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ABSTRACT For the sake of better balancing the relationship between diversity and convergence when
handling constrained optimization problems, a two-stage adaptive constrained particle swarm optimization
algorithm based on bi-objective method (TABC-PSO) is proposed. In accordance with different phases
of the constraint process, the target-constraint space derived from the angle is partitioned adaptively, and
simultaneously the global best particle is selected and the external archive set is safeguarded. In the first
stage, the whole space is divided adaptively in term of the angular distribution of individual, and the feasible
region is explored comprehensively. In the second stage, local regions are adaptively compartmentalized
and in-depth exploitation is carried out. Primary and secondary external archive sets are established to
maintain population diversity and accelerate convergence. The two phases are switched adaptively in light
of the storage status of the two external archive sets. We evaluated TABC-PSO algorithm on the benchmark
functions in CEC 2006 and CEC 2017. The experimental results show that TABC-PSO algorithm compared
with other state-of-the-art algorithms can be superior to applied to test functions with different types of
constraints and possesses a competitive search capability.

INDEX TERMS Constrained optimization, particle swarm optimization algorithm, bi-objective optimiza-
tion, adaptive.

I. INTRODUCTION
Optimization problems have been usedmore andmorewidely
in many fields such as scientific research, industrial pro-
duction, engineering technology, and economicmanagement.
Nevertheless, due to constraints in practical applications,
some or all of the non-inferior solutions may be in the
infeasible region. These optimization problems are called
constrained optimization problems (COPs). The effect of
dealing with COPs depends on the effective constraint pro-
cessing mechanism on the one hand and the advanced search
mechanism on the other. In recent years, as a group-based
optimization method, evolutionary algorithm has been used
to solve COPs with its advantages of fast convergence speed
and high search efficiency [1].

In light of different constraint processing mechanisms,
constraint optimization algorithms can be divided into three
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categories: penalty function method, multiobjective opti-
mization method and hybrid method. Researchers combine
these constraint processing methods with evolutionary algo-
rithms, propose some constraint optimization methods based
on evolutionary algorithms, and have achieved certain results.

Penalty function method is one of the simplest and
most extensive constraint processing technology. The fitness
function is constructed by adding a penalty term to the objec-
tive function, and the COP is transformed into an uncon-
strained optimization problem. The optimal feasible solution
is obtained by adjusting the weight of the penalty function.
Therefore, the weight adjustment between objective function
and penalty term is the key to solve COPs. Penalty function
method was first proposed by Courant [2].

The second kind of method is multiobjective constrained
optimization. Different from the penalty function method,
this type of method treats objective and constraint as two or
more targets respectively, and then applies the multiobjective
optimization method to deal with the COPs. The key to
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this kind of problem lies in the criterion of determining the
optimal solution. The most typical comparison criteria are
the method according to feasibility rule, the method based
on stochastic ranking, the method in term of ε constraint and
the method due to repairment.

The feasibility rule methods [3] judge the pros and cons
of solution in accordance with preset criteria, and the setting
of the criteria is generally based on experience and prefer-
ence for feasible solutions [4]. The ε constraint processing
method [5] is essentially an extension of the feasibility rule.
The ε level comparison method is used to judge the superior-
ity of the solution. This method further improves the search
effect by dividing the constraints.

Stochastic ranking methods [6] adopt random mechanism
to balance the objective function and penalty items. The
repairment method [7] is in light of a local search mechanism
and uses repairment strategies to convert some representative
infeasible solutions into feasible solutions.

The third type of method is hybrid approach. The method
merges with different constraint processing mechanisms to
perform constraint optimization. This method is mainly
divided into two categories: the first is to divide the entire
population into multiple sub-populations, which are opti-
mized using different constraint mechanisms respectively [8].
The other is to divide the whole evolution process into multi-
ple stages, each stage uses different constraint methods [9].

With the development of evolutionary computation,
penalty function method is combined with evolutionary
algorithms such as annealing algorithms [10], genetic algo-
rithms [11], and also combined with collaborative algorithms
to form collaborative penalty function methods [12].

