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ABSTRACT In this paper, robust control strategies are explored to solve the problem of rendezvous
maneuver for rigid spacecraft exposed to the external disturbance, actuator faults and unknown inertial
parameters. To pursue the control objective, two adaptive controllers are constructed via the sliding mode
control (SMC) technology. Firstly, a basic control scheme is designed in the event of unknown inertial
parameters and external disturbance, where the Minimum-learning-parameter (MLP) algorithm is adopted
for approximating the unknown system dynamics. Though effective, the basic controller is not applicable in
the actuator fault scenarios. Considering this drawback, adaptive laws are designed in the second controller
to tackling the actuator faults. It is illustrated that the proposed controllers will endow tracking errors with
asymptotic stability and strong robustness to actuator faults. Finally, the effectiveness of the control strategies
is verified by numerical simulations.

INDEX TERMS Spacecraft rendezvous maneuver, fault-tolerant control, unknown inertial parameters,
minimum-learning-parameter.

I. INTRODUCTION
Recently, spacecraft rendezvous technology has elicited
widespread interest due to its distinctly important role in
variety of space missions, such as Mars exploration, space
object capturing, deep space exploration, etc. To success-
fully complete these missions, rendezvous maneuver con-
trol system must be designed with satisfactory performance.
However, it is still a challenging work to construct such
kind of controllers owing to the complexity of the exter-
nal disturbance, unknown system dynamics and unexpected
actuator faults. Despite of these difficulties, researchers
have developed numerous strategies for spacecraft track-
ing control, including adaptive control [1]–[5], backstepping
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control [11]–[13], output feedback control [25], [26] and
sliding mode control [4], [18], [19], [31]–[33].

In various space activities, the inertial parameters may
remain unknown to designers, which is mainly caused by the
fuel consumptions and onboard payload variations. However,
the inertial parameters are assumed to be exactly available
in the foregoing results. To overcome this drawback, fruitful
results has been reported recently [1]–[8]. In [1], an adap-
tive SMC method has been proposed for the liquid-filled
spacecraft in the presence of unknown inertia and external
disturbances. Taking the convergence rate into account, an
inertial parameter identification algorithm has been exploited
with globally finite-time stability being ensured [2]. Obvi-
ously, controllers in [1], [2] are only applicable for single
spacecraft control issues. For the multiple spacecraft coor-
dinated control problem, adaptive laws were designed for
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estimating unknown parameters in [3], where a dynamic
adjustment function was established to optimize the con-
trol gains. As a technological extension of [3], the pas-
sive fault-tolerant control strategy was applied to handle the
actuator failures for spacecraft formation flying [4]. It is
noteworthy that results in [1]–[6] cannot be directly uti-
lized for rendezvousmaneuver. Considering unknown inertial
parameters in rendezvous cases, a linear operator-based con-
trol architecture was designed via backstepping design [7].
Different from the method in [7], the external disturbance is
estimated online through disturbance observer [8].

It must be noted that the unknown inertia parameters were
handled via adaptive laws in [7], [8]. As an alternative for this
issue, neural network and fuzzy logic possess desirable abil-
ities in approximating uncertain nonlinear dynamics caused
by unknown parameters, leading to numerical applications
in aerospace engineering [9]–[15]. In [9], the convolutional
neural network has been applied to obtain the pose estimation
for spacecraft during rendezvous process. Considering the
adverse influence caused by the J2 perturbations, an adaptive
neural network controller was exploited for spacecraft ren-
dezvous, where the nonlinear dynamical models were estab-
lished [10]. In [11], the backstepping based neural network
control method was applied to deal with the uncertainties for
spacecraft rendezvous. Besides the neural networks, the fuzzy
logics can also identify the unknown system dynamics with
satisfactory performance [12]–[15]. When the neural net-
works were utilized for spacecraft rendezvous in [9]–[11],
the weight matrix must be updated online, thus causing much
computational complexity. Consequently, it is imperative to
design controllers for spacecraft rendezvous with less com-
putational complexity.

Besides the unknown inertia parameters and external dis-
turbances, the actuator fault is another aspect in space-
craft rendezvous deserving special attention. Owing to
the complexity of the space environment, actuator fail-
ures always occur during rendezvous maneuver, which
heavily threaten the safety of the spacecraft. To improve
the reliability of the control system, fault-tolerant control
strategies have been widely developed for spacecraft ren-
dezvous [16], [17], [21]–[25]. In [16], with the utilization of
a modified integral sliding mode control strategy, the actua-
tor failure could be properly compensated for limited-thrust
spacecraft rendezvous. The controller in [16] was designed
on the basis of passive fault-tolerant control strategy, while
an active controller was presented in [17], where the infor-
mation of the fault was identified online. Though effective,
controllers in [16] and [17] can only ensure asymptotic
stability for the closed-loop system. To derive controllers
with faster convergence rate for rendezvous maneuver,
fixed-time controllers were designed in [18]–[20]. When the
actuator and the unknown inertia parameters were consid-
ered simultaneously, an effective controller was designed
in [21], where the bondedness of signals could be ensured.
Reviewing the existing results for spacecraft rendezvous,
it can be found that the actuator failures, unknown inertia

parameters and computational complexity are rarely treated
simultaneously.

Inspired by the above observations, this paper will investi-
gate the robust control for spacecraft rendezvous with actua-
tor faults and unknown inertia parameters. The contribution
of this paper can be summarized as follows:

i) Compared with the existing literatures utilizing the neu-
ral networks [9]–[11], the MLP algorithm is adopted in the
controller design process, which will reduce the computa-
tional complexity to some extent.

ii) The chattering problem can be solved by the algorithm
proposed in this paper. Here, the hyperbolic tangent function
will be applied in the control law, where the adverse effect
caused by chattering can be avoided.

