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ABSTRACT Molecular communication is a novel communication paradigm, which has prospective potential
applications in many fields. Obtaining knowledge of the diffusive molecular channel is important for the
design of the molecular communication systems as well as proper working of many application systems. In
this paper, we focus on a kind of molecular communication system with flow drift, which is modeled as an
inverse Gaussian distributed channel. The maximum likelihood estimation method is applied to obtain the
estimator of parameters such as medium velocity, propagation distance, and diffusion coefficient. This paper
also derives the closed-form expressions of the Cramer-Rao lower bounds. The performances of our channel
parameter estimators are validated in MATLAB and the results confirm its effectiveness.

INDEX TERMS Molecular communication, drift, channel parameter estimation, maximum likelihood
estimation, Cramer Rao lower bound.

I. INTRODUCTION
Molecular communication is envisioned to realize informa-
tion transmission between nanomachines at the micro- to
nano- scale [2], [3]. In molecular communication, the infor-
mation can be modulated by the properties of molecules. The
transmitter nanomachine releases these signal molecules and
they spread in the diffusive medium before finally reach-
ing the receiver. The receiver recovers the original informa-
tion based on the received or sensed signal molecules [4].
Molecular communication can achieve a variety of promising
applications, such as the drug delivery system in the field
of biomedicine [5], advanced manufacturing, environmental
monitoring [6], and complex heterogeneous networks [7].

Molecular communication can be simply divided into
free diffusion and flow assisted diffusion: 1) Free diffusion.
In the free diffusion channel, information molecules move
randomly driven by Brownian motion. From a macroscopic
perspective, the molecules propagate from regions of high
concentration to regions of low concentration [8]–[10]. 2)
Flow Assisted diffusion. The molecule propagation is based
on flow drift [11]–[14]. The information-bearing molecules

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

propagate by Brownian motion to the receiver nanomachine
at the flow velocity in the fluid medium.

Studies about channel parameter estimation for molec-
ular communication systems have been investigated in
the literature [15]–[21]. In terms of distance estimation,
there are usually two categories of schemes: A) one-way
message exchange. In the case of implementing this infor-
mation exchange method, the receiver nanomachine esti-
mates the distance by observing and analyzing the releasing
molecules. B) two-way message exchange. While in this
scheme, the transmitter estimates the distance using the feed-
back which is sent by the receiver nanomachine. In [15], the
round-trip time was obtained by applying the two-way mes-
sage exchange scheme. Furthermore, the propagation delay
was determined, which indicates the transmission time of
information molecules takes to the destination node. When
the concentration modulation is implemented, the relation-
ship between the propagation delay and the distance can be
determined. So the distance can be estimated by calculating
the transmission time. In [16] for example, the receiver deter-
mines the propagation time by detecting the concentration
peak and calculates the distance in such modulation mode.
In [17], the authors used a similar system model as in [16],
whereas the distance between the transmitter and the receiver
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is calculated by using the peak molecular concentration at
the receiver side. Further, as the dominant factor of ISI at
the receiver, the residual tail of the concentration can also be
utilized as another method for distance estimation. In other
words, one can analyze the time interval between two con-
secutive peaks received by the receiver to estimate the dis-
tance. Neither of these distance estimation methods requires
the synchronization between the transmitting and receiving
nodes. In [18], the maximum likelihood estimation method
was used to determine channel parameters. In fact, more
than one channel parameters are jointly estimated in [18] at
the receiver side, such as the releasing time of molecules,
the number of released molecules, the diffusion coefficient,
etc.. In [21], the blood viscosity is estimated as a channel
parameter usingmolecular communication system. It is based
on the release of a burst of small molecules in the blood
stream, and subsequent measurement of their downstream
absorption by the vessel wall.

In this paper we focus on the estimation of the channel
parameter in a flow assisted channel. The inverse Gaussian
channel is a channel with positive drift in which an individual
molecule moves by Brownian motion. The time duration for a
single molecule by Brownian motion to reach a fixed positive
level in a positive drift can be considered as the inverse Gaus-
sian random variable. Blood vessels can be approximated
as examples of inverse Gaussian channels [11]–[14]. In this
paper, the channel parameters we focused on include the
distance from the transmitter nanomachines to the receiver
nanomachines, the diffusion coefficient of the medium, and
the fluid flow velocity. Obtaining knowledge of these param-
eters is important for the design of molecular communication
systems as well as practical applications in the nano biomed-
ical field. The main contributions of this paper are as follows:

1) Based on the inverse Gaussian molecular communi-
cation channel, the parameters including diffusion coeffi-
cient, propagation distance, and drift velocity are estimated
by different maximum likelihood estimation methods. The
closed-form estimators are derived.