Due to the fast convergence speed and high search effi-
ciency of evolutionary algorithm, the union of multiobjec-
tive optimization method and evolutionary algorithm has
achieved good results. Combining feasibility rule with dif-
ference algorithm,Mezure-Montes and Coello recommended
two diversity mechanisms [13]. The differential evolution
with dynamic parameters selection (DE-DPS) algorithm [14]
and feasible rule with the incorporation of objective function
information (FROFI) algorithm [15] have also achieved cer-
tain results. Inosculated with genetic algorithm, [16] advised
an multiparent crossover (MPC) algorithm.
ε constraint processing method is incorporated with dif-

ferential evolution algorithm [17], genetic algorithm [18]
and particle swarm algorithm [19], and stochastic ranking
method is combined with differential algorithm [20], which
has achieved good optimization effect.

There are many ways to combine hybrid method with evo-
lutionary algorithm. Hybrid differential evolution and adap-
tive trade-off model (ATM-HD) algorithm [21] incorporates
multiple mutation strategies. Thereafter, Elsayed et al. [22]
proposed a strategy that differential evolution is combined
with two constraint processing mechanisms of feasibility rule
and ε constraint processing method. Differential evolution
algorithm [23] based on orthogonal design is used to deal
with COPs. Datta and Deb united penalty function method,

multiobjective method and NSGA-II, and put forward a con-
straint processing technique in conformity with individual
penalty [24].

As a typical evolutionary algorithm, particle swarm opti-
mization (PSO) shows good rapidity and convergence when
dealing with COPs. With particle swarm algorithm as
search mechanism, penalty function method based on fuzzy
rules [25], penalty function with memory [26], adaptive
penalty function method [27] has been applied for con-
straint optimization. Paper [28] proposed a new self-adaptive
mechanism for adapting the PSO parameters. The parame-
ter configuration of each individual in the population opti-
mized by a PSO variant is adjusted through an adaptive
mechanism.

In addition to the widespread penalty function method,
PSO algorithm is also combined with other constraint pro-
cessing methods, and has achieved good optimization results.
Constrained multi-swarm particle swarm optimization with-
out velocity (CMPSOWV) algorithm [29] introduced current
swarm evolution and memory swarm evolution to strengthen
the capacity of exploration and exploitation. Themulti-swarm
technique and a mutation scheme are incorporated to prevent
the population diversity loss and premature convergence.

When dealing with COPs, we not only want to take
advantage of the rapidity and convergence of PSO, but also
need to effectively avoid premature convergence and main-
tain a certain population diversity. With respect to con-
strained optimization problems with a small proportion of
feasible solutions, there are few or no feasible solutions
in the initialization population. Accordingly, good diver-
sity can promote the discovery and expansion of feasible
regions in the initial stage. With the continuous deepening
of constrained optimization process, the key task is gradually
shifted to the thorough exploration of one or several local
districts. Therefore, this article proposes a two-stage adap-
tive particle swarm constrained optimization algorithm based
on bi-objective method. In the first phase, the bi-objective
method is applied to constraint optimization in combination
with adaptive angle region division and the establishment of
the two external archive sets in the entire target-constraint
(f -v) two-dimensional space. In the second phase, the global
best individual (gbest) is selected from the primary external
archive set (arc_p) and the secondary external archive set
(arc_s) respectively, and the updated population is subjected
to information interaction to guide the population individ-
uals to approach the boundary of constraint conditions and
strengthen local in-depth search. Compared with previous
research results, the innovation points of our paper are as
follows:

1) In the f -v space, the region is partitioned adaptively
derived from angle, and the phase is divided according
to the angle region distribution of particles. Further-
more, the bi-objective optimization method is applied
as a constraint processing mechanism. In the first stage,
the possible distribution areas of feasible solutions are
searched comprehensively for the whole space; While
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in the second stage, the optimal solution is mined
deeply in accordance with the local area.

2) Two external archive sets are established: the arc_p and
the arc_s. The external archive set is maintained by
combining the distribution of particles in the angular
region of the f -v space. The establishment of the arc_s
is conducive to extracting useful information of some
infeasible solutions or non-optimal solutions.

3) Double selection mechanism of gbest. Two external
archive sets are respectively taken as ‘‘alternative sets’’
of optimal particles. The first phase is conducive to
increasing exploration of unknown feasible regions.
The second phase makes reasonable use of effective
information of infeasible solutions to avoid premature
convergence to local optimization.