The rest of this paper is arranged as follows. The dynam-
ics model of the spacecraft and preliminaries are given in
section 2. The controller is developed in section 3. Simulation
results can be found in section 4. Section 5 concludes this
work.

II. SPACECRAFT MODEL AND PRELIMINARIES
A. RELATIVE ATTITUDE DYNAMIC MODEL
The control equations for the attitude motion of a rigid
spacecraft can be established by using the unit quaternion.
According to [22], the rotation matrix R ∈ SO(3) and
the unit quaternion Q =

[
q0, qTv

]T
∈ 4 with 4 ={

Q ∈ R× R3×3
∣∣q20 + qTv qv = 1

}
are applied in attitude for-

mulation. Furthermore,Qp andQt represent the attitude of the
pursuer and the target, respectively. Consequently, the relative
attitude between the pursuer and the target can be expressed
as follows:

Q̃ =
[
q̃0, q̃v

]T
= Q−1p � Qt (1)

According to the theory in [28], the relative attitude kinemat-
ics can be given as:

˙̃q0 = −
1
2
q̃Tv ω̃ (2)

˙̃qv =
1
2

(
q̃×v + q̃0I3

)
ω̃ (3)

whereωp is the angular velocity of the pursuer;ωt is the angu-
lar velocity of the target. Consequently, the relative angular
velocity ω̃ can be defined as ω̃ = ωp − R̃ωt . For any vector
a = [a1, a2, a3]T, it defines a× as Eq. (4). The rotation matrix
is defined as Eq. (5).

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (4)

R̃ , R (q̃) =
(
q̃20 − q̃

T
v q̃v

)
I3 + 2q̃vq̃

T
v − 2q̃0q̃×v (5)

Then, the corresponding attitude dynamics can be given as

J t ω̇t + ω×t J tωt = 0 (6)

Jω̇p + ω×p Jωp = τ + τ d (7)
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where J t ∈ R3×3 and J ∈ R3×3 are the inertia matri-
ces of the target and pursuer, respectively; τ ∈ R3 and
τ d ∈ R3 express the control torque and the external distur-
bance torque, respectively.

The derivative of ω̃ satisfies

˙̃ω = ω̇p −
˙̃Rωt − R̃ω̇t (8)

In terms of the definition ˙̃R = R̃ω̃
×
and Eqs. (6)-(8), it can

conclude that

J ˙̃ω = −Cr ω̃ − nr + τ + τ d (9)

where Cr = J
(
R̃ωt

)×
+

(
R̃ωt

)×
J−

(
J
(
ω̃ + R̃ωt

))×
and

nr =
(
R̃ωt

)×
JR̃ωt + JR̃ω̇t .

B. RELATIVE ORBIT DYNAMICS MODEL
The pursuer’s position rp and velocity νp can be expressed as
Eq. (10) and Eq. (11), respectively.

rp = r̃+ R̃ (rt + σ t) (10)

νp = ν̃ + R̃
(
νt + ω

×
t σ t

)
(11)

Here, rt and νt are the target’s position and velocity; r̃ and ν̃
are the relative position and velocity, respectively; σ t ∈ R3

is a constant vector denoting the desired rendezvous position.
The derivative of Eq. (10) can be expressed as follows:

ṙp = ˙̃r+
˙̃R (rt + σ t)+ R̃ṙ t (12)

Then, similar to the analysis in [27], it is obtained that:

ṙt = νt − ω×t rt (13)

ṙp = νp − ω×p rp (14)

Combining Eq. (12) and Eq. (14) yields

˙̃r+ ˙̃R (rt + σ t)+ R̃ṙt = νp − ω×p rp (15)

The derivative of r̃ will be given as:

˙̃r = ν̃ − C t r̃ (16)

where C t =

(
ω̃ + R̃ωt

)×
. Consequently, the derivative of

Eq. (11) can be obtained as

ν̇p = ˙̃ν +
˙̃R
(
νt + ω

×
t σ t

)
+ R̃

(
ν̇t + ω̇

×
t σ t

)
(17)

Position dynamics of the spacecraft can be written as Eqs.
(18)-(19) through the theory in [27].

mt ν̇t + mtω×t νt = 0 (18)

mpν̇p + mpω×p νp = f + f d (19)

Here, mt and mp are constants defining masses of the target
and the purser, respectively; f ∈ RN and f d ∈ R3 denote
the control force and external disturbance force. Combining
Eq. (17) and Eq. (19), it follows that [27]

mp
[
˙̃v+ ˙̃R

(
vt + ω×t σ t

)
+ R̃

(
v̇t + ω̇×t σ t

)]
+ mpω×p νp

= f + f d (20)

That is

mp ˙̃v = −mpC t ṽ− mpnt + f + f d (21)

where nt =
(
R̃ωt

)×
R̃vt + R̃v̇t + ω̃×R̃σ

×

t ωt − R̃σ
×

t ω̇t .
In this paper, it assumes that the actuator fault signals are

identified and satisfy:

τ = δrεr , f = δtεt (22)

δr ∈ RN and δt ∈ RN are diagonal matrices denoting the
faults coefficients. Combining Eq. (9), Eq. (21) and Eq. (22),
the relative dynamics can be established as follows:

J ˙̃ω = −Cr ω̃ − nr + δrεr + dr (23)

m ˙̃ν = −mC t ν̃ − mnt + δtεt + d t (24)

where dr = τ d and d t = f d .
To complete the controller design for spacecraft ren-

dezvous maneuver, the exact motion information of the tar-
get spacecraft is supposed to be available to the tracker
spacecraft. Then, this paper is dedicated to designing control
torques εr and εt for the dynamics expressed by Eq. (23) and
Eq. (24) such that the relative valuables r̃, ν̃, q̃v and ω̃ can be
stabilized even in the presence of actuator failures.

