α is a tuning

parameter which is a small positive value. (
√
Ps(k − 1))j is

the j-th column of the square root obtained by the lower
triangle decomposition of the matrix Ps(k − 1), which is an
n-dimensional column vector.
Step 3:Calculate the value of the one-step predictionmodel

at time k as

χ
(s)
(j,k/k−1) = f (χ (s)

(j,k−1))+ B(k − 1)u(k − 1),
j = 0, 1, 2, · · · , 2n (10)

X̂s(k/k − 1) =
2n∑
j=0

W (m)
j χ

(s)
(j,k/k−1) (11)

Ps(k/k − 1) =
2n∑
j=0

W (c)
j

[
χ
(s)
(j,k/k−1) − X̂s(k/k − 1)

]
×

[
χ
(s)
(j,k/k−1) − X̂s(k/k − 1)

]T
+ Qs(k − 1)

(12)

where,

W (m)
0 =

1
n+ λ

W (c)
0 =

λ

n+ λ
+ 1− α2 + β

W (m)
j = W (c)

j =
1

2(n+ λ)
, j = 1, 2, · · · , 2n

The value of β is related to the distribution form of Xs.
Step 4: Calculate the augmented sigma points of one-step

prediction model at time k as

χ̃
(s)
(j,k/k−1) = X̂s(k/k − 1), j = 0

χ̃
(s)
(j,k/k−1) = X̂s(k/k − 1)+ γ (

√
Ps(k/k − 1))j,

j = 1, 2, · · · , n

χ̃
(s)
(j,k/k−1) = X̂s(k/k − 1)− γ (

√
Ps(k/k − 1))j−n,

j = n+ 1, n+ 2, · · · , 2n

(13)

Step 5:Measurement update

Z(s)
(j,k/k−1) = Hs(k)(χ̃

(s)
(j,k/k−1)) (14)

Ẑs(k/k − 1) =
2n∑
j=0

W (m)
j Z(s)

(j,k/k−1) (15)

Ps(Ẑs(k/k − 1)) =
2n∑
j=0

W (m)
j

[
Z(s)
(j,k/k−1) − Ẑs(k/k − 1)

]
×

[
Z(s)
(j,k/k−1) − Ẑs(k/k − 1)

]T
+ Rs(k)

(16)

Step 6: Calculate the state estimate and error covariance
matrix as

Ps(X̂s(k/k − 1)Ẑs(k/k − 1))

=

2n∑
j=0

W (c)
j

[
χ̃
(s)
(j,k/k−1)

− X̂s(k/k − 1)
][
Z(s)
(j,k/k−1) − Ẑs(k/k − 1)

]T
(17)

Ks(k) = Ps(X̂s(k/k−1)Ẑs(k/k−1))P−1s (Ẑs(k/k − 1)) (18)

X̂s(k) = X̂s(k/k − 1)+ Ks(k)(Zs(k)− Ẑs(k/k − 1)) (19)

Ps(k) = Ps(k/k − 1)− Ks(k)Ps(Ẑs(k/k − 1))KT
s (k) (20)

Step 7:Return to step 2 for the next sample until all samples
are processed.

Each IMU in IMA except the reference one independently
performs the above steps to obtain the estimation of the
local optimal state X̂s(k)(s = 1, 2, · · · , S) and the error
covariances P̂s(k).

C. THE IMA COMPENSATION FUSION LAYER
The local filter based on IMU can improve the positioning
accuracy, but it can’t reduce the accumulated error, which is
the biggest drawback in step positioning. With the increase
of time, this kind of drift error will make the state estimation
deviate from the real value gradually. To solve this problem,
the measurements of GPS are introduced to compensate for
the influence of accumulated error on the system. According
to the above analysis, the IMA compensation fusion layer is
established, which is also the second layer in our framework.

First of all, we introduce the measurements of GPS, which
are subtracted from the navigation parameters calculated by
each IMU to acquire the corresponding error of every IMU,
then we take the average of the S + 1 errors to compensate
for the fusion result of the IMA. Because GPS can’t provide
the attitude information, the measurements of GPS can only
compensate for the velocity and position obtained by IMA.
However, our experiments show that the drift of gyroscope is
very small after being calibrated. The error compensated for
IMA can be represented as,

1Y =
(
(ỸIMU0 − ỸGPS )+ (ỸIMU1 − ỸGPS )

+· · · + (ỸIMUS − ỸGPS )
)
/(S + 1) (21)

where 1Y = [1VE ,1VN ,1VU ,1L,1λ,1h]T is the
state error compensated by GPS to the IMA. ỸIMUi =
[ṼEIMUi, ṼNIMUi, ṼUIMUi, L̃IMUi, λ̃IMUi, h̃IMUi]T , (i = 0,
1, · · · , S) is the navigation parameter which is obtained from
the i-th IMU. In addition, ỸGPS = [ṼEGPS , ṼNGPS , ṼUGPS ,
L̃GPS , λ̃GPS , h̃GPS ]T is the navigation parameter which is
obtained from GPS.
Secondly, to improve the robustness of the system and

reduce the impact of a single local filter fault on the system,
we take the mean value of all filter results in IMA, and this
can also further improve the system accuracy.