The structure of the paper is roughly divided into several
parts: Section I mainly introduces the constrained optimiza-
tion technology and the research progress combined with
evolutionary algorithm, especially PSO constrained opti-
mization algorithm. Simultaneously, the main innovations
of phased particle swarm constrained optimization based
on bi-objective method are put forword. Section II recom-
mends the basic theories of constrained optimization, nor-
malization and particle swarm optimization, and explains the
research motivation of this article through the analysis of
some advanced PSO constraint algorithms. Section III is the
interpretation and flow of TABC-PSO algorithm. Section IV
applies TABC-PSO algorithm to solve the typical standard
constraint function problem. The experimental results are
compared with other advanced constraint optimization algo-
rithms and the performance of the algorithm is evaluated
through nonparametric test. Section V draws some conclu-
sions and looks forward to the future work.

II. MOTIVATION AND RELATED WORK
A. CONSTRAINED OPTIMIZATION PROBLEM
1) DEFINITION OF CONSTRAINED OPTIMIZATION
The single-objective optimization problem can be expressed
as follows:

min f (x)

s.t. gi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = p+ 1, . . . ,m

lk ≤ xk ≤ uk , k = 1, . . . , n (1)

The total number of constraints is m, gi(x) ≤ 0(i = 1, . . . , p)
is p inequality constraints, hi(x) = 0(i = p + 1, . . . ,m) is
m-p equality constraints. x = (x1, . . . , xn) ∈ X ⊆ Rn is
decision variables in n-dimensional decision space X . The
value range of the k-th element xk of the decision variable x is
[lk , uk ]. In the decision space, the solution that can satisfy all
constraints is called feasible solution, and the space formed
by all feasible solutions is called feasible region � ⊆ Rn.

In practice, equality constraints are usually converted into
inequality constraints. Therefore, the degree of constraint
violation of individual x on the i-th constraint condition is

expressed as:

Gi(x) =

{
max {gi(x), 0} , 1 ≤ i ≤ p
max {|hi(x)| − δ, 0} , p+ 1 ≤ i ≤ m

(2)

Among them, δ is the tolerance parameter of equality con-
straint, which can be set on the basis of the required precision,
usually 0.0001. Therefore, the total degree of constraint viola-
tion of individual x, that is, the degree of constraint violation,
is expressed as:

v(x) =
m∑
i=1

Gi(x) (3)

2) NORMALIZATION PROCESSING
In practical problems, there is usually a large gap between
multiple objective functions. If they are directly aggregated,
target values with small values are often ignored, which
affects the balanced treatment among various objectives.
Therefore, we need to normalize each target value. The
objective function value obtained after normalization is more
objective.

Similar to the objective function, many constraints often
have great differences, which leads to large numerical con-
straints playing a leading role in the degree of constraint
breach. Therefore, the constraint conditions need to be
normalized.

The normalized constraint violation degree vnorm(x) of an
individual x is defined as the average value of each constraint
violation standard value of the individual:

vnorm(x) =
1
m

m∑
i=1

Gi
(
xj
)

Gmax
i

, j ∈ {1, 2, . . . ,N } (4)

where N is the population size, Gmax
i (i = 1, 2, . . . ,m) is the

maximum value for each constraint.
Similarly, the dissimilarities between the objective func-

tion and the constraint conditions can also be balanced by
standardization in the process of constraint optimization.
After standardization, the impact of target value and con-
straint default on optimization is compromised. The normal-
ized objective function fnorm (x) of individual x is:

fnorm(x) =
f
(
xj
)
− fmin

fmax − fmin
, j ∈ {1, 2, . . . ,N } (5)

Among them, fmin and fmax are the minimum and maximum
values of the objective function of all individuals in the
current population, respectively.