To proceed further, the following assumptions are given.
Assumption 1: In this paper, one can suppose that dr and d t

are unknown external disturbances, which satisfy ‖dr‖ ≤ Dr ,
‖d t‖ ≤ Dt . Here, Dr and Dt are positive constants.
Assumption 2: Classically, the target spacecraft is stable

during the mission of the rendezvous maneuver. In terms of
Eqs. (2), (3), (23) and (24), it infers that the equations ‖ωt‖ ≤
a1, ‖ω̇t‖ ≤ a2, ‖νt‖ ≤ a3 and ‖ν̃t‖ ≤ a4 are satisfied, where
a1, a2, a3, a4 are unknown constants.
Assumption 3: The inertia matrix J is an unknown but

bounded parameter, which satisfies λ1I3×3 ≤ J ≤ λ2I3×3
with λ1 and λ2 being positive constants.

C. FUNCTION APPROXIMATION BASED ON RADIAL BASIS
FUNCTION NEURAL NETWORKS (RBF NNs)
RBF NNs is an effective tool to accomplish the purpose
of function approximation. Therefore, this method has been
extensively used in controller design for nonlinear system
with unknown dynamics. In this paper, the unknown system
dynamics caused by the uncertain inertia matrix can be solved
by RBF NNs. To promote the process of controller design,
the following lemmas should be mentioned firstly.
Lemma 1 [29]: It must be mentioned that the ideal weight

vectorW can be applied to express the equivalent expression
of the stochastic continuous function f (x), that is

f (x) = WTh(x)+ ε (25)

where W = [W1,W2, . . . ,Wp]T is the weight vector and
x = [x1, x2, . . . , xm] is the input vector; p and m are the node
number of W and input number of v, respectively; ε is the
additional approximation error; h(x) = [h1(x), . . . , hm (x)]T
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is the Gaussian basis function vector which can be defined as:

hi(x) = exp

(
−
‖x− ci‖22

2b2i

)
, i = 1, . . . , p (26)

where ci ∈ Rm and bi ∈ R denote the center vector and the
Gaussian basis function vector of hi(x), respectively.

D. PRELIMINARIES
Notations: For a vector ξ = [ξ1, ξ2, . . . , ξn]T, tanh2(ξ ) =[
(tanh (ξ1))2 , (tanh (ξ2))2 , . . . , tanh (ξn)

]T
. The notation ‖·‖

defines the Euclidean norm of a vector or the induced norm
of a matrix.

For matrix W∗ =
[
W∗1,W

∗

2,W
∗

3

]T
,h = [h1,h2,h3]T,

the notationW∗ ◦ h can be defined as

W∗ ◦ h =

W∗T1 h1
W∗T2 h2
W∗T3 h3

 (27)

Lemma 2 [29]: For arbitrary real number x ∈ R, µ > 0
and κ = 0.2785, the relation Eq. (28) exists.

0 < |x| − x tanh(µx) ≤
κ

µ
(28)

III. CONTROLLER DESIGN
A. BASIC CONTROLLER DESIGN
In order to render the system Eq. (23) and Eq. (24) with
asymptotic stability, a nonlinear controller based on the SMC
theory is presented in this section. Firstly, it assumes that all
actuators work normally and the external disturbance pos-
sesses an upper bound. Then, the basic control algorithm is
applied to deal with the unknown dynamics and external dis-
turbances.More specifically, the RBFNNs is used to estimate
the unknown model information and the hyperbolic tangent
function is exploited to deal with the chattering problems.

Inertially, two sliding mode variables can be constructed
as:

s1 = ˙̃qv + k1q̃v (29)

s2 = ˙̃r+ k2r̃ (30)

where k1 and k2 are positive constants. In terms of Eqs. (3),
(9), (16), (20), (29) and (30), the derivatives of s1 and s2 can
be written as:

Jṡ1 = J ¨̃qv + k1J ˙̃qv

=
1
2
J
(
˙̃q
×

v +
˙̃q0I3

)
ω̃ +

1
2

(
q̃×v + q̃0I3

)
× (−Cr ω̃ − nr + εr + dr )+ k1J ˙̃qv (31)

mṡ2 = m
(
¨̃r+ k2 ˙̃r

)
= m ˙̃ν − mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r

= −mC t ν̃ − mnt + εt + d t
−mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r (32)

Then, the control laws for attitude and orbit tracking systems
can be designed as:

εr = −2
(
q̃×v + q̃0I3

)−1 [
β̂1
s1 ◦ (h1 ◦ h1)

2η1

+ k3tanh (s1)+ k4s1 + D̂r tanh
(
s1
µ1

)]
(33)

εt = −k5tanh (s2)− k6s2

− β̂2
s2 ◦ (h2 ◦ h2)

2η2
− D̂t tanh

(
s2
µ2

)
(34)

where ki > 0, i = 3, 4, 5, 6, D̂r , D̂t , β̂1 and β̂2 are estimations
of

_

Dr ,
_

Dt , β1 and β2, respectively. Here,
_

Dr and
_

Dt are the
upper bound of the lumped disturbance and be denoted in the
further discussion.