ŶIMA =
(
(ỸIMU1 − X̂1)+ (ỸIMU2 − X̂1)

+ · · · + (ỸIMUS − X̂S )
)
/S (22)

where ŶIMA represents the state of the UAV which is the
fusion result of the IMA before the error compensation.
Finally, the fusion result of this layer, Y ∗IMA = [V ∗EIMA,

V ∗NIMA,V
∗
UIMA,L

∗
IMA, λ

∗
IMA, h

∗
IMA]

T , which eliminates the
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accumulated error can be described as follows,

Y ∗IMA = ŶIMA −1Y (23)

D. THE GPS-IMA JOINT OPTIMIZATION LAYER
After error compensation, the positioning accuracy of IMA
fusion results is greatly improved. However, as time goes on,
the accuracy of the positioning result outputted by the IMA
compensation fusion layer will still slightly decrease, which
is related to the sensor properties of the IMU itself. In consid-
eration of this problem, the compensated IMA fusion results
are combined with the measurements of GPS to optimize
jointly by UKF, which is called the heterogeneous sensor data
fusion method of the top layer, i.e. the content of GPS-IMA
joint optimization layer.

Firstly, similar to the state-space model in the local filter,
the state-space model in the joint optimization layer is con-
structed as follows.

The state vector of the joint optimization layer, which is
similar to the description of the state vector of the local filter
but without the attitude, is defined as

X ′(t) = [ δV ′E δV ′N δV ′U δL ′ δλ′ δh′ ]T (24)

Equation (4) erasing the attitude variable can be transformed
into the discrete-time process model of the X ′,

X ′(k) = f ′(X ′(k−1))+B′(k−1)u′(k−1)+ w′(k − 1) (25)

Also similar to the measurement model of the local filter,
the measurement model of the joint optimization layer can be
described as

Z ′(k) = H ′(k)X ′(k)+ v′(k) (26)

where, Z ′(k) =
[
V ∗EIMA − ṼEGPS ,V

∗
NIMA − ṼNGPS , V

∗
UIMA−

ṼUGPS ,P∗NIMA − P̃NGPS ,P∗EIMA − P̃EGPS , h∗IMA − h̃GPS
]T

.[
ṼEGPS , ṼNGPS , ṼUGPS

]T
and

[
P̃NGPS , P̃EGPS , h̃GPS

]T
are

the velocity and position of the UAV, which are provided by
GPS.

[
V ∗EIMA,V

∗
NIMA,V

∗
UIMA

]T and
[
P∗NIMA,P

∗
EIMA, h

∗
IMA

]T
are the velocity and position of the UAV, which are pro-
vided by the IMA after error compensation. Themeasurement
matrix is H ′(k) = diag ([ones(1, 3),RM ,RN cosL, 1]).
Secondly, the state-space model composed of (25) and (26)

is substituted into the (8)–(20) to obtain the global opti-
mal state estimation X̂ ′ and the corresponding navigation
parameter is

Y ∗ = Ỹ − X̂ ′ (27)

where Ỹ denotes the measured navigation parameter.
Finally, the attitude estimates in ŶIMA obtained from the

IMA compensation fusion layer is added to Y ∗.

Y ∗←
[
φ̂EIMA φ̂NIMA φ̂UIMA Y ∗

]T
(28)

Thus, the augmented Y ∗ is the output of the GPS-IMA joint
optimization layer, i.e. the navigation parameters outputted
by the whole UAV positioning system.

III. SIMULATION
In this section, the effectiveness of the proposed positioning
system is verified via the datasets. And comparative simula-
tion shows that our method can provide more accurate and
reliable positioning results for UAV.

A. DATASETS
According to the specifications of IMU and GPS which are
provided by the sensor manufacturers, the datasets are gener-
ated by numerical simulation. Note that, we assume that all
the measurements from the sensors have been synchronized.
The experimental navigation data is selected from the datasets
within a continuous period of 600s, which includes a variety
of maneuvers, such as climbing, turning, accelerating, decel-
erating, pitching, rolling, etc., as shown in Fig. 3. The number
of IMUs in the IMA is set to 5, and the number of samples
is 60000.

FIGURE 3. Flight trajectory of the UAV.

B. COMPARATIVE SIMULATION ON DATASETS
1) CALCULATION OF CALIBRATION PARAMETERS OF IMA
As shown in Fig. 1 and Fig. 4, a real IMA was employed
for the calibration experiment using the method proposed in
[11], [22]. The IMA was placed inside the calibration device.
And the calibration parameters obtained are shown in Table 1,
where

[
K̄A
]
≈
[
K̄G
]
, [δA] ≈ [δG],

[
ξ̄
(j)
A

]
×

≈

[
ξ̄
(j)
G

]
×

.

FIGURE 4. The calibration device.

The ground truth in the datasets and the calibration param-
eters in Table 1 are used to generate the digital simulation
measurements of IMA.
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TABLE 1. Calibration parameter.

To illustrate the importance of calibration, the calibration
results of a single IMU are attached here. Due to the space
limitation, the pitch error, east velocity error, and east position
error before and after the calibration of IMU0 are shown
in Fig. 5-7.

FIGURE 5. Comparison of pitch angle errors before and after the
calibration of IMU0.

FIGURE 6. Comparison of east velocity errors before and after the
calibration of IMU0.

From the above three figures, it can be seen that the attitude
angle, velocity, and position of the single-IMU will become

FIGURE 7. Comparison of east position errors before and after the
calibration of IMU0.

very unreliable with the increase of time, if it is not calibrated.
For example, after the calibration, the drift of the east position
at 10s is reduced from 215m to 0.04731m compared with that
before the calibration. Therefore, the subsequent experimen-
tal data are all based on themeasurements after the calibration
of the IMA.

2) COMPARISON OF THE PERFORMANCE OF THE
CALIBRATED IMA AND THAT OF THE CALIBRATED
SINGLE IMU
In this subsection, the calibrated IMA performance will be
evaluated and compared with the single IMU. To facilitate
comparative analysis, the magnitude of navigation parameter
estimation error is defined as [24],

‖1x‖ =
√
1x2E +1x

2
N +1x

2
U (29)

where 1x2E ,1x
2
N ,1x

2
U represent the estimated error corre-

sponding to the east, north, and up directions, respectively.
The attitude error, velocity error and position error of the

IMA are compared with those of the single IMU. Note that
we set the measurement noise covariance of the single IMU
as one-fifth of that of the IMUs which make up the IMA, and
this means the measurement accuracy of the single IMU is
higher than that of the latter in the experimental comparison.
Since the inertia height channel is unstable, the height error
is omitted when the position error is compared in the experi-
ment. The experiment results are shown in Fig. 8-10.

It can be seen from the above figures that the navigation
parameters errors caused by the IMA is smaller than that
caused by a single IMU during the flight of UAV. However,
after a while, the error of the IMA will also be very large.
This is owing to that the position of the UAV is obtained
by integrating the acceleration twice, the navigation error is
inevitably accumulated all the time.

3) THE ERROR COMPENSATION AND THE FINAL
POSITIONING RESULTS
In this subsection, the GPS measurements are introduced into
IMA for error compensation to form the complete three-layer
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FIGURE 8. Comparison of attitude errors obtained by the single IMU and
the IMA.

FIGURE 9. Comparison of velocity errors obtained by the single IMU and
the IMA.

FIGURE 10. Comparison of position errors obtained by the single IMU
and the IMA.

data fusion system. Comparing with GPS-aided single IMU
and GPS, the proposed system can provide better positioning
results.

The comparison results of the position error obtained
by GPS-aided IMA before and after error compensation
are shown in Fig. 11, which shows that after the error

FIGURE 11. Comparison of position errors obtained by the GPS-aided
IMA before and after error compensation.

compensation, the position error of the UAV does not con-
tinue to increase with time.

Finally, we compared the navigation errors of the UAV
equipped with GPS, GPS-aided single IMU and GPS-aided
IMA respectively. The experimental results are shown
in Fig. 12-13.

FIGURE 12. Comparison of velocity errors obtained by GPS-aided IMA,
GPS-aided single IMU and GPS.

FIGURE 13. Comparison of position errors obtained by GPS-aided IMA,
GPS-aided single IMU and GPS.
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It can be seen from the above two pictures that the posi-
tioning accuracy of UAV using GPS-aided IMA is the highest
among the three navigationmethods. TheRootMean Squared
Error (RMSE) of the positioning results corresponding to the
three navigation methods is shown in Table 2.

TABLE 2. RMSE of the three navigation methods.

IV. CONCLUSION
This paper has presented a novel positioning system of UAV
based on IMA-GPS three-layer data fusion. This method
has innovatively constructed a three-layer data fusion struc-
ture, which can effectively improve the accuracy and robust-
ness of UAV positioning. The simulation results have shown
that the proposed navigation system using GPS-aided IMA
can improve the accuracy of UAV positioning and greatly
improve the performance of the UAV positioning system
compared with the navigation system using GPS-aided single
IMU.

The future work will focus on the low dynamicmotion, and
the IMAwill be considered to be combined with a camera for
navigation and positioning, because the navigation accuracy
of a camera is higher than that of the GPS in the low dynamic
motion. We are also interested in the fault detection of IMA
in the system. When one or more IMU in IMA failed, IMA
can accurately detect the faulty unit and continue to com-
plete the positioning function according to the information
of the working IMU. In addition, we will also study on the
Cramér-Rao Bound (CRLB) for the sensor fusion problem.
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