3) INTRODUCTION OF PARTICLE SWARM ALGORITHM
Particle Swarm Optimization [30] is a heuristic swarm intel-
ligence algorithm inspired by the behavior of bird swarms
in the biological world. Due to the simple and efficient
implementation of particle swarm optimization, it has been
widely used in unconstrained optimization problems [31],
constrained optimization problems [32], and other practical
applications.
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The speed and position of the i-th (i = 1,2, . . . , N , N is the
population size) particle are determined by the information of
the global best particle (gbest) and the individual best particle
(pbest). The update formula is as follows:

vd (t) = ωvd (t − 1)+ c1r1 (pbestd − xd (t − 1))
+c2r2 (gbestd − xd (t − 1))

xd (t) = xd (t − 1)+ vd (t)

(6)

where t is the iteration number; ω is the inertial weight;
c1 and c2 are two learning factors with a uniform distribution
in the range [0,2]; r1 and r2 are two random variables with a
uniform distribution in the range [0,1]. pbestd and gbestd are
the d-th decision variable of the personal best solution and
the global best solution for particle i, respectively.

B. RESEARCH MOTIVATION OF ALGORITHM
In Part I of this article, we have already introduced a variety
of methods to deal with constrained optimization. The most
prominent advantage of applying multiobjective optimization
method to constrained optimization problem is that it can
bypass the design of penalty function, not only does not need
to set penalty coefficient, but also can effectively avoid the
‘‘premature’’ of algorithm. Furthermore, the purpose of mul-
tiobjective optimization is to obtain non-dominated solution
set with both constraints and objectives, and its good diversity
provides great choice for searching the optimal solution.

Zhou et al. [33] put forward a double-objective constrained
optimization algorithm based on Pareto strength and min-
imum generation gap (MGG) model by taking advantage
of Pareto-dominance in multiobjective optimization. The
improved particle swarm optimization algorithm MOPSO
(mod), which is put forward by Venter and Haftka [34] and
takes the bi-objective method as the constraint processing
mechanism, and has achieved certain effects on inequality
constraint processing. The double-objective method adopted
in article [35] is presented to solve nonlinear constrained
programming problems (NLCPs). Considering maintaining
a certain infeasible solution ratio, a new fitness function is
designed to measure the degree of violation of constraint
targets.

Due to its simple principle and fast convergence speed,
evolutionary algorithms such as PSO are not only used
to deal with relatively simple single-objective optimization
problems, but also have been well applied in multiobjective
optimization and constraint optimization. A hybrid particle
swarm optimization (CPSO-Shake) algorithm [36] based on
double population strategy and chattering mechanism is pro-
posed. The two populations search different regions respec-
tively. When the infeasible solution reaches a certain propor-
tion, shake mechanism is applied to improve the diversity
of the population and effectively alleviate the problem of
early convergence. A parallel boundary search particle swarm
optimization (PBSPSO) algorithm is developed in paper [37].
A cooperation mechanism of the two branches is established,

and each branch adopts different methods for global search
and local boundary search respectively.

If the degree of constraint violation is used to select excel-
lent particles, it is helpful for individuals to approach the
feasible region. However, the disadvantage brought by rapid
convergence is that it converges to a few or even a single
‘‘optimal’’ individual, resulting in the loss of diversity. When
the number of feasible regions in the decision space is mul-
tiple or the shape is special, the algorithm is easy to fall into
local optimization. For the purpose of solve this problem,
we take the best individual of the two archive sets as the
‘‘leader’’ respectively, and the number of particles in the
external archive set is balanced by the way of angular region
distribution.

Since the optimal solution is often located on the constraint
boundary, relying on the feasible solution alone obviously has
certain limitations. Therefore, we hope to reasonably use the
information of feasible and infeasible solutions to accelerate
the approach to the constraint boundary. For this motive,
we will not only conduct in-depth exploration on the region
where the current optimal feasible solution is located, but
also use the infeasible solution information near the region
to accelerate the approach to the boundary of the feasible
region.

A MOPSO algorithm based on adaptive angle region divi-
sion [38] is proposed. In the target space, the method adap-
tively divides angular regions and strengthens the guidance
and search of ‘‘low density’’ regions, which is beneficial
to maintaining the diversity of the population and obtaining
uniformly distributed non-dominated solution sets. Inspired
by this algorithm, different adaptive angle region partition
methods are adopted in the f -v space for two stages. The first
phase place special emphasis on the search of global feasible
regions, and the second phase stress a particular aspect on
the in-depth mining of local areas. Simultaneously, in term
of the distinct emphasis of the two stages, secondary external
archive set is established, and dissimilar external archive set
maintenance mechanisms and gbest selection mechanisms
are designed.