The derivative of D̂r , D̂t , β̂1 and β̂2 are denoted as
following

˙̂Dr = c1

(
‖s1‖ tanh

(
‖s1‖
3µ1

)
− c5D̂r

)
(35)

˙̂Dt = c2

(
‖s2‖ tanh

(
‖s2‖
3µ2

)
− c6D̂t

)
(36)

˙̂
β1 = c3

(
3∑
i=1

s21i ‖h1i‖
2

2η1
− c7β̂1

)
(37)

˙̂
β2 = c4

(
3∑
i=1

s22i ‖h2i‖
2

2η2
− c8β̂2

)
(38)

where ci > 0, i = 1, 2, . . . , 4, cj > 1, j = 5, 6, . . . , 8.
The definition of estimation errors can be expressed

as

D̃r =
_

Dr − D̂r (39)

D̃t =
_

Dt − D̂t (40)

β̃1 = β1 − β̂1 (41)

β̃2 = β2 − β̂2 (42)

Remark 1: In Eqs. (31)-(32), it considers that all actuators
work normally. Therefore, the faults coefficients δr and δt in
relative dynamics can be expressed as δr = I3 and δt = I3,
respectively.
Remark 2: Parameters β1 and β2 are the induced norms of

the weight matrix, which can effectively reduce the compu-
tational complexity.
Theorem 1: Considering the dynamics expressed in

Eqs. (2), (3), (23) and (24) under Assumptions 1-3, if the
inertia parameters and the mass of the pursuer spacecraft
are unknown and the actuators work normally, asymptotic
stability of the tracking errors q̃v and r̃will be achieved when
the control laws are developed as Eqs. (35)-(38). Addition-
ally, the estimation errors D̃r , D̃t , β̃1 and β̃2 are uniformly
ultimately bounded.

Proof: The Lyapunov function to clarify the stability of
the system is chosen as follows

V1 =
1
2
sT1Js1 +

1
2
sT2ms2 +

1
2c1

D̃2
r
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+
1
2c2

D̃2
t +

1
2c3

β̃21 +
1
2c4

β̃22 (43)

Take the derivative of Eq. (43) and substituting Eqs. (31)-(34)
yield

V̇1 = sT1Jṡ1 + s
T
2mṡ2 +

1
c1
D̃r
˙̃Dr

+
1
c2
D̃t
˙̃Dt +

1
c3
β̃1
˙̃
β1 +

1
c4
β̃2
˙̃
β2

= sT1

(
1
2
J
(
˙̃q
×

v +
˙̃q0I3

)
ω̃ + k1J ˙̃qv −

1
2

(
q̃×v + q̃0I3

)
× (Cr ω̃ + nr ))+

1
2
sT1
(
q̃×v + q̃0I3

)
dr

+
1
2
sT1
(
q̃×v + q̃0I3

)
εr + sT2 (−mC t ν̃ − mnt

−mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r
)
+ sT2d t + s

T
2εt

−
1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt −

1
c3
β̃1
˙̂
β1 −

1
c4
β̃2
˙̂
β2 (44)

Then, it introduces notations H1 and H2 as

H1 =
1
2
J
(
˙̃q
×

v +
˙̃q0I3

)
ω̃ + k1J ˙̃qv

−
1
2

(
q̃×v + q̃0I3

)
(Cr ω̃ + nr ) (45)

H2 = −mC t ν̃ − mnt − mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r (46)

By the utilization of MLP algorithm,H1 andH2 is expressed
as

H1 = W∗1 ◦ h1 + ε1 (47)

H2 = W∗2 ◦ h2 + ε2 (48)

where W∗ =
[
W∗1,W

∗

2,W
∗

3

]T is the weight matrix; h =
[h1,h2,h3]T expresses the radial basis function vector; ε1 and
ε2 are the approximation errors satisfying εi ≤ εd , (i = 1, 2)
with εd > 0.

Substituting Eqs. (45)-(48) into Eq. (44), the following
inequality can be derived:

V̇1 = sT1H1 +
1
2
sT1
(
q̃×v + q̃0I3

)
dr + sT2H2 + sT2d t

+
1
2
sT1
(
q̃×v + q̃0I3

)
εr + sT2εt

−
1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt −

1
c3
β̃1
˙̂
β1 −

1
c4
β̃2
˙̂
β2

≤ sT1W
∗

1 ◦ h1 + ‖s1‖
(
ε1 +

1
2
Dr

)
− k3 ‖s1‖

− k4 ‖s1‖2 − sT1 D̂r tanh
(
s1
µ1

)
− β̂1sT1

s1 ◦ (h1 ◦ h1)
2η1

+ sT2W
∗

2 ◦ h2 + ‖s2‖ (ε2 + Dt)− k5 ‖s2‖

− k6 ‖s2‖2 − sT2 D̂t tanh
(
s2
µ2

)
− β̂2sT2

s2 ◦ (h2 ◦ h2)
2η2

−
1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt −

1
c3
β̃1
˙̂
β1 −

1
c4
β̃2
˙̂
β2

+ 3κ (k3 + k5) (49)

Here, terms sT1W
∗

1 ◦ h1 and sT2W
∗

2 ◦ h2 can be expressed as

Eq. (50) and Eq. (51), respectively. Moreover, notations
_

Dr
and

_

Dr are defined in Eq. (52) and Eq. (53), respectively.

sT1W
∗

1 ◦ h1 = [s11, s12, s13]