2) The special case that all the channel parameters are
unknown is analyzed and discussed.

3) The Cramer-Rao lower bound is derived for evaluation.
The organization of the rest of the paper is as follows.

In Section II, the systemmodel is presented. In section III, the
maximum likelihood estimation for the channel parameters of
the inverse Gaussian channel is described in detail. The sim-
ulation results are described in Section V. Finally, Section VI
draws the conclusion.

II. SYSTEM MODEL
A. THE PHYSICAL DESCRIPTION
Molecular communication is a bio-inspired method for estab-
lishing communication from a transmitter nanomachine to
a receiver nanomachine over fluidic environments using
molecules as the information carriers (Fig. 1). The entire
communication process can be divided into three steps: a
transmission process, a propagation process, and a receiving

FIGURE 1. Flow assisted diffusive communication model.

process. The one-way message exchange is a propagation
mechanism that information molecules diffuse in a single
direction from the transmitter nanomachine to the receiver
nanomachine in a molecular communication system. In a
one-waymessage exchange, there are five processes:modula-
tion, transmission, propagation, reception, and demodulation.

Modulation is the process of conveying message or
information based on biological molecules. The transmitter
nanomachine translates information source into molecules
that the receiver nanomachine can detect. Information can be
modulated based on the type of molecules [17], the structure
of molecules [22], the concentration of molecules [23], the
concentration rate of molecules [24], the releasing time of
molecules [25] and the sequence of molecules. In this paper,
we assume that each molecule can carry multiple bits, such
as n-ary MoSK [26].

Transmission is the process that a transmitter nanomachine
releases information molecules into the environment. When
the transmitter nanomachine senses an information source,
it opens a gate that allows the information molecules to diffu-
sive into the channel. It sends a specific number of messenger
molecules at the beginning of a symbol and waits for the next
release of molecules until the inter-symbol interference (ISI)
becomes less significant.

Propagation is a process that information-bearing parti-
cles move from the transmitter nanomachine to the receiver
nanomachine in a diffusive channel. These messenger
molecules randomly move following the Brownian motion
random process without chemical reactions including gen-
eration and degradation spontaneously, and it has no influ-
ence on other information molecules other than elastic
collision [27].

Reception is the process that receiver nodes capture infor-
mation particles moving in a diffusive channel. One scheme
for capturing them is to use the theory of ligand-receptor
binding [34]. Another option to capture them is to have them
enter into the receiver through channels (e.g., gap-junction
channels) without using a receptor.

Demodulation is the process of decoding information
molecules. Once the receiver nanomachine captures these
molecules, it can decode the received molecules and then
attain the transmitted information. Demodulation at the
receiver node may cause multiple consequences. For exam-
ple, they may produce new molecules at the receiver or

VOLUME 8, 2020 142705



Y. Chen et al.: Parameter Estimation of Diffusive Molecular Communication With Drift

produce another signal by sending other molecules. Here we
do not discuss too much.

As the complexity of the molecular communication sys-
tem including layered architecture [28], we just consider a
point-to-point molecular communication system that the fluid
medium is homogeneous [9], all the molecules are consid-
ered as mono-atomic with negligible spatial dimension [29].
No matter which process they are in among the transmission,
propagation or reception, they have the same characteristics
with regard to their shapes and sides. They have a very low
speed andmove based on Fick’s law [30]. The transmitter and
the receiver are assumed to be synchronized [31], [32].

B. THE RANDOM DELAY MODEL
In one-way message exchange, there exist many unknown
parameters including the medium velocity, the propagation
distance and the diffusion coefficient we mentioned earlier.
The propagation delay can be caused by Brownian motion
since the propagation of molecules is affected by Brownian
motion at a medium velocity. In [12], an inverse Gaussian
distribution has been used to describe the propagation delay
in the diffusive channel and the probability density function
(PDF) f (t;µ, λ) is

f (t;µ, λ) =
(

λ

2π t3

) 1
2

exp

(
−λ(t − µ)2

2µ2t

)
, (1)

where λ denotes the shape parameter, t denotes the propa-
gation time between the transmitter and the receiver for the
molecule, µ represents the mean of the propagation time.
Reference [13] shows that the parameter µ and λ can be

represented by communication channel parameters. Accord-
ingly, the expressions of µ and λ are written as

µ =
d
v
, (2)

λ =
d2

2D
, (3)

where d is the propagation distance, v represents the medium
velocity and D is the diffusion coefficient.

Whether diffusion or advection is dominant in themolecule
propagation depends on the relationship of µ and λ. Similar
to the discussions in [33] and [34], in this paper it can be
considered that if µ is smaller than λ, then advection is dom-
inant in the propagation. An extreme case can be that it is an
advection only transport if µ is much smaller than λ. On the
contrary, if µ is larger than λ, then diffusion is dominant in
the propagation. An extreme case is when v approaches zero,
i.e., µ = ∞, it is a diffusion only scenario.
Channel parameter estimation usually refers to estimating

distance d , the diffusion coefficient D and the velocity v.
In our scenario, the transmitter sends N messages totally.
Once a message is going to be sent, the transmitter will record
the current transmission time instant T1,i, and then embed
this value into the message to be sent. These information
molecules traverse across the aqueous channel to the receiver
nanomachines. On reaching the receiver, the arriving time T2,i

is recorded. After N information message exchanges, a set
of samples

{
T1,i,T2,i

} N
i=1 can be recorded, from which the

channel parameters such as d , v, and D can be estimated.
It should be noted that

{
T1,i,T2,i

} N
i=1 are the whole obser-

vations used for channel parameter estimation, therefore, the
precision and accuracy of acquiring these samples are very
important and will influence the estimation accuracy. It is
assumed that the molecule embedding and releasing time is
ignored at the transmitter side [14]. It is also assumed that
the time duration for which the receiver sensor senses the
molecule arrival and records the corresponding time instant
is ignored [18]. Based on these assumptions, the paper would
focus on the influence of the random delay of the molecule,
which is the result of Brownian motion and flow drift as
shown in (1), on the estimation accuracy of the channel
parameters.

III. MAXIMUM LIKELIHOOD ESTIMATION
When the probability density function (PDF) of the random
variables is known, we can implement maximum likelihood
estimation (MLE) for any parameter estimation problem [35].
As the number of observations approaches infinity, that is,
N → ∞, the estimator can be considered unbiased. The
channel parameters(i.e. d , v and D)are estimated by imple-
menting MLE. The observations are the set

{
T1,i,T2,i

} N
i=1

mentioned in Section II. For the ith message exchange, the
propagation time, Ti is formulated as:

Ti = T2,i − T1,i, (4)

where {Ti}Ni=1 is a set of inverse Gaussian variables random
variables that can be characterized as i.i.d. variables with the
parameters µ and λ.

Our objective is to estimate the channel parameters d , v,
andD based on the observations of the receiver. In this paper,
two schemes will be implemented: A) directly estimate the
parameters d , v, andDwith theMLEmethod, and B) estimate
the parameters {µ, λ} by applying MLE. Then d , v, and D
are calculated by (2) and (3). Both of these two schemes are
discussed below.

In Section II, we have described the diffusive channel
which is modeled by the inverse Gaussian distribution. Sub-
stituting (2), (3) and (4) into (1), the PDF represented by d , v
and D can be written as [12]

f (Ti; d, v,D) =
d(

4πDTi3
) 1
2

exp

(
−(vTi − d)2

4DTi

)
. (5)

For the observations {Ti}Ni=1, we express the likelihood
function as

L
(
d, v,D; {Ti}Ni=1

)
=

N∏
i=1

f (Ti; d, v,D)

=

(
d2

4πD

)N
2 N∏
i=1

T
−

3
2

i exp

(
−

1
4D

N∑
i=1

(vTi − d)2

Ti

)
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=

(
d2

4πD

)N
2 N∏
i=1

T
−

3
2

i exp

(
−

1
4D

N∑
i=1

(
v2Ti−2vd+

d2

Ti

))
,

(6)

where {Ti}Ni=1 are the i.i.d. inverseGaussian randomvariables.
Taking the natural logarithm on both sides of the above
equation, we have

lnL (d, v,D) =
N
2
ln
(

d2

4πD

)
−

3
2

N∑
i=1

lnTi

−
1
4D

N∑
i=1

(
v2Ti − 2vd +

d2

Ti

)

= N ln d −
N
2
ln (4πD) −

3
2

N∑
i=1

lnTi

−
v2

4D

N∑
i=1

(Ti)+
Nvd
2D
−
d2

4D

N∑
i=1

(
1
Ti

)
.

(7)

MLE indicates that we can get the estimation of d̂ , v̂ and D̂
by maximizing the log-likelihood function as{̂

d, v̂, D̂
}
= argmax

d,v,D
[lnL (d, v,D)] . (8)

Taking the partial derivative of (7) with respect to parame-
ters d , v, and D respectively, we can get a group of equations
for these parameters shown as below

∂ lnL (d, v,D)
∂d

=
N
d
+
Nv
2D
−

d
2D

N∑
i=1

(
1
Ti

)
, (9)

∂ lnL (d, v,D)
∂v

= −
v
2D

N∑
i=1

Ti +
Nd
2D
, (10)

∂ lnL (d, v,D)
∂D

= −
N
2D
+

v2

4D2

N∑
i=1

Ti−
Nvd
2D2 +

d2

4D2

N∑
i=1

1
Ti
.

(11)

It is obvious that in the above formulas (9), (10) and (11)
there are variables d , v, D and observation set {Ti}Ni=1. For
different known conditions, we discuss several cases in the
following.

A. DIRECT ESTIMATION FOR THE PARAMETER d
1) VELOCITY v AND DIFFUSION COEFFICIENT D ARE GIVEN,
DISTANCE d IS THE QUANTITY TO BE ESTIMATED
The slope at the maximum point of (8) is zero. That is when
v and D are known variables to the receiver, setting the
result of (9) to zero can give us the estimated d̂ . In order
to ensure the reasonableness of the estimation, we add a
constraint d > 0. Thus, the estimated d , denoted as d̂1,

is expressed as

d̂1 =

Nv+

√
(Nv)2 + 8ND

N∑
i=1

(
1
T i

)
2

N∑
i=1

(
1
T i

) . (12)

2) GIVEN v , DISTANCE d AND DIFFUSION COEFFICIENT D
ARE THE QUANTITIES TO BE ESTIMATED
If v is given and the other two parameters (d and D) are
unknown, the two estimated parameters can be obtained by
setting (9) and (11) to zero. In this subsection, we only
estimate the distance. So only the distance d , denoted as d̂2,
is shown as

d̂2 =

v
N∑
i=1

Ti

N
. (13)

3) DIFFUSION COEFFICIENT D IS GIVEN, DISTANCE d AND
VELOCITY v ARE QUANTITIES TO BE ESTIMATED
Assuming D is given, and v and d are unknown. Equation (9)
and (10) are set to zero. Then the estimated distance d ,
denoted as d̂3, is expressed as

d̂3 =

√√√√√√√√
2ND

N∑
i=1

Ti

N∑
i=1

Ti
N∑
i=1

1
Ti
− N 2

. (14)

In this part, we propose three different forms of the esti-
mated d = {̂d1, d̂2, d̂3}, which are shown in (12), (13)
and (14). These expressions are suitable under different con-
ditions.

B. DIRECT ESTIMATION FOR THE PARAMETER v
1) DISTANCE d AND DIFFUSION COEFFICIENT D ARE GIVEN,
VELOCITY v IS THE QUANTITY TO BE ESTIMATED
Assuming that d and D are known by the receiver, we set the
result of (10) to zero and then get the estimated velocity v̂.
So the estimated v, denoted as v̂1, can be written as

v̂1 =
Nd
N∑
i=1

Ti

. (15)

2) DISTANCE d IS GIVEN, v AND D ARE QUANTITIES TO BE
ESTIMATED
If d is given, v and D are unknown, the estimated medium
velocity v can be obtained by setting (10) and (11) to zero.
Thus, themedium velocity v, denoted as v̂2, can be formulated
as

v̂2 =
Nd
N∑
i=1

Ti

. (16)
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3) DIFFUSION COEFFICIENT D IS KNOWN, VELOCITY v AND
DISTANCE d ARE QUANTITIES TO BE ESTIMATED
Assuming D is given, d and v are unknown, let the result
of (9) and (10) to be zero. The estimated parameter medium
velocity v, denoted as v̂3, can be expressed as

v̂3 =
N
N∑
i=1

Ti

√√√√√√√√
2ND

N∑
i=1

Ti

N∑
i=1

Ti
N∑
i=1

1
Ti
− N 2

. (17)

In this subsection, we have proposed three different forms
of the estimated velocity v = {̂v1, v̂2, v̂3} in (15), (16)
and (17). These expressions are used under different condi-
tions.

C. DIRECT ESTIMATION FOR THE PARAMETER D
1) VELOCITY v AND DISTANCE d ARE GIVEN, DIFFUSION
COEFFICIENT D IS THE QUANTITY TO BE ESTIMATED
Assuming that for the receiver nanomachine, d and v are
given. let the result of (11) to be zero, then we can get the
estimated D̂. The expression for estimated D, denoted as D̂1,
is as follows,

D1 =

v2
N∑
i=1

T i − 2Nvd + d2
N∑
i=1

1
T i

2N
. (18)

2) DISTANCE d IS GIVEN, DIFFUSION COEFFICIENT D AND
VELOCITY v ARE QUANTITIES TO BE ESTIMATED
If d is given, D and v are unknown, we set (11) and (10)
to zero. The expression for the estimated D, denoted as D̂2,
is written as

D2 =

d2
(

N∑
i=1

T i
N∑
i=1

1
T i
− N 2

)
2N

N∑
i=1

T i

. (19)

3) VELOCITY v IS GIVEN, DIFFUSION COEFFICIENT D AND
DISTANCE d ARE QUANTITIES TO BE ESTIMATED
When v is given, D and d are unknown, let (9) and (11) be
zero. The estimated diffusion coefficient D, denoted as D̂3,
can be expressed as

D̂3 =

v2
N∑
i=1

Ti

[
N∑
i=1
(Ti)

N∑
i=1

(
1
Ti

)
− N 2

]
2N 3 . (20)

In this subsection, we have proposed three different forms
of the estimated parameter D = {D̂1, D̂2, D̂3} in (18), (19)
and (20). Also, these are used under different conditions.

D. ESTIMATION FOR THE PARAMETERS VIA λ AND µ

We have mentioned earlier that except for estimating the
parameters directly with the log-likelihood function, we can
also use the estimated parameters µ and λ to obtain the

channel parameters indirectly. In section II,µ and λ have been
presented as the inverse Gaussian distribution parameters.
The likelihood function just with these two parameters can
be expressed as

L(µ, λ) =
N∏
i=1

f (Ti;µ, λ)

=

(
λ

2π

)N/2 N∏
i=1

(Ti)−
3
2 exp

[
−

λ

2µ2

N∑
i=1

(Ti − µ)2

Ti

]
.

(21)

Taking natural logarithms on both sides of the equation,
(21) becomes

lnL(µ, λ)=N ln
(
λ

2π

)
−
3
2

N∑
i=1

lnTi−
λ

2µ2

N∑
i=1

(Ti − µ)2

Ti
.

(22)

Taking the partial derivative of this logarithm of the like-
lihood function with respect to parameters µ and λ. Then
we can get the expressions as (23) and (24). Still use the
assumption that the slope at the maximum point is zero to
get the estimation results,

∂ lnL(µ, λ)
∂µ

=
λ

µ3

N∑
i=1

(Ti−µ)2

Ti
+
λ

µ2

N∑
i=1

(Ti−µ)
Ti

, (23)

∂ lnL(µ, λ)
∂λ

=
N
2λ
−

1
2µ2

N∑
i=1

(Ti − µ)2

Ti
. (24)

Setting the result of (23) and (24) to zero, the estimators
for µ and λ, denoted as µ̂ and λ̂ can be calculated as

µ̂ =
1
N

N∑
i=1

Ti, (25)

λ̂ =
N

N∑
i=1

 1
Ti
−

N
N∑
i=1

Ti


. (26)

Combining (2), (3) and (25), (26), we can obtain the esti-
mated channel parameters.

1) VELOCITY v IS GIVEN, DISTANCE d AND DIFFUSION
COEFFICIENT D ARE QUANTITIES TO BE ESTIMATED
If v is known and d and D are unknown, then we estimate the
parameters d and D, denoted as d̂4 and D̂4, as

d̂4 =

v
N∑
i=1

Ti

N

D̂4 =

v2
N∑
i=1

Ti

[
N∑
i=1
(Ti)

N∑
i=1

(
1
Ti

)
− N 2

]
2N 3 .

(27)
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2) GIVEN THE DIFFUSION COEFFICIENT D, DISTANCE d AND
VELOCITY v ARE QUANTITIES TO BE ESTIMATED
Under the condition that D is known and v is unknown, the
estimated d and v, denoted as d̂5 and v̂5, can be expressed as

d̂5 =

√√√√√√√√
2ND

N∑
i=1

Ti

N∑
i=1

Ti
N∑
i=1

1
Ti
− N 2

v5 =
N
N∑
i=1

Ti

√√√√√√√√
2ND

N∑
i=1

Ti

N∑
i=1

Ti
N∑
i=1

1
Ti
− N 2

.

(28)

Comparing (13) with (14), (17) with (20), and (27)
with (28), we can see that the estimated d̂ , v̂ and D̂ based
on these two schemes achieve the same results. So we can
draw the conclusion that either the MLE method can solve
the parameter estimation problem in this paper.

IV. ANALYTICAL ANALYSIS OF ESTIMATION
If all the parameters of D, d , and v are unknown, we set (9),
(10) and (11) to zero. Then there are three unknown param-
eters and three equations. Theoretically, we can solve three
equations for the three unknownsD, d and v. Firstly, a system
of equations is simplified. Secondly, we get a solution to the
system which is a set of parameters for each unknown. These
parameters together constitute a solution to each equation.
However, based on (9) and (11), we can get a new equation
that exists a linear problemwith (10). The problemmakes that
the estimation has no single solution.

V. CRAMER-RAO LOWER BOUND
In a parameter estimation problem, the Cramer-Rao lower
bound (CRLB) [36], [37] determines a lower limit for any
unbiased estimator of variance. It is a measure of the ability
to estimate a parameter, this makes it a cornerstone of the
statistical field. To ensure the effective estimator, the mean
square error (MSE) can reach the CRLB on the condition of
an unbiased estimator.

The CRLB of the estimated parameter can be computed by
the inverse of the Fisher information. The Fisher information
is a way of measuring the amount of information about the
unknown parameter that is carried by the observable random
variable, and it is widely used in optimal experimental design.
We all know that the first derivative for the propagation dis-
tance d , the medium velocity v and the diffusion coefficient
D are ∂ lnL(d,v,D)

∂d , ∂ lnL(d,v,D)
∂v and ∂ lnL(d,v,D)

∂D , respectively.
Based on this first derivative, the second derivative for d , v
and D can be expressed as

∂2 lnL (d, v,D)
∂d2

= −
N
d2
−

1
2D

N∑
i=1

(
1
Ti

)
, (29)

∂2 lnL (d, v,D)
∂v2

= −
1
2D

N∑
i=1

Ti, (30)

∂2 lnL (d, v,D)
∂D2 =

N
2D2−

v2

2D3

N∑
i=1

Ti+
Nvd
D3 −

d2

2D3

N∑
i=1

1
Ti
.

(31)

The Fisher information can be expressed as

FIM
(̂
d
)

= −E
(
∂2 lnL (d, v,D)

∂d2

)
= E

[
N
d2
+

1
2D

N∑
i=1

(
1
Ti

)]
=
N
d2
+

1
2D

N∑
i=1

E
(
1
Ti

)
, (32)

FIM (̂v)

= −E
[
∂2 lnL (d, v,D)

∂v2

]
= E

(
1
2D

N∑
i=1

Ti

)
=

1
2D

N∑
i=1

E (Ti), (33)

FIM (D̂)

= −E
[
∂2 lnL (d, v,D)

∂D2

]
= −E

(
N
2D2 −

v2

2D3

N∑
i=1

Ti +
Nvd
D3 −

d2

2D3

N∑
i=1

1
Ti

)

= −
N
2D2 +

v2

2D3

N∑
i=1

E (Ti)−
Nvd
D3 +

d2

2D3

N∑
i=1

E
(
1
Ti

)
.

(34)

For clarification, we use the property of expectation to sim-
ply FIM

(̂
d
)
, FIM (̂v) and FIM

(
D̂
)
. Because of the random

variable Ti on the denominator, it is difficult to calculate the
final result. Then we combine the definition of the expecta-
tion and the property of the expectation to derive FIM

(̂
d
)
,

FIM (̂v) and FIM
(
D̂
)

FIM
(̂
d
)

=
N
d2
+

1
2D

N∑
i=1

E
(
1
Ti

)
=

N
d2

+
1
2D

N∑
i=1

N∑
i=1

1
Ti
×

d(
4πDTi3

) 1
2

exp

(
−(vTi−d)2

4πTi

)
×1ti

,
(35)

FIM (̂v)

=
1
2D

N∑
i=1

E (Ti) =
Nd
2Dv

, (36)

FIM (D̂)

=−
N
2D2 +

v2

2D3

N∑
i=1

E (Ti)−
Nvd
D3 +

d2

2D3

N∑
i=1

E
(
1
Ti

)
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TABLE 1. Simulation parameters.

=−
N
2D2 +

Nvd
2D3 −

Nvd
D3

+
d2

2D3

N∑
i=1

N∑
i=1

1
Ti
×

d(
4πDTi3

) 1
2

exp

(
−(vTi−d)2

4πTi

)
×1ti

.
(37)

The CRLB for the estimators can be obtained by taking
multiplicative inverse of the Fisher information matrix, and
the variance is equal to or greater than the CRLB as

var
(̂
d
)
≥

1

FIM
(̂
d
) , (38)

var (̂v) ≥
1

FIM (̂v)
, (39)

var
(
D̂
)
≥

1

FIM
(
D̂
) . (40)

VI. SIMULATION RESULTS AND DISCUSSIONS
In this section, we present the numerical simulations and
the performances of the proposed channel parameter esti-
mators that are validated in MATLAB. For the simulation
setup, We use a pseudo-random sequence that follows an
inverse Gaussian distribution, to generate Ti. Based on [14]
and [18], we choose the diffusion coefficient from 1µm2/ms
to 10µm2/ms, and choose the propagation distance from
0.1µm to 30µm, which the molecules spread from the trans-
mitter to the receiver. The velocity of the diffusive medium is
chosen from [38] as 1µm/ms to 20µm/ms. The summary of
the simulation parameters is shown in Table 1.

We set the number of simulation runs M to 1000. Each
point on the curves in these figures is an average of M sim-
ulation runs. The accuracy is measured by the mean squared
error (MSE) at each point. In the remainder of this section,
we present and discuss the performance of our proposed esti-
mators respect to different observation numbers with different
pre-defined values.

In Fig. 2 we plot the MSE of the estimated distance respect
to the number of observations. The distance is estimated
from (13).We observe from Fig. 2 that regardless of the preset
{v,D} value, the MSE of the estimated distance d decreases
for the increasing number of observations N . It verifies the
effectiveness of the proposed estimation schemes. Given D
with variable v, the MSE of the estimated distance decreases
as v increases. That is because a larger medium velocity
can cause information molecules to move faster between the
transmitter and the receiver. Thus, the effects of the Brownian
motion have become less dominant. However, if v is fixed and
D varies, there will be an opposite trend. Still observe Fig. 2
such as the curves with the same velocity {v = 10µm/ms}

FIGURE 2. Given v and D, the MSE of the estimated distance vs. the
number of observations.

FIGURE 3. Given different pre-defined medium velocity v , the MSE of the
estimated distance vs. the number of observations.

and different diffusion coefficient, it is obvious that when
the coefficient D increases, the MSEs of all these curves
also increase. This is because the increase of the diffusion
coefficient D means that the molecules move more actively
in the environment. More active molecular motion leads to
more randomness, which is the reason that the estimator’s
performance deteriorates.

Fig. 3 shows the relationship between the MSE versus the
estimated distance and different preset flow velocity of the
diffusive medium. It reveals that as the observation number
increases, theMSE of estimated d decreases and finally tends
to steady. The reason is obvious: the sample set of more
observations will make the estimation more accurate. For all
the curves in this figure, one can see that the curves with
higher v are below those with lower medium velocity, which
has the same reason as we mentioned earlier. The larger
flow velocity from the transmitter to the receiver reduces the
effects of random motion.

142710 VOLUME 8, 2020



Y. Chen et al.: Parameter Estimation of Diffusive Molecular Communication With Drift

FIGURE 4. Given different pre-defined diffusive coefficient D, the MSE of
the estimated distance vs. the number of observations.

FIGURE 5. The comparison between the MSEs for the estimated distance
under different pre-defined conditions and CRLB.

In Fig. 4, the curves of the MSE of the estimated distance
with different preset diffusion coefficient D is plotted. The
trend of the curve is the same as that shown in Fig. 2 and
Fig. 3. The MSE of the estimated distance decreases with the
number of observations increasing and eventually stabilizes.
Also, comparing Fig. 4 and Fig. 2 we can find that if the
velocity v is unknown, the change of the diffusion coefficient
has little effect on the accuracy of the estimation. Whereas
in Fig. 2, if the flow velocity v is known, the coefficient’s
influence is obvious.

Fig. 5 compares the MSEs of the estimated distance under
different pre-defined conditions and CRLB. These conditions
include{v = 10µm/ms, D = 5µm2/ms}, {v = 10µm/ms, D
unknown} and {v unknown, D = 5µm2/ms}. We observe
from Fig. 5 that the MSEs of estimated distance decrease for
increasing observations for all these conditions. Except for
the curve under the condition {v unknown, D = 5µm2/ms},
the other three curves are almost the same. These three curves

FIGURE 6. Given d and D, the MSE of the estimated velocity vs. the
number of observations.

FIGURE 7. Given pre-defined distance d , the MSE of the estimated
velocity vs. the number of observations.

are all below the curve {v unknown, D = 5µm2/ms}. This
reveals that the velocity v has a greater impact on estima-
tion accuracy than diffusive coefficient D. Furthermore, the
CRLB for the estimator d is also presented in this figure.
All the three other curves are above the CRLB curve, which
validates the effectiveness of our proposed estimator.

Fig. 6 and Fig. 7 focus on the estimation of the medium
velocity. Similar to Fig. 2, the curves in Fig. 6 also decrease
with the increasing of observation numbers. Furthermore,
for a given distance d , the MSEs of the estimated value
increase as D becomes larger. For a given D, the MSE of
the estimated velocity becomes smaller as the distance d
increases. So the curve with the longest distance and the
smallest diffusion coefficient {d = 30µm, D = 1µm2/ms}
is the lowest one. In the case of D unknown, the MSE
curves of the estimated velocity are depicted in Fig. 7. It is
observed that the MSE has an obvious relationship with d ,
in more detail, it becomes smaller with the increase of the
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FIGURE 8. The MSE of the estimated diffusion coefficient vs. the number
of observations with pre-defined distance d .

FIGURE 9. The MSE of the estimated diffusion coefficient vs. the number
of observations with pre-defined medium velocity v .

distance d . The reason is like this: if the distance is smaller,
then a random propagation delay would lead to severe estima-
tion inaccuracy of the velocity. If the distance becomes larger,
then the influence of random movement of the molecule
would be alleviated, therefore the estimation of the velocity
becomes more accurate.

Fig. 8 to Fig. 9 focus on the estimation of the diffusion
coefficient. Fig. 8 is under the condition of given d , whereas
Fig. 9 is under the condition of given v. In Fig. 8, we can see
that when the velocity is unknown, the change in d has little
effect on the MSE. This is consistent with the conclusion of
Fig. 4. In fact, Fig. 4 is drawn based on (14) and Fig. 8 is
drawn based on (19). These two equations are actually the
same, except that one represents d by D and the other one
represents D by d. In Fig. 9, when the distance is unknown,
one can observe a trend that the MSE of the estimated dif-
fusion coefficient decreases as the velocity increases. The
conclusions in Fig. 9 and Fig. 3 are consistent.

VII. CONCLUSION
In this paper, the channel parameter estimation for the
molecular communication system with flow drift has been
proposed. The propagation distance d , the diffusion coeffi-
cient D and the medium velocity v are estimated by using
the single-directional molecular communication scheme.
TheMLEmethods are used to estimate these parameters. The
Cramer-Rao lower bound is derived. The simulation results
demonstrate the effectiveness of our proposed estimator. The
influence of different conditions to the estimation accuracy is
analyzed. Future work would investigate more realistic model
like three-dimensional environment and consider more prac-
tical situations by relaxing the assumptions about sampling
times.
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