Compared to the algorithms already existed, the bi-
objective method proposed in this article divides the
target-constraint space based on angle.

1) Selection mechanism of optimal particles: not only
sorting according to Pareto dominance, but also com-
bining distribution of particles in angular region to
prevent falling into local optimization;

2) Archive storage mechanism: two external archive sets
are established to preserve some infeasible solutions in
the angle areas and obtain better diversity;

3) Archive maintenance method: redundant particles are
deleted according to the number of particles in the angle
districts, which is different from the method in view of
crowding degree or grids and is conducive to probe of
infeasible areas;

4) In the later stage of optimization, the local angle region
is divided adaptively to strengthen the exploration of
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the local region and promote the convergence of the
algorithm.

III. TABC-PSO ALGORITHM
We expect to give consideration to both constraints and objec-
tives, which will not only help prevent the algorithm from
falling into local optimization, but also help maintain good
diversity in stage I. In thewhole f -v space, the search intensity
is increased, and through comprehensive search, widely dis-
tributed feasible solutions are obtained. In this article, we use
the multiobjective particle swarm optimization (MOPSO)
algorithm as the search mechanism and adaptively adjust
the division of regions based on angles in the whole f -v
space. According to the regional distribution of the solution,
the exploration of feasible regions will be further expanded.

In order to speed up the convergence, in stage II, combining
with the adaptive division of local regions in the f -v space,
a more in-depth search is carried out for the local regions; The
gbest is selected and the ‘‘useful’’ information of some infea-
sible solutions is reasonably utilized. An adaptive mechanism
is adopted to switch between the two phases. Next, we will
introduce our algorithm in detail in two stages.

A. ESTABLISHMENT AND MAINTENANCE MECHANISMS
OF TWO EXTERNAL ARCHIVE SETS
In stage I of the bi-objective particle swarm constrained opti-
mization algorithm, we expect to obtain the non-dominated
solution set that is uniform and covers all feasible regions.
The method of angle region division is helpful to guide
individuals to search in light of the distribution of particles in
the f -v space, so that the non-dominated solution set formed
by the target value and the constraint value is more uniform.

In general, when bi-objective optimization is applied
to constraint optimization, feasible solutions are selected
according to the non-dominated ranking. In this process,
some infeasible solutions with low non-dominated ranking
will be deleted, and these individuals may even be closer to
the constraint boundary than feasible solutions if the degree of
violation of constraints is very low. Therefore, these solutions
are often of some value. If they can be used, they will be
helpful to approach the constraint boundary.

In the f -v space shown in Fig. 1, in conformity with the
comparison of Pareto non-dominance levels, particles a, b, c
and d will be stored in the external archive set, while particles
a1 and c1 will be deleted because the non-dominance level
is lower than particles a and c. This will lead to the area
where particles a1 and c1 are located losing the opportunity
to be explored, which is not conducive to the maintenance
of population diversity. Nonetheless, the establishment of the
arc_s will save the highest non-dominated particles in each
angle region. The preservation of these particles, such as a1
and c1, enables the next update of these particles, which is
beneficial to the development of unknown feasible regions,
and also helps to maintain the diversity of the population and
prevent the algorithm from falling into local optimization.

FIGURE 1. Schematic diagram of target-constraint space adaptive angle
region division in the first stage.

For the sake of utilizing particles that are not stored in
the external archive set but may contain some useful infor-
mation, we recommend the arc_p and the arc_s. The arc_p
is employed to store the feasible solution of the highest
non-dominant level in the global or angular region. The
arc_s is used to store infeasible solutions of the highest
non-dominant level in the global or angular region. Combined
with the distribution of angle regions, useful information of
some infeasible solutions is extracted.

We set both the number upper limit of particles stored in
the arc_p and the number upper limit of particles stored in
the arc_s to 50. The greater the upper limit, the better the
diversity. However, if the upper limit is too large, on the one
hand, it will affect the calculation efficiency and increase the
complexity; on the other hand, it will lead to the first stage
consuming too long time and affect the convergence. After
dividing the adaptive region, there is only one particle in
each angle region saved by the two external archive sets. The
principle for deleting redundant particles is: the arc_p retains
particles with small target value, while the arc_s retains par-
ticles with low degree of constraint violation.