W∗T11 h11

W∗T12 h12

W∗T13 h13

 = 3∑
i=1

s1iW∗T1i h1i

(50)

sT2W
∗

2 ◦ h2 = [s21, s22, s23]


W∗T21 h21

W∗T22 h22

W∗T23 h23

 = 3∑
i=1

s2iW∗T2i h2i

(51)
_

Dr =
(
ε1 +

1
2
Dr

)
(52)

_

Dt = (ε2 + Dt) (53)

In view of Eqs. (50) and (51), Eq. (49) is further derived as:

V̇1 ≤
3∑
i=1

β1s21i ‖h1i‖
2

2η1
+

_

Dr ‖s1‖ − k3 ‖s1‖ − k4 ‖s1‖2

− D̂r ‖s1‖ −
3∑
i=1

β̂1s21i ‖h1i‖
2

2η1
+ 3µ1D̂rκ

+

3∑
i=1

β2s22i ‖h2i‖
2

2η2
+

_

Dt ‖s2‖ − k5 ‖s2‖ − k6 ‖s2‖2

− D̂t ‖s2‖ −
3∑
i=1

β̂2s22i ‖h2i‖
2

2η2
+ 3µ2D̂tκ +

3η1
2

+
3η2
2
−

1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt

−
1
c3
β̃1
˙̂
β1 −

1
c4
β̃2
˙̂
β2 + 3κ (k3 + k5) (54)

where η1 > 0, η2 > 0 are the design parameters, βi =

max
1≤j≤3

{∥∥∥W∗ij∥∥∥2} (i = 1, 2). Substituting Eqs. (35)-(38) into

Eq. (54) yields:

V̇1 ≤ −k4 ‖s1‖2 − k6 ‖s2‖2 + c5D̂r D̃r + c6D̂t D̃t

+ c7β̂1β̃1 + c8β̂2β̃2 + 3κ
(
k3 + k5 + µ1

_

Dr + µ2
_

Dt
)

+
3
2
(η1 + η2)

≤ −k4 ‖s1‖2 − k6 ‖s2‖2 −
(
Dr − D̂r

)2
−

(
Dt − D̂t

)2
−

(
β1 − β̂1

)2
−

(
β2 − β̂2

)2
+11

≤ −
2k4

λmax (J)

(
1
2
sT1Js1

)
−

2k6
m

(
1
2
sT2ms2

)
− 2c1

(
1
2c1

D̃2
r

)
− 2c2

(
1
2c2

D̃2
)

− 2c3

(
1
2c3

β̃21

)
− 2c4

(
1
2c4

β̃22

)
+11

= −ρ1V1 +11 (55)
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where ρ1 = min
{

2k4
λmax(J)

,
2k6
m , 2c1, 2c2, 2c3, 2c4

}
, 11 =

3κ
(
k3 + k5 + µ1

_

Dr + µ2
_

Dt
)
+

3
2 (η1 + η2) +

c25D
2
r

4(c5−1)
+

c26D
2
t

4(c6−1)
+

c27β
2
1

4(c7−1)
+

c28β
2
2

4(c8−1)
.

On the basis of Eq. (55), it proves that s1, s2, D̃r , D̃t ,
β̃1 and β̃2 are uniformly ultimately bounded. Additionally,
the sliding mode valuables s1 and s2 will converge to two
small regions 21 and 22 as time goes infinite. When the
relations ‖s1‖ ≤ 21 and ‖s2‖ ≤ 22 are satisfied, one has

˙̃qvi + k1q̃vi = ϑvi, |ϑvi| ≤ 21 (56)
˙̃ri + k2r̃i = ϑri, ϑri ≤ 22 (57)

Furthermore, the following Lyapunov Function is constructed
as

V2 =
1
2
q̃2vi +

1
2
r2i (58)

In terms of Eqs. (56)-(57), the derivative of V2 satisfies

V̇2 = q̃vi ˙̃qvi + riṙi
≤ q̃vi (21 − k1q̃vi)+ ri (22 − k2r̃i)

= −

(
k1q̃2vi + k1r̃

2
i

)
+21q̃vi +22ri

≤ −
k1
2
q̃2vi −

k2
2
r̃2i +

22
1 +2

2
2

2

≤ −min {k1, k2}V2 +
1
2

(
22

1

k1
+
22

2

k2

)
(59)

In addition, the asymptotic stability of tracking errors q̃v and
r̃ is proved.

Thus, Theorem 1 has been proven.

B. FAULT TOLERANT ATTITUDE CONTROLLER DESIGN
In the basic controller, the actuator failure is not taken into
consideration. As a matter of fact, the unexpected and com-
plex failures will occur to the actuators frequently in actual
space activities, which will cause severe performance degra-
dation. Therefore, a fault-tolerant control scheme is proposed
in this section to improve the system reliability.

Considering the partial loss of actuator effectiveness fail-
ures, the sliding mode valuables s1 and s2 satisfy:

Jṡ1 = J ¨̃qv + k1J ˙̃qv

=
1
2
J
(
˙̃q
×

v +
˙̃q0I3

)
ω̃ +

1
2

(
q̃×v + q̃0I3

)
× (−Cr ω̃ − nr + δrεr + dr )+ k1J ˙̃qv (60)

mṡ2 = m
(
¨̃r+ k2 ˙̃r

)
= m ˙̃ν − mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r

= −mC t ν̃ − mnt + δtεt + d t
−mC t ˙̃r− mĊ t r̃+ mk2 ˙̃r (61)

Control laws for attitude and orbit tracking systems can be
developed as:

εr = −2
(
q̃×v + q̃0I3

)−1
(εr1 + εr2) (62)

εt = − (εt1 + εt2) (63)

where

εr1 = β̂1
s1 ◦ (h1 ◦ h1)

2η1
+ k3tanh (s1)

+ k4s1 + D̂r tanh
(
s1
µ1

)
(64)

εr2 = γ̂r ‖εr1‖ tanh
(
‖εr1‖ s1
µ3

)
(65)

εt1 = k5tanh (s2)+ k6s2

+ β̂2
s2 ◦ (h2 ◦ h2)

2η2
+ D̂t tanh

(
s2
µ2

)
(66)

εt2 = γ̂t ‖εt1‖ tanh
(
‖εt1‖ s2
µ4

)
(67)

with ki > 0, i = 3, 4, 5, 6.
The definition of γ̂r and γ̂r are given as:

˙̂γr = c9

(
‖εr1‖ ‖s1‖ tanh

(
‖εr1‖ ‖s1‖

3µ3

)
− k7γ̂r

)
(68)

˙̂γt = c10

(
‖εt1‖ ‖s2‖ tanh

(
‖εt1‖ ‖s2‖

3µ4

)
− k8γ̂t

)
(69)

where c9, c10, k7, k8 are constants satisfying c9 > 0, c10 > 0,
k7 > 1, k8 > 1, γr =

1−θr
θr

and γt =
1−θt
θt

.
Definitions of estimation errors are expressed as

γ̃r = γr − γ̂r (70)

γ̃t = γt − γ̂t (71)

Remark 3: Considering the partial loss of actuator effec-
tiveness failures, the faults coefficients δr and δt in relative
dynamics can be expressed as δr = diag {δr1, δr2, δr3} and
δt = diag {δt1, δt2, δt3} with 0 < θr < δri ≤ 1, 0 < θt <

δti ≤ 1, i = 1, 2, 3.
Theorem 2: Considering the dynamics expressed in

Eqs. (2), (3), (23) and (24) under Assumptions 1-3, if the
inertia parameters and the mass of the pursuer spacecraft
are unknown, the asymptotic stability of tracking errors q̃v
and r̃ will be obtained when the control laws are designed
as Eqs. (35)-(38) and (68)-(69) even in the presence of
partial loss of actuator effectiveness failures. Additionally,
estimation errors D̃r , D̃t , β̃1 and β̃2 are uniformly ultimately
bounded.

Proof: In order to clarify the stability of the entire sys-
tem, the Lyapunov Function can be designed as:

V3 =
1
2
sT1Js1 +

1
2
sT2ms2 +

1
2c1

D̃2
r +

1
2c2

D̃2
t

+
1
2c3

β̃21 +
1
2c4

β̃22 +
θr

2c9
γ̃ 2
r +

θt

2c10
γ̃ 2
t (72)

Upon utilizing Eq. (60) and Eq. (61), the derivative of V3 can
be obtained as follows

V̇3 = sT1Jṡ1 + s
T
2mṡ2 +

1
c1
D̃r
˙̃Dr +

1
c2
D̃t
˙̃Dt

+
1
c3
β̃1
˙̃
β1 +

1
c4
β̃2
˙̃
β2 +

θr

c9
γ̃r ˙̃γr +

θt

c10
γ̃t ˙̃γt
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= sT1

(
1
2
J
(
˙̃q
×

v +
˙̃q0I3

)
ω̃ +

1
2

(
q̃×v + q̃0I3

)
× (−Cr ω̃ − nr + δrεr + dr )+ k1J ˙̃qv
+ sT2

(
−mC t ν̃ − mnt + δtεt + d t − mC t ˙̃r

−mĊ t r̃+ mk2 ˙̃r
)
+

1
c1
D̃r
˙̃Dr +

1
c2
D̃t
˙̃Dt

+
1
c3
β̃1
˙̃
β1 +

1
c4
β̃2
˙̃
β2 +

θr

c9
γ̃r ˙̃γr +

θt

c10
γ̃t ˙̃γt (73)

Combining Eqs. (45)-(48), it follows that

V̇3 ≤ sT1W
∗

1 ◦ h1 + ‖s1‖
_

Dr + ‖s1‖ (1− θr ) ‖εr1‖

− θr γ̂r ‖εr1‖ sT1 tanh
(
‖εr1‖ s1
µ3

)
− k4 ‖s1‖2

− k3tanh (s1)+ sT2W
∗

2 ◦ h2 + ‖s2‖
_

Dt

+‖s2‖ (1− θt) ‖εt1‖ − θt γ̂t ‖εt1‖ sT2 tanh
(
‖εt1‖ s2
µ4

)
− k6 ‖s2‖2 − k5tanh (s2)− D̂rsT1 tanh

(
s1
µ1

)
−

3∑
i=1

β̂1s21i ‖h1i‖
2

2η1
− D̂tsT2 tanh

(
s2
µ2

)

−

3∑
i=1

β̂2s22i ‖h2i‖
2

2η2
−

1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt −

1
c3
β̃1
˙̂
β1

−
1
c4
β̃2
˙̂
β2 −

θr

c9
γ̃r ˙̂γr −

θt

c10
γ̃t ˙̂γt (74)

Substituting Eqs. (50), (51) into Eq. (74), the inequality can
be further written as follows:

V̇3

≤

3∑
i=1

β1s21i ‖h1i‖
2

2η1
+

3η1
2
+

_

Dr ‖s1‖

+‖s1‖ (1− θr ) ‖εr1‖ − θr γ̂r ‖εr1‖ sT1 tanh
(
‖εr1‖ s1
µ3

)
− k3 ‖s1‖ − k4 ‖s1‖2 − D̂r ‖s1‖ + 3µ1D̂rκ

−

3∑
i=1

β̂1s21i ‖h1i‖
2

2η1
+

3∑
i=1

β2s22i ‖h2i‖
2

2η2
+

3η2
2
+

_

Dt ‖s2‖

+‖s2‖ (1− θt) ‖εt1‖ − θt γ̂t ‖εt1‖ sT2 tanh
(
‖εt1‖ s2
µ4

)
− k5 ‖s2‖ − k6 ‖s2‖2 − D̂t ‖s2‖ + 3µ2D̂tκ

−

3∑
i=1

β̂2s22i ‖h2i‖
2

2η2
−

1
c1
D̃r
˙̂Dr −

1
c2
D̃t
˙̂Dt −

1
c3
β̃1
˙̂
β1

−
1
c4
β̃2
˙̂
β2 −

θr

c9
γ̃r ˙̂γr −

θt

c10
γ̃t ˙̂γt + 3κ (k3 + k5) (75)

In terms of the control laws expressed as Eqs. (35)-(38) and
(68)-(69), one has

V̇3 ≤ −k4 ‖s1‖2 − k6 ‖s2‖2 + c5D̂r D̃r + c6D̂t D̃t
+ c7β̂1β̃1 + c8β̂2β̃2 + k7θr γ̂r γ̃r + k8θt γ̂t γ̃t

+ 3D̃rµ1κ + 3D̃tµ2κ + ‖s1‖ (1− θr ) ‖εr1‖

− θr γ̂r ‖εr1‖ ‖s1‖ − θr γ̃r ‖εr1‖ ‖s1‖ + 3µ3κθr γ̃r

+ ‖s2‖ (1− θt) ‖εt1‖ − θt γ̂t ‖εt1‖ ‖s2‖

− θt γ̃t ‖εt1‖ ‖s2‖ + 3µ4κθt γ̃t + 3κ
(
k3 + k5 + µ1D̂r

+µ2D̂t + θr γ̂rµ3 + θt γ̂tµ4

)
+

3η1
2
+

3η2
2

= −k4 ‖s1‖2 − k6 ‖s2‖2 −
(
Dr − D̂r

)2
−

(
Dt − D̂t

)2
−

(
β1 − β̂1

)2
−

(
β2 − β̂2

)2
− θr

(
γr − γ̂r

)2
− θt

(
γt − γ̂t

)2
+13 (76)

where 13 = 3κ
(
k3 + k5 + µ1

_

Dr + µ2
_

Dt + θrγrµ3 +

θtγtµ4
)
+

3η1
2 +

3η2
2 +

c25D
2
r

4(c5−1)
+

c26D
2
t

4(c6−1)
+

c27β
2
1

4(c7−1)
+

c28β
2
2

4(c8−1)
+

θr k27γ
2
r

4(k7−1)
+

θtk28γ
2
t

4(k8−1)
.

The inequality can be further derived as follows

V̇3 ≤ −
2k4

λmax (J)

(
1
2
sT1Js1

)
−

2k6
m

(
1
2
sT2ms2

)
− 2c1

(
1
2c1

D̃2
)
− 2c2

(
1
2c2

D̃2
)

− 2c3

(
1
2c3

β̃21

)
− 2c4

(
1
2c4

β̃22

)
− 2c9

(
θr

2c9
γ̃ 2
r

)
− 2c10

(
θt

2c10
γ̃ 2
t

)
+13

≤ −ρ3V3 +13 (77)

where ρ3 = min
{

2k4
λmax(J)

,
2k6
m , 2c1, 2c2, 2c3, 2c4, 2c9, 2c10

}
.

Basing on Eq. (77), it proves that s1, s2, D̃r , D̃t , β̃1, β̃2, γ̃r ,
γ̃t will coverage to a bounded region of 13 with asymptotic
stability. Similar to the analysis in Theorem 1, we can con-
clude that ‖s1‖ ≤ 23 and ‖s2‖ ≤ 24 will be achieved and
the asymptotic stability of the tracking errors q̃v and r̃ can
also be proved. Here, 23 and 24 are positive constants.
Remark 4: There are many control parameters in the

proposed controllers. The selection of these parameters is
determined by the control performance. To be more specific,
parameters k3, k4, k5 and k6 are utilized to ensure finite-time
stability and disturbance rejection capability. By increasing
these four terms, convergence time of the close systemwill be
reduced and control accuracy can be improved considerably.
Estimation errors mainly depend on the parameters ci, i =
1, 2, . . . , 10. In a word, the control performance is decided
by these control parameters and in turn, control performance
gives the principle of the selection of these parameters.
Remark 5: State constraints are essential in consideration

of the system safety, especially for the rendezvous missions
of spacecraft. In [30], an effective control method is proposed
to deal with state constraints for a class of underactuated
systems. This constrained method can be applied for many
practical systems. However, it cannot be utilized in this paper
directly, since sliding mode method is adopted to develop
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TABLE 1. Orbit and spacecraft information [22].

FIGURE 1. Relative angles.

FIGURE 2. Relative angular velocities.

controller here. It is our future work to extend the methods
in [30] for spacecraft rendezvous missions.

IV. SPACECRAFT MODEL AND PRELIMINARIES
This section completes numerical simulations to validate the
effectiveness and advantage of the developed control strate-
gies. In the simulation scenarios, a pursuer spacecraft is
forced to rendezvous with the target spacecraft in an elliptical
orbit. Detailed information about the orbit and these two
spacecrafts is presented in the following table.

FIGURE 3. Relative position.

FIGURE 4. Relative velocity.

FIGURE 5. The estimated parameter D̂r .

The target spacecraft is supposed to service with the fol-
lowing position:

rt = [rt , 0, 0]T , rt =
a
(
1− e2

)
1+ e cos v
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FIGURE 6. The estimated parameter D̂t .

FIGURE 7. The estimated parameter β̂r .

where a = RE +
rpa
1−e denotes the semimajor axis. The

parameter v is expressed as follows:

v̇ =
n (1+ ecosv)2(

1− e2
) 3
2

, v̈ =
2n2e (1+ ecosv)3 sinv(

1− e2
)3

where n =
√
u/a3. For the pursuer spacecraft, its ren-

dezvous position is expressed as δt = [0, 5, 0]T in
the target’s body coordinate frame. The angular veloc-
ity of the target and the external disturbances are given
as:

τ d = 0.02×
(
1+cos

( π
150

t
)
+sin

( π
150

t
))
[1; 1; 1]TN ·m

f d = 0.05×
(
1+cos

( π
150

t
)
+sin

( π
150

t
))
[1; 1; 1]TN ·m

The initial states is set as: the initial Euler angle error is
2(0) = [19.9984− 9.9987 15.0050]T deg, ω̃ = [000]T,
r̃ (0) = [2,2,−2]T, ṽ (0) = [000]T.

A. SIMULATION RESULTS OF THE BASIC CONTROLLER
For the first controller, we take the following parameters:
k1 = 2, k2 = 1, k3 = 0.05, k4 = 4, k5 = 0.1, k6 = 2,
η1 = 0.5, η2 = 0.5, µ1 = 1, µ2 = 1, c1 = 0.005,

FIGURE 8. The estimated parameter β̂t .

FIGURE 9. The control torque τ .

FIGURE 10. The control torque f .

c2 = 0.005, c3 = 0.01, c4 = 0.001, c5 = 1, c6 =
1, c7 = 0.1, c8 = 0.1. Then, the numerical simulation
results of the first controller are presented as Figs. 1-10.
Fig. 1∼Fig. 4 are the results of the relative angular, rela-
tive velocity, relative position, and relative velocity, respec-
tively, which reveal that the target spacecraft could be tracked
by the pursuer spacecraft within 20S. It is noteworthy that
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FIGURE 11. Relative angles.

FIGURE 12. Relative angular velocities.

FIGURE 13. Relative position.

i represents the ith channel of the spacecraft. Figs. 5∼8 are the
corresponding estimations of unknown parameters. Observ-
ing these results, one can find that the estimated parameters
are bounded. Figs. 9∼10 are the control torques of the pro-
posed controllers.

FIGURE 14. Relative velocity.

FIGURE 15. The estimated parameter D̂r .

FIGURE 16. The estimated parameter D̂t .

B. SIMULATION RESULTS OF THE FAULT-TOLERANT
CONTROLLER
In the case of actuator fault, the fault coefficients are given

as: δri =
{
1 if t < 60
0.6 else

, δti =

{
1 if t < 60
0.6 else

, i = 1, 2, 3.
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FIGURE 17. The estimated parameter β̂r .

FIGURE 18. The estimated parameter β̂t .

FIGURE 19. The estimated parameter γ̂r .

The control parameters are given as: k1 = 2, k2 = 1, k3 =
0.05, k4 = 4, k5 = 0.1, k6 = 2, k7 = 0.1, k8 = 0.1, η1 =
0.5, η2 = 0.5, µ1 = 1, µ2 = 1, c1 = 0.005, c2 = 0.005,
c3 = 0.01, c4 = 0.001, c5 = 1, c6 = 1, c7 = 0.1, c8 =
0.1, c9 = 0.1, c10 = 0.001. The validity has been shown by
the corresponding simulation results in Figs. 11∼22, in which
the tracking errors are stabilized within 20s and the estimated

FIGURE 20. The estimated parameter γ̂t .

FIGURE 21. The control torque τ .

FIGURE 22. The control torque f .

parameters are bounded. Observing the presented results, one
can conclude that the target spacecraft can still be tracked by
the pursuer spacecraft even in the presence of the actuator
faults.

To better show the superiority of this paper, the second
controller in [34] is adopted under the same actuator faults
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FIGURE 23. Relative attitude under the second controller in [34].

FIGURE 24. Relative position under the second controller in [34].

and external disturbances as that in case B. Figs. 23-24 are
the simulation results of this controller. Obviously, actuator
faults have little effect on the relative attitude. However,
relative positions are significantly affected by this kind of
faults. If fault-tolerant design is not taken into consideration,
the relative position will not converge to zero, which implies
that the rendezvous maneuver will fail. Consequently, actu-
ator faults must be properly dealt with during rendezvous
maneuver missions.

V. CONCLUSION
This paper presents two novel robust control strategies for
spacecraft rendezvous maneuver based on SMC and Neuro
Networks. Upon using the MLP algorithm, the uncertain
system dynamics can be estimated with low complexity. The
fault-tolerant control scheme could improve the reliability of
the spacecraft when the tracking mission is performed during
the rendezvous maneuver. Hyperbolic tangent function is

introduced into the control law to avoid the chattering prob-
lem. Finally, numerical simulation results show that these two
methods can not only accomplish the rendezvous task, but
also has a higher control accuracy.
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