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ABSTRACT Impedance-based stability criterion is effective for analyzing the oscillation phenomenon in
modular multilevel converter-based high-voltage DC (MMC-HVDC) transmission system, and modeling
MMC impedance is the critical step. However, few papers have modeled MMC impedance with compre-
hensive consideration of time delay and outer-loop control at the same time. The stabilization strategies to
improve system stability are not considered during impedance modeling, and the influences of stabiliza-
tion strategy on impedance are not analyzed mathematically, either. In this article, an accurate sequence
impedance model of MMC is derived with the consideration of time delay and complete control loops.
Based on this impedance model, the negative damping caused by time delay is pointed out and the weak
stability of grid-tied MMC system is analyzed. Then a stabilization control strategy is proposed to suppress
the system oscillation. In the meantime, taking the proposed stabilization strategy into account, impedance
modeling is revised to study the influence of this strategy on MMC impedance. Furthermore, based on this
revised impedance model, an optimal design method for controller parameters of the stabilization strategy
is proposed to maximize the phase margin of the interconnected system. Finally, the effectiveness of the
accurate impedancemodel, the proposed stabilization control strategy and optimal designmethod are verified
by simulation results.

INDEX TERMS Modular multilevel converter (MMC), impedance model, oscillation suppression, time
delay, optimal design.

I. INTRODUCTION
Modular multilevel converter (MMC) has attracted a lot
of research attention especially after the accomplishment
of the Trans Bay Cable project in America [1]. Due to
its advantages of modularity, low switching frequency and
low distortion output voltage waveforms, MMC has been
widely used in high-voltage direct current (HVDC) transmis-
sion system [2]–[4]. However, with the wide application of
MMC-HVDC technology, its stability problems are increas-
ingly prominent. A subsynchronous oscillation phenomenon
was reported in MMC-HVDC for wind farm integration [5].
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A resonance issue in North Sea offshore wind farm which
uses MMC-HVDC transmission has been reported in [6].
It was also reported that a resonance occurred in Luxi back-
to-back HVDC project in China [7].

Impedance based stability criterion is effective for ana-
lyzing practical resonance and control interaction problems
for grid-connected converters [8]. In this approach, the con-
verter system is decomposed into a positive-sequence and
a negative-sequence subsystem, and the Nyquist stability
criterion is applied to the grid-converter impedance ratio to
determine the interconnected system stability [9]. To utilize
impedance-based stability criterion for MMC-HVDC stabil-
ity analysis, the most important prerequisite is to establish
impedance model of MMC. Impedance modeling of MMC is
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much more complex than that of conventional voltage-source
converters (VSCs) due to the complex internal dynamics of
MMC.

Several average models have been proposed in [10]–[13],
but internal dynamics of MMC such as capacitor voltage
fluctuations and circulating currents are neglected. Ref-
erence [14] established MMC impedance models which
treated all module capacitor voltages as constant and can-
not accurately reflect the actual characteristics of the MMC.
Impedance models of MMC considering its internal dynam-
ics were established by multi-harmonic linearization [9],
however, time delay and the outer-loop control were not
considered. Harmonic state-space (HSS) modeling method
was introduced to build the impedance models of MMC
in [15], but the closed-loop control of MMC in [15] is direct
three-phase voltage control, which is not common in practical
projects.

The effect of time delay has been studied in the stability
analysis of current control of grid-tiedVSIs, which aremainly
based on system loop gain and analysis of phase-lag influ-
ence, however, influence of delay on impedance character-
istics are not shown [16], [17]. The influence of time delay
on two-level voltage-source converter (VSC) impedance was
studied in [18], however, the modeling of MMC is much
more complex than that of VSC. Time delay was considered
in [19], but specific modeling process was not expressed and
outer-loop control was not considered. In practical HVDC
projects, time delay of MMC is included in the procedures
of data sampling, data fault tolerance processing in polar
control (PC) system, digital processor computation in PC sys-
tem, commands delivering process from PC system to valve
base control (VBC) system, digital processor computation in
VBC system and commands delivering process from VBC
system to IGBTs. According to engineering experience of
HVDC projects in China, the total delay is generally around
300µs, no more than 900µs, which is not small enough to
be ignored. The instability of VSC caused by the delay has
been analyzed in [16]–[18], and MMC is also very likely to
be unstable due to time delay. Although MMC includes time
delay and outer-loop control in practical conditions, most
previous works ignored the time delay or outer-loop control
during the modeling process, so impedance characteristics of
MMC may not fully embodied.

The subsynchronous oscillation was suppressed by optimal
design of controller parameters in [5], however, the influ-
ence of time delay was not discussed. An additional virtual
parallel damping controller was proposed to suppress the
oscillation ofMMC-based DC-grid in [20], but the time delay
was not considered, and the impedance model including this
virtual damping controller was not established, either. Ref-
erence [21] proposed a harmonic elimination control strategy
to mitigate the harmonic resonance inMMC-HVDCmultiter-
minal systems, however, the influence of this harmonic elim-
ination control strategy on impedance was not analyzed, and
the parameters design of this control strategy was not men-
tioned, either. Some relevant nonlinear methods are applied

to analyze the stability of switched system and improve its
stability [22]–[24].

Based on the above analysis, a more accurate MMC
impedance considering complete control loops and time
delay is necessary to be established, and the corresponding
influence of stabilization control strategy on impedance char-
acteristics should be further analyzed.

In this article, an accurate sequence impedance model of
MMC considering complete control loops is derived. Not
only current inner-loop and circulating current control loop
are considered, but also power outer-loop control, PLL, time
delay and stabilization control are considered during model-
ing process. Based on this impedance model, the influences
of parameters in different control loops and time delay on
impedance characteristics are analyzed. The negative damp-
ing of impedance caused by time delay is pointed out and
the weak stability of grid-connectedMMC is analyzed. Then,
a stabilization control strategy is proposed to suppress the
system oscillation. In the meantime, taking the proposed
stability strategy into account, impedancemodeling is revised
to study the influence of the proposed stabilization control
strategy on MMC impedance. Furthermore, on the basis of
revised impedance model considering stabilization strategy,
an optimal designmethod for controller parameters of the sta-
bilization control strategy is proposed to maximize the phase
margin of the interconnected system. Finally, the correct-
ness of the theoretical analysis, the effectiveness of proposed
stabilization control strategy and optimal design method are
verified by simulation results.

The main contribution of this article is summarized as:
(1) an accurate impedance model of MMC is established
with consideration of power outer-loop control, time delay
and stabilization control strategy; (2) the negative damping of
impedance caused by time delay is pointed out and analyzed;
(3) an optimal design method for controller parameters of the
stabilization control strategy is proposed.

The rest of this article is organized as follows: Section II
presents the small signal model of MMC power stage.
Section III derives the small signal mode of control stage. The
small signal impedance model is validated, and the influences
of different control loops and time delay are analyzed in
Section IV. In Section V, the stability of MMC interconnected
system is analyzed and a stabilization control strategy is
proposed, meanwhile, the parameters of stabilization control
strategy are designed optimally. Finally, the conclusion is
shown in Section VI.

II. MMC POWER STAGE SMALL SIGNAL MODEL
MMC power stage small signal model is established based on
harmonic linearization in this section.

Fig. 1 shows the circuit diagram of an MMC with volt-
age perturbation. It consists of six bridge arms, and each
arm consists of N submodules and one arm inductor. SMi
(i = 1, . . .,n) is the ith submodule of each arm. And most
electrical variables have two subscripts, respectively desig-
nates the phase (a, b and c) and the arm (u for the upper arm,
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FIGURE 1. Diagram of MMC with AC side voltage perturbation.

and l for the lower arm). In addition, L is the inductance of
the arm inductor and its equivalent parasitic resistance is rL ,
Cm is the capacitance of the submodule capacitor.

The first step of modeling MMC sequence impedance by
harmonic linearization is to add a sinusoidal voltage pertur-
bation at frequency fp to the AC side of MMC as shown
in Fig. 1 [9]. In general, phase a voltage with a small voltage
perturbation at frequency fp can be written as [15]:

va(t) = Va cos(2π f1t)+ V̂p cos(2π fpt + ϕp). (1)

where Va is the amplitude of grid voltage in phase a, v̂p and
are φp the amplitude and phase of voltage perturbation. Phase
b and c perturbations are defined similarly by adding ±2π/3
to the phase depending on the sequence of the perturbation.

Harmonic linearization method is a convenient method to
capture the impedance of converters. The harmonic lineariza-
tion method has several advantages, particularly compared to
modeling in the dq-coordinate system: the steady-state opera-
tion trajectory can include any number of harmonics, and the
calculated impedance has clear physical interpretations and
can be directly measured [8].

Assuming that the equivalent switching frequency is high
enough and the capacitor voltages of all submodules are bal-
anced at all times [10], [25], [26], according to the symmetry
of MMC, taking the upper arm of phase a as an example,
the small signal model of MMC power stage can be obtained
by harmonic linearization [27]–[30]

Zl îau = −v̂p −Mauûau − m̂auuau (2)

Ycûau = Mau îau + Iaum̂au (3)

where îau, ûau and m̂au are small-signal vectors of upper arm
current in phase a, sum of all submodule capacitor voltages
in the phase a upper arm and modulation index of upper
arm in phase a, v̂p is the vector of voltage small voltage
perturbation in phase a, Zl and Yc are diagonal matrixes
which represents the impedance of the arm inductor and the
admittance of equivalent module capacitor. Corresponding to
small signal variables, Iau, uau andMau are Toeplitz matrixes

of steady-state variables of upper arm current in phase a, sum
of all submodule capacitor voltages in the phase a upper arm
and modulation index of upper arm in phase a.

It is important to note that the given voltage perturbation
will lead to a series of small-signal harmonic components
at frequency fp±kf1, k = 1, 2. . . n, although infinite har-
monics are generated in theory, harmonics at fp±kf1 will
decline exponentially with the increase of k in fact. MMC
model including 3rd harmonics of fundamental frequency f1
is adequate for the dynamic analysis [31], [32], therefore,
to balance the accuracy of model and the complexity of math-
ematical operation, harmonics up to fp±3f1 are considered in
all variables above in this article. Under positive-sequence
and negative-sequence voltage perturbation in MMC AC
side, the harmonics of small-signal components including
arm currents, arm capacitor voltages, and arm modulation
indexes have the relationships as Table 1 [9]. Only the
differential-mode arm currents will flow to AC side of MMC.

TABLE 1. Relationships of small-signal harmonics.

III. MMC CONTROL STAGE SAMLL SIGNAL
MODEL WITH TIME DELAY
Steady state variables ofMau, uau and Iau in (2) and (3) can be
calculated from the output power of MMC [33]. Small signal
vector of upper arm modulation index m̂au is related to the
control systemmode and parameters. In order to get the small
signal impedance model, it is necessary to develop the small
signal model of the control system.

A typical MMC cascade control is shown in Fig. 2,
including power outer-loop control, phase current inner-loop
control, circulating current control and phase-locked loop.
Variable ij(j = a, b, c) represents phase current of MMC, and
ij−cir (j = a, b, c) represents circulating current in each phase
of MMC. All these loops have an influence on MMC control
stage small signal model.

Because cascade control is utilized in MMC, the total
time delay could be taken into account behind the modu-
lation index as shown in Fig. 2 [16,34]. Influence of each
control loop superimposes on the modulation index during
the process of small signal modeling[35]. Thus the complex
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FIGURE 2. MMC control structure.

vector of arm modulation index can be expressed as:

m̂au = (Qi +Qc +QP_i)îau + (QP_u +QPLL)v̂p (4)

where Qi, Qc, QP_i, QP_u, QPLL are the coefficient matrix of
the phase current control loop, the circulating current control
loop, the current effect component of power control loop,
the voltage effect component of power control loop and PLL
respectively. In this article, only the harmonics up to third
fundamental frequency are considered, so these coefficient
matrixes are all square matrixes of seven order, and the matrix
coefficients are related to their control loop structure and
controller parameters.

A. PHASE CURRENT CONTROL LOOP WITH DELAY
When a positive-sequence voltage perturbation is injected in
MMC AC side, the coefficient matrix of the phase current
control loop has been derived in [9] as:

Qi = diag[0 a1 0 a2 0 0 0] (5)

where the frequencies corresponding to coefficients a1 and
a2 are fp–2f1, and fp respectively.{

a1 = [Hi(j2π fp)+ jωL] · Ta1
a2 = [Hi(j2π(fp − f1))− jωL] · Ta2

(6)

where Hi is the phase current control transfer function.
But effect of time delay which are expressed as Ta1 and Ta2

in (6) are not considered in [9]. To overcome this drawback,
the effect of time delay is derived as{

Ta1 = e−j2π (fp−2f1)td

Ta2 = e−j2π fptd
(7)

where td is the value of time delay.

B. CIRCULATING CURRENT CONTROL
LOOP WITH TIME DELAY
When a positive-sequence voltage perturbation is injected
in MMC AC side, the coefficient matrix of the circulating
current control loop has been derived in [9] as:

Qc = diag[b1 0 0 0 b2 c b3] (8)

where the frequencies corresponding to coefficients b1, b2
and b3 are fp−3f1, fp + f1, and fp+3f1 respectively.

b1 = [Hc(j2π (fp − f1))+ 2jωL] · Tb1
b2 = [Hc(j2π (fp − f1))− 2jωL] · Tb2
b3 = [Hc(j2π (fp + 5f1))+ 2jωL] · Tb3

(9)

where Hc is the circulating-current control transfer function.
However, the effect of time delay which are expressed as

Tb1, Tb2 and Tb3 in (9) are not considered in [9], they are
derived in this article as

Tb1 = e−j2π (fp−3f1)td

Tb3 = e−j2π (fp+f1)td

Tb3 = e−j2π (fp+3f1)td
(10)

where td is the value of time delay.

C. POWER OUTER LOOP CONTROL WITH DELAY
Active and reactive power of MMC can be expressed as:

p =
3
2

(
Ud · Id + Uq · Iq

)
q =

3
2

(
Uq · Id − Ud · Iq

) (11)

where Ud and Uq are d-axis and q-axis steady-state voltage
of MMC, Id and Iq are d-axis and q-axis steady-state current.
So the small signal active and reactive power can be expressed
as: 

p̂ =
3
2

[(
Ud îd + Uq îq

)
+
(
Idûd + Iqûq

)]
q̂ =

3
2

[(
Uq îd − Ud îq

)
+
(
Idûq − Iqûd

)] (12)

The small signal power includes effects of the small signal
current and the small signal voltage as shown in (12).

First of all, the model of small signal current îd and îq
included in Ud îd−Uq î and Uq îd−Ud îq in (12) is established
as below.

When a positive-sequence voltage perturbation is injected
in MMC AC side, the effect to modulation index of DM
current harmonics only whose frequencies are fp and fp−2f1
should be analyzed [9]. Assuming the DM positive-sequence
small signal current harmonic of frequency fp is:

îa = Ip cos(2π fpt)

îb = Ip cos(2π fpt −
2
3
π )

îc = Ip cos(2π fpt +
2
3
π )

(13)

According to the MMC cascade control as shown in Fig. 2,
this small signal current harmonic is calculated to small
signal active and reactive power in (12) after dq transforma-
tion, then these small signal harmonics flow into outer-loop
controller G(s) and inner-loop controller Hi(s), finally mod-
ulation index is obtained after inverse dq transformation
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and flowing through time delay. This whole process can be
expressed as m̂a1m̂b1

m̂c1

 = TT
dq


3
2

(
Ud îd + Uq îq

)
· G(s) · Hi(s)

3
2

(
Uq îd − Ud îq

)
· G(s) · Hi(s)



=


k1Ip cos

(
2π
(
fp − 2f1

)
t
)

k1Ip cos
(
2π
(
fp − 2f1

)
t +

2
3
π

)
k1Ip cos

(
2π
(
fp − 2f1

)
t −

2
3
π

)


+


k2Ip cos

(
2π
(
fp − 2f1

)
t −

π

2

)
k2Ip cos

(
2π
(
fp − 2f1

)
t −

π

2
+

2
3
π

)
k2Ip cos

(
2π
(
fp − 2f1

)
t −

π

2
−

2
3
π

)

(14)

where TT
dq is inverse dq transformation, and

[
îd, îq, î0

]T
= Tdq

[
îa, îb, îc

]T
k1 = 1.5UdG

(
j2π(fp − f1)

)
· Hi

(
j2π (fp − f1)

)
k2 = 1.5UqG

(
j2π (fp − f1)

)
· Hi

(
j2π(fp − f1)

) (15)

where Tdq is dq transformation.
When comparing (14) with (13), it could be found that

small signal current harmonic at frequency fp generates two
small signal harmonics of frequency fp−2f1 in modulation
index. The gains of these two signals are k1 and k2 separately,
and the second signal has π /2 phase delay compared with
the original small signal current harmonic which expressed
as (13). So the coefficient matrix of the small signal phase
current at frequency fp to modulation index in power control
loop can be expressed as:

QP_i1 =

 0 0 0 0 0 0 0
0 0 0 d1 0 0 0

05×7

 (16)

where

d1 =
(
1.5Ud + 1.5Uq · ej(−

π
2 )
)
· G

(
j2π (fp − f1)

)
·Hi

(
j2π (fp − f1)

)
e−j2π (fp−2f1)td . (17)

Similarly, the coefficient matrix of the DM negative-
sequence small signal phase current at frequency fp−2f1 to
modulation index in power control loop can be expressed as:

QP_i2 =

 03×7
0 d2 0 0 0 0 0

03×7

 (18)

where

d2 =
(
1.5Ud + 1.5Uq · ej(−

π
2 )
)
· G

(
j2π (fp − 2f1 + f1)

)
·Hi

(
j2π (fp − 2f1 + f11)

)
e−j2π fptd . (19)

So the coefficient matrix of the small signal phase current to
modulation index in power control loop can be obtained as:

QP_i = QP_i1 +QP_i2. (20)

Then the model of small signal voltage ûd and ûq included
in Idûd+Iqûq and Idûq−Iqûd in (12) is established. Similar to
the above analysis process, the coefficient matrix of the small
signal voltage to modulation index in power control loop can
be expressed as:

QP_u = diag
[
0 0 0 d3 0 0 0

]
(21)

where

d3 =
(
1.5Id + 1.5Iq · ej(−

π
2 )
)
· G

(
j2π(fp − f1)

)
·Hi

(
j2π (fp − f1)

)
e−j2π fptd . (22)

where td is the value of time delay.

FIGURE 3. (a) Block diagram of a basic PLL and (b) its linearized model.

D. PHSE-LOCKED LOOP WITH DELAY
Block diagram of PLL and its small signal model is shown
in Fig. 3. Contribution of PLL dynamics to the inner decou-
pled current control has been analyzed in [9], but the contri-
bution of PLL dynamics to the outer control loop has not been
discussed.

When MMC AC side is injected by a positive-sequence
voltage perturbation with amplitude V̂p and frequency fp, the
PLL output small signal phase is

θ̂ = −j
V̂p
2
ejϕp · Gθ [j2π(fp − f1)] (23)

where φp is phase angle of voltage perturbation, Gθ (s) is the
closed-loop transfer function of PLL, and the frequency of θ̂
is fp–f1 [9].
So the dq transformation and inverse dq transformation

will be affected by this PLL dynamic θ̂ accordingly:

Tdq(2π f1t + θ̂ ) = Tdq(2π f1t)︸ ︷︷ ︸
term A1

+ θ̂ · Tdq(2π f1t +
π

2
)︸ ︷︷ ︸

term A2

(24)

TT
dq(2π f1t + θ̂ ) = TT

dq(2π f1t)︸ ︷︷ ︸
term B1

+ θ̂ · TT
dq(2π f1t +

π

2
)︸ ︷︷ ︸

term B2

(25)
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where term A2 and term B2 in (24) and (25) shows the effects
of PLL dynamics compared with traditional dq transforma-
tion and inverse dq transformation [9].

Phase current and voltage contain a steady state (funda-
mental) and a series of small signal harmonics. Each dq-frame
controller output also contains a steady state (DC) and a series
of small signal harmonics. The small signal responses due
to multiplication of term A1 with small signal harmonics in
the phase currents and voltages, and small signal responses
due to multiplication of term B1 with small signal har-
monics in dq-frame controller outputs have been captured
in Section III-A, III-B and III-C. However, multiplication
of term A2 with steady state (fundamental) components in
the phase currents and voltages, and multiplication of term
B2 with steady state (DC) components in dq-frame controller
outputs will also generate small signal responses because of
PLL dynamics. So these small signal responses caused by
term A2 and B2 should be analyzed: the steady state (DC)
components in dq-frame controller outputs will generate
small signal harmonics at frequency fp−2f1 and fp after oper-
ation by term B2 in (25); the steady state (fundamental)
components in the phase currents and voltages will generate
two small signal harmonic at frequency fp−2f1 and fp after
operation by term A2 in (24).

The specific analysis is as follows.
Assuming steady state value of modulation index are Md ,

Mq in dq-frame andM1 for phase a in abc-frame respectively.
Md and Mq will generate a fundamental component after
transformation by TT

dq(2π f1t +
π
2 ) in (25), and then create a

component at frequency fp−2f1 and fp by angle perturbation θ̂
of term B2 in (25). The small signal component at frequency
fp is

0.5M1Gθ [j2π (fp − f1)] · V̂pejϕp , (26)

and the small signal component at frequency fp−2f1 is

−0.5M∗1Gθ [j2π(fp − f1)] · V̂pe
jϕp (27)

where, ‘‘∗’’ denotes complex conjugation.
Taking the current inner-loop as an example, the steady

state (fundamental) components in the phase currents which
is denoted as I1 for phase a will generate components at
frequency fp−f1 after operation by termA2 in (24), then these
components will flow through current inner-loop controller
Hi(s), small signal components at frequency fp−2f1 and fp are
created after operation by term B1 in (25) at last. The small
signal component at frequency fp is

−0.5I1Gθ [j2π (fp − f1)] · Hi[(j2π (fp − f1)− jKid ] · V̂pejϕp

(28)

and the small signal component at frequency fp−2f1 is

0.5I∗1Gθ [j2π(fp − f1)]·Hi[(j2π (fp − f1)− jKid ] · V̂pe
jϕp .

(29)

For power outer-loop control, the steady state (fundamen-
tal) components in the phase currents and voltages which is

denoted as I1 and U1 for phase a will also generate small
signal components at frequency fp−2f1 and fp which are
similar to the analysis of the current inner-loop. It should be
noted that the power outer-loop controller G(s) needs to be
considered. In addition, the response of the phase angle per-
turbation to circulating current control loop can be neglected
because the circulating current in the arm has been suppressed
small enough.

Based on the analysis above, the contribution of PLL
dynamics to modulation index under a positive-sequence
voltage perturbation can be expressed by QPLLv̂p, where
QPLL is

QPLL =


0 0 0 0 0 0 0
0 0 0 g2 0 0 0
0 0 0 0 0 0 0
0 0 0 g1 0 0 0

03×7

 (30)

where

g1 = [0.5M1Gθ (j2π(fp − f1))

−0.5I1Gθ (j2π(fp − f1)) · Hi((j2π (fp − f1)− jKid )

+0.5I1Gθ (j2π(fp − f1)) · G(j2π(fp − f1))

·Hi((j2π (fp − f1)− jKid )

−0.5U∗1Gθ (j2π (fp − f1)) · G(j2π (fp − f1))

·Hd ((j2π (fp − f1))]V̂p · Tg1 (31)

g2 = [−0.5M∗1Gθ (j2π(fp − f1))

+0.5I∗1Gθ (j2π(fp − f1)) · Hi((j2π (fp − f1)− jKid )

−0.5I∗1Gθ (j2π(fp − f1)) · G(j2π(fp − f1))

·Hi((j2π (fp − f1)− jKid )

+0.5UGθ (j2π (fp − f1)) · G(j2π (fp − f1))

·Hd ((j2π (fp − f1))]V̂p · Tg2 (32)

where {
Tg1 = ejϕpe−j2π fptd

Tg2 = e−j2π(fp−2f1)td

accounts for the effect of time delay, td is the value of time
delay.

All the coefficient matrixes of control system are
derived under a positive-sequence voltage perturbation,
the coefficient matrixes of control system derived under a
negative-sequence voltage perturbation have a similar deriva-
tion process, which will not be repeated here.

In summary, the control small signal model including
power outer-loop control, phase current inner-loop control,
circulating current control and PLL dynamics is

m̂au = (Qi +Qc +QP_i)îau + (QP_u +QPLL)v̂p (33)

where Qi is defined by (5), Qc by (8), QP_i by (20), QP_u
by (21), and QPLL by (30).
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IV. VALIDATION AND ANALYSIS OF MMC SEQUENCE
IMPEDANCE MODEL
The sequence impedance model is derived considering phase
current control loop, circulating current control loop, power
outer loop control, PLL and time delay, the model is verified
by simulation. Then the influences of key parameters on
impedance models are discussed, which include parameters
of phase current controllers, power outer loop control, and
time delay.

A. VERIFICATION OF IMPEDANCE MODEL
A single matrix equation can be obtained by substituting the
power stage small signal model (2) into (3) to eliminate ûau:

(U+ Z−1l MauY−1c Mau)îau+Z−1l v̂p
+Z−1l (uau+MauY−1c Iau)m̂au = 0 (34)

where U is a 7× 7 unity matrix.
Relationship of small signal v̂p and îau can be obtained by

substituting (33) into (34)[
U+ Z−1l MauY−1c Mau+

Z−1l (uau+MauY−1c Iau) · (Qi +Qc +QP_i)

]
îau

+Z−1l
[
U+(uau+MauY−1c Iau)(QP_u +QPLL)

]
v̂p = 0

(35)

Based on this, a 7×7 admittance matrix of small signal upper
arm current îau to a perturbation v̂p in AC terminal voltage can
be modeled as

Y =
[
U+ Z−1l MauY−1c Mau+

Z−1l (uau+MauY−1c Iau) · (Qi +Qc +QP_i)

]−1
·Z−1l

[
U+(uau+MauY−1c Iau)(QP_u +QPLL)

]
(36)

Since the phase current is twice the arm current, the input
impedance of MMC at frequency fp is

Z (fp) =
1

2Y (4, 4)
(37)

where Y (4,4) is the (4,4)th element of Y.
To verify the analytical models above, simulation mod-

els based on sweeping frequency method are established in
MATLAB/Simulink, and parameters in simulation models
are listed in Table 2. The bode plot of MMC impedance
and simulation results are depicted in Fig. 4. The analytical
models match well with the simulation results which proves
the accuracy of the model proposed in this article. As shown
in Fig.4, the positive-sequence model and negative-sequence
model are almost the same at higher frequency but are very
different at low frequency. And it should be noted that the
phase of impedance becomes over 90◦ as the frequency
increases above 800Hz, which brings a negative damping.

B. INFLUENCE OF TIME DELAY
Different from existing literatures, time delay is espe-
cially considered in this article. Taking positive sequence

TABLE 2. Parameters of MMC-HVDC.

FIGURE 4. Analytical and simulation results of MMC impedance.

as an example, the influence of control loop and controller
parameters on impedance is analyzed.

Fig. 5 shows the influence of time delay. As shown
in Fig.5(a), the impedance is significantly different at mid-
dle and high frequency when considering delay or not. The
impedance changes obviously with the increase of time delay.

In order to show the difference better, Fig. 5(b) shows the
zoomed-in results. As the delay increases, the magnitude and
phase of impedance increase a lot at high frequency. It should
be noted that there is a huge difference in phase angle between
impedance with and without delay. According to Fig. 5(b),
the phase angle of impedance without delay is always less
than 90◦, however, the phase angle of impedance with time
delay exceeds 90◦ at a high frequency point. So the time
delay will bring a negative damping to the impedance at high
frequency, which may cause the MMC to oscillate with the
power grid system. And the greater the delay, the lower the
frequency point at which the impedance phase exceeds 90◦.
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FIGURE 5. Impedance with changing digital delay. (a)Full scale,
(b)Zoomed-in Figure.

This means that as the time delay increases, the frequency
at which the impedance showing negative damping shifts to
lower frequency.

The negative damping caused by the delay will affect the
stability of the system, especially the high-frequency stability,
so the digital delay cannot be ignored during the modeling
process, and should be given full attention.

C. ANALYSIS OF CONTROLLER PARAMETERS
Firstly, the influence of parameters of current loop con-
troller without and with time delay are shown in Fig. 6 and
Fig. 7 separately.

Three sets of current controller kp (i.e., 0.2, 0.6 and 1.2)
are chosen. If time delay is not considered, the influence
of parameters of current loop controller is shown in Fig. 6.
As shown in Fig. 6, the current loop controller proportional
coefficient kp has great influence on the MMC impedance.
As the kp increases, the magnitude increases a lot, while
the phase increases below 50Hz and decreases above 50Hz.
It should be noted that, for all of this cases, the phase is limited
to the 90◦ range.

Under the same kp conditions, if delay is considered and
fixed at 300µs, then the impedance is re-depicted in Fig. 7(a).

FIGURE 6. Impedance of MMC when current loop controller kp = 0.2, 0.6,
and 1.2 without time delay.

FIGURE 7. Impedance of MMC when current loop controller kp = 0.2, 0.6,
and 1.2 with time delay td = 300µs. (a) Full scale. (b) Zoom-in figure.

As the kp increases, the magnitude becomes larger, while the
phase rises more smoothly. Compared with Fig. 6, it could
be seen that the impedance characteristics have a big differ-
ence at high frequency above 800Hz. To see it more clearly,
the zoom-in figurer is shown in Fig. 7(b), for the three
cases, the phase exceeds 90◦ at high frequency. Meanwhile,
as the kp increases, the magnitude becomes higher, and the
frequency point at which the phase exceeds 90◦ shifts to a
lower frequency point.
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FIGURE 8. Impedance of MMC when circulating current loop controller
kpcir = 1, 50, and 150 without time delay.

Secondly, three sets of circulating current controller kpcir
(i.e., 1, 50 and 150) are chosen. If time delay is not consid-
ered, the influence of parameters of circulating current loop
controller is shown in Fig. 8. As shown in Fig. 8, the cir-
culating current loop controller proportional coefficient kpcir
seems to affect only two resonance peaks around 15Hz and
100Hz. It should be noted that, for all of this cases, the phase
is limited to the 90◦ range.

FIGURE 9. Impedance of MMC when circulating current loop controller
kpcir = 1, 50, and 150 with time delay td = 300µs. (a) Full scale.
(b) Zoom-in figure.

Under the same kpcir conditions, if delay is considered and
fixed at 300µs, then the impedance is re-depicted in Fig. 9 (a).

Compared with Fig. 8, it could be seen that the impedance
characteristics are almost the same with which shown in
Fig.8 at low and middle frequency, but the phases are dif-
ferent at high frequency. As shown in Fig. 9(a), the circu-
lating current loop controller proportional coefficient kpcir
seems to affect only two resonance peaks around 15Hz
and 100Hz. To see it more clearly, the zoom-in figurer is
shown in Fig. 9(b), as proportional coefficient kpcir increases,
the resonance peaks around 15Hz and 100Hz shift to lower
frequency, while the magnitude and phase of resonance peaks
both decrease. Because parameters of circulating current loop
controller affect the ability of suppressing the circulating cur-
rent, if the kpcir is not large enough to suppress the circulating
current, magnitudes of the resonance peaks around 15Hz and
100Hz will be larger and phases will be smaller. In partic-
ular, when these parameters are not properly designed, the
phase of the resonance peak around 100Hz might be smaller
than −90◦, which brings a negative damping effect, which
may cause the MMC to oscillate with the power grid system.

FIGURE 10. Impedance with/without power outer-loop control when
delay is not considered.

Thirdly, if time delay is not considered, the impact of
power outer loop control on impedance is shown in Fig. 10.
It can be found that the impedance with outer loop changes a
lot compared with the impedance without considering outer
loop, so modeling with consideration of outer loop is very
meaningful. It should be noted that, without considered time
delay, the phase is limited to the 90◦ range. The outer loop
cannot be ignored during the modeling process, and the
modeling without considering the outer loop will affect the
accuracy of the system stability analysis and even lead to
erroneous analysis results.

Under the same conditions, if delay is considered and
fixed at 300µs, then the impedance is re-depicted in Fig. 11.
At low and middle frequency area, the impedance character-
istics are almost the same compared with Fig. 10. However,
the impedance phase exceeds 90◦ at high frequency when
time delay is considered.

According to the above analysis, the influence of delay
on impedance characteristics is summarized as follows.
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FIGURE 11. Impedance with/without power outer-loop control with time
delay td = 300µs.

The phase angle of impedance with time delay exceeds 90◦

at a high frequency point. No matter how parameters of
current loop, circulating current control loop and outer loop
change, when time delay is considered, the phase angle of
impedance with time delay will still exceed 90◦ at a relative
high frequency, and the frequency point at which the phase
exceeds 90◦ may shift. This means that a negative damping
at high frequency is caused by time delay. This negative
damping will affect the stability of the system, especially
the high-frequency stability, so the time delay cannot be
ignored during the modeling process, and should be given full
attention. The oscillation caused by the delaywill be analyzed
in detail in the next section.

V. STABILITY ANALYSIS AND STABILIZATION
CONTROL STATEGY
This section analyzes the stability of grid-connected MMC
based on the impedance modeled above, and proposes a
stabilization control strategy to improve its stability. The
impedance model including stabilization control strategy
is deduced, the parameters of stabilization control strategy
are optimized based on this model. The effectiveness of
impedance model and stabilization control strategy is verified
by simulation.

FIGURE 12. Schematic diagram of the grid-connected MMC system.

A. STABILITY ANALYSIS
In this work, a MMC operating in power outer-loop and
current inner-loop control mode is studied. A grid-connected
MMC system is defined in Fig. 12. Parameters of MMC

and grid are presented in Table 2, and the impedance of
transmission line and transformer are included as equivalent
grid impedance, and grid impedance includes equivalent grid
inductance Lg, equivalent grid resistance rg and equivalent
grid capacitance Cg. The MMC under power control mode
can be regarded as a current source, and the topology of this
grid-connected system can be simplified as Fig. 13.

FIGURE 13. Simplified topology of MMC connecting to grid.

As shown in Fig. 13, the current flowing through grid can
be expressed as:

I =
(
Ic −

Vg
Zmmc

)
·

1
1+ Zg/Zmmc

(38)

where the Zmmc is the impedance of MMC, and the Zg is the
grid impedance.

According to Nyquist stability criterion [8], the stability
of this system depends on the stability of impedance ratio
Zg/Zmmc under the condition that MMC and grid are both
stable independently. Now the stability of impedance ratio is
analyzed as below.

FIGURE 14. Impedance bode diagram MMC and grid with time delay td =

300µs.

When time delay is considered, the bode diagrams of
Zmmc and Zg is depicted in Fig. 14, the red line and green
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line represent the positive-sequence and negative-sequence
impedance of MMC respectively, and the blue line represents
impedance of grid. The grid impedance intersects with the
MMC positive-sequence and negative-sequence impedance
at two different frequencies including 116Hz and 888Hz.
The phase difference at 116Hz between grid and MMC
positive-sequence impedance is 90◦, between grid and MMC
negative-sequence impedance is 58.4◦, indicating sufficient
phase margin in system stability. However, the phase dif-
ference is 179.2◦ at 888Hz, which indicates the phase mar-
gin is too small and may cause harmonic resonance at this
frequency.

FIGURE 15. Impedance bode diagram of MMC and grid when time delay
is not considered.

Compared with Fig. 14, the bode diagrams of Zmmc and
Zg without time delay is depicted in Fig. 15. The grid
impedance intersects with the MMC positive-sequence and
negative-sequence impedance at 172Hz and 827Hz, whose
phase differences are 94.5◦ and 162.7◦ respectively, indicat-
ing sufficient phase margin in system stability.

To verify the analysis above, the simulation results with
and without time delay are shown in Fig. 16 and Fig. 17 sep-
arately. Fig. 16 shows that MMC output current and voltage
waveforms oscillate violently when time delay is consid-
ered, which verified the stability margin of system is insuf-
ficient. And the harmonic spectrum of MMC output current
in Fig. 18 shows that current oscillation arises at 888Hz,
which agree well with the analysis based on impedance
matching in Fig.14. However, when time delay is not con-
sidered, simulation results in Fig. 17 show that the HVDC
system operates stably, agree well with the analysis based
on impedance matching in Fig 15. The simulation results
in Fig. 16 and Fig. 17 prove that the stability analysis above
based on impedance is correct.

According to the stability analysis above based on
impedance and simulation results, it is clearly shown that the
time delay is the core cause to the system high-frequency
oscillation. The time delay leads a negative damping toMMC

FIGURE 16. MMC terminal voltage and output current simulation with
time delay considered.

FIGURE 17. MMC terminal voltage and output current simulation without
time delay.

impedance at high frequency, and this negative damping
causes insufficient stability margin to the grid-connected
MMC system. To cope with the system oscillation, a stabi-
lization method is proposed in next section.

B. STABILIZATION CONTROL STRATEGY
1) STRUCTURE OF STABILIZATION CONTROL
Some papers point out that adding passive damping can sup-
press system oscillation, however, this method will increase
system loss. So this article proposes a stabilization control
strategy to suppress the oscillations. The detailed control
strategy is depicted in the blue block diagram in Fig.19.

The PCC voltage vi(i = a, b, c) is sampled and passed
through a quasi-proportional resonance (QPR) controller, and
the negative of QPR output is added in the modulation index.
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FIGURE 18. Harmonic spectrum of MMC output current.

FIGURE 19. Block diagram of stabilization control strategy.

In this way, the voltages in opposite direction to the system
oscillation are output from MMC terminal to mitigate the
oscillation harmonics.

The transfer function of the QPR is defined as:

GQPR(s) =
2krωcs

s2 + 2ωcs+ ω0
(39)

where the value of QPR controller’s resonance frequency ω0
is the frequency of the system oscillation (ω0 = 2π×888).
Adjusting the control parameters of QPR can change the
MMC impedance, thus changing the phase margin at the
impedance intersection to improve the system stability.

2) IMPEDANCE MODEL INCLUDING STABILIZATION
CONTROL STRATEGY
Obviously, stabilization control strategy will change MMC
impedance characteristics. However, most papers haven’t
discussed the impedance modeling including their pro-
posed additional stabilization control strategy. In this article,
the impedance including proposed stabilization control strat-
egy is deduced as below.

Similar to the modeling process of impedance shown in
section III, the voltage perturbation in MMC AC side flows
through the QPR controller and generates a corresponding

effect on the modulation index. This effect can be expressed
as:

m̂s = Qsv̂p (40)

where

Qs = diag[0 0 0 g3 0 0 0] (41)

Based on the above analysis and the sequence relationships
presented in Table 1, the parameter of coefficient matrix Qs
can be expressed as:

g3 = −
2krωc(j2π fp)

(j2π fp)2 + 2ωc(j2π fp)+ ω0
e−j2π fptd . (42)

Thus the small signal modulation index in (33) should be
revised to

m̂′au =
(
Qi +Qc +QP_i

)
îau +

(
QP_u +QPLL +Qs

)
v̂p
(43)

where Qs is added to the modulation index.
Similarly, (36) should also be revised to

Y′ =
[
U+ Z−1l MauY−1c Mau+

Z−1l
(
uau +MauY−1c Iau

)
·
(
Qi +Qc +QP−

) ]−1
·Z−1l

[
U+

(
uau +MauY−1c Iau

) (
QP_u+QPLL+Qs

)]
(44)

FIGURE 20. Analytical and simulation results of impedance including
stabilization control strategy.

Then the impedance including additional stabilization con-
trol strategy is obtained as:

Z ′
(
fp
)
=

1
2Y ′(4, 4)

(45)

Taking positive sequence impedance as an example, the bode
plot of impedance including additional stabilization con-
trol strategy and simulation results are depicted in Fig. 20.
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The analytical models match well with the simulation results
which proves the accuracy of the analytical model proposed
above. Based on this accurate impedance model considering
the stabilization control strategy, parameters of the stabiliza-
tion control strategy could be designed conveniently.

FIGURE 21. Comparison of impedance with/without stabilization control
strategy.

3) PARAMETERS OPTIMIZATION OF
STABILIZATION CONTROL
Fig. 21 shows the comparison of impedance which includes
the stabilization control strategy or not. The low-frequency
and middle-frequency characteristics of impedance with and
without stabilization control strategy are almost the same.
But the high-frequency impedance characteristics around
resonance frequency are quite different compared with
the impedance excluding stability strategy, especially the
phase angle decreases to below 90◦, which avoids negative
damping.

The intersection of thisMMC impedance with stabilization
control strategy and grid impedance will change with the
varying of QPR parameters. In order to improve the stability
margin of the system as much as possible, the parameters
of QPR controller in stabilization control strategy should be
optimized.

Firstly, the parameter ωc of QPR controller remains
unchanged (ωc = 2π×200), and then the influence of the
value of kr on the phase margin of impedance intersection is
studied.

The phase margin at impedance intersection of MMC and
grid changes with the changing kr which is depicted clearly in
Fig.22. And the phase margin becomes the maximum value
when kr is equal to 0.22.
Then, the parameter kr of QPR controller remain

unchanged (kr = 0.22), and the influence of the value of

FIGURE 22. Phase margin as kr changes.

FIGURE 23. Phase margin as fc changes.

fc(ωc = 2π× fc) on the phase margin of impedance inter-
section is studied. As shown in Fig. 23, the phase margin
becomes the maximum value when fc is equal to 154Hz.
Based on the analysis above, themaximumphasemargin of

impedance intersection could be obtained when the optimal
parameters of QPR controller (kr = 0.22 and ωc = 2π×154)
are selected.

4) SIMULATION RESULTS
The impedance including stabilization control strategy with
the optimal controller parameters is shown in Fig. 24 (a).
In addition to the intersections near the oscillation frequency,
there is also an intersection at 116 Hz, but the phase mar-
gin of this intersection point is large enough, and there is
no risk of oscillation. Comparing the impedances with and
without stabilization control strategy, it is obvious that the
impedance around oscillation frequency has been improved a
lot. As shown in Fig. 24(b), as the system added a stabilization
control strategy, the impedance intersection changed from
888Hz to 879Hz, and the phase margin increased from 0.8◦

to 28.4◦, which provides sufficient stability margin for the
system.
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FIGURE 24. Comparison of impedance with/without stabilization control
strategy. (a)Full scale, (b)Zoomed-in Figure.

In order to verify the correctness of the above analysis, the
stabilization control strategy is added to the control system
for simulation. As shown in Fig. 25, the stabilization control
strategy is enabled at 2.04s, the oscillation harmonics of phase
a voltage and current are quickly suppressed, the voltage
and current waveforms are improved to a basically ideal
sinusoidal wave after 0.02s, the system no longer oscillates
any more. The total THD of current decreases from 14%
(as shown in Fig. 18) to 0.09% which meet engineering
requirements, proving that the oscillations have been miti-
gated effectively. This proves the effectiveness of the sta-
bilization control strategy proposed in this article and the
rationality of the optimal design of the stability strategy
parameters.

FIGURE 25. MMC terminal voltage and output current simulation when
stabilization control strategy is enabled.

VI. CONCLUSION
Mechanism of high-frequency oscillation in MMC-HVDC
which is caused by time delay is analyzed by impedance-
based stability criterion in this article. Firstly, the MMC
impedance is modeled considering complete control
loops, including power outer loop, current control loop,
circulating-current control loop, PLL and especially the time
delay. In the meanwhile, this article pointed out that the
high-frequency negative damping of impedance is brought
by the time delay, which is the core cause of the sys-
tem oscillation. Then, a stabilization control strategy is
proposed to suppress the system oscillation. In addition,
impedance considering this stabilization control strategy
is also modeled and the parameters of this stability strat-
egy are optimized to achieve maximum phase margin of
the interconnected system. Finally, the simulation results
demonstrate the correctness of oscillation mechanism anal-
ysis and effectiveness of proposed stabilization control
strategy.

The main conclusions are as follows.
1) The outer-loop control mainly affects the impedance

characteristics of MMC in the low-frequency area.
2) Time delay affects the impedance characteristics of

MMC in the high-frequency area, and lead to a negative
damping which is very harmful to system stability.

3) The stabilization control strategy should be considered
during impedance modeling process to analyze the detailed
influence on system stability.

In summary, time delay is a key factor in system oscillation
and should be considered. The impedance-based parame-
ters optimization method for stabilization control strategy
proposed in this article can also be used in other system
stabilization strategies.
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