The number of particles in each angular region is taken as
the standard to measure ‘‘sparse’’ or ‘‘dense’’ regions. With
the increase of the number of particles in the two external
archive sets, the division of angle regions is continuously
refined. When the external archive set does not reach the
upper limit, in order to ensure good diversity, it is necessary
to augment the guidance of individuals in the ‘‘sparse’’ area
where there are fewer particles. When dealing with COPs,
emphasis is placed on the guidance of particles with low
degree of constraint violation and located in ‘‘sparse’’ region.
When the number of particles in the primary external archive
set and the secondary external archive set exceeds the upper

VOLUME 8, 2020 150651



Q. Feng et al.: Two-Stage Adaptive Constrained PSO Based on Bi-Objective Method

limit, there is only one particle in each angular region. The
selection of gbest and pbest and the maintenance of the two
external archive sets are accomplished synchronously in the
entire process of angle region adaptive partition, the selection
of gbest and pbest, and the maintenance of two external
archive sets are carried out.

B. GBEST SELECTION MECHANISM
For the reason that the MOPSO algorithm is developed from
the single-objective particle swarm optimization (SOPSO)
algorithm, the obtained optimization result is the highest
non-dominated solution set rather than the unique solution
in the multiobjective optimization problem. The selection of
gbest is an obstacle point in the process of multiobjective
optimization. Under normal circumstances, when PSO is
regarded as a search mechanism for constraint optimization,
the selection principle of gbest is: if the feasible solution does
not exist, the individual with the lowest degree of constraint
violation is selected; if there are some feasible solutions,
the particle with the smallest target value of the feasible solu-
tion is selected; when feasible solution and infeasible solution
coexist, feasible solution takes precedence. This approach
lays particular emphasis on feasible solutions, but counts
against the development of unknown feasible areas and the
maintenance of population diversity.

In this article, we propose a new gbest selectionmechanism
combined with adaptive angle region division in the target
constraint space. Both the degree of constraint violation and
the density of particle distribution are thought over.

1) SELECTION OF GBEST IN THE FIRST STAGE
a: IF Parc_p = 0, THERE IS NO FEASIBLE SOLUTION
The particle xA in arc_s that satisfies the condition of
f (xA)−1
v(xA)−1

≤ 1 and has the smallest constraint value in the
‘‘sparse’’ angle region is selected as gbest;

If the condition is not met, the individual xC with the
smallest constraint value is selected as gbest.

b: IF Parc_p>0, THERE IS AT LEAST ONE FEASIBLE SOLUTION
The feasible solution xA with the minimum target value in
arc_p is selected as gbest_1;

The infeasible solution xB satisfying the conditions:
f (xB)−1
v(xB)−1

≤
f (xA)−1
v(xA)−1

in arc_s and having the smallest constraint
value is selected as gbest_2.
Parc_p is the number of particles in arc_p, Parc_s is the

number of particles in arc_s.
gbest_1 and gbest_2 are used as gbest respectively to

update the population. The updated population carries out
information exchange and maintains the external archive set
according to Part A in Section III.

2) SELECTION MECHANISM OF GBEST IN THE SECOND
STAGE
In the decision space, when there is a feasible solution,
we will choose the particle with low target value as the

‘‘leader’’ in the feasible solution to guide the individual
update. The optimal solution is always on the boundary of
feasible region, while the feasible solution with the lowest
target value is not necessarily on the boundary of the feasible
region. Consequently, in order to guide the population to
come close to the boundary, we expect to take advantage of
some information of infeasible solutions.

In general, we only use the feasible solution information
to draw near the constraint boundary. If the feasible solution
ratio is large, it is likely to be limited to the feasible area
and lack of opportunity to approach the border. However,
the feasible solution and the infeasible solution have the
opportunity to near the constraint boundary in the process
of approaching each other, regardless of the distribution of
feasible regions. The optimal solution is usually the compro-
mise solution obtained after balancing the feasible solution
and the infeasible solution. For this reason, the reservation
of infeasible solutions, especially infeasible solutions with
small degree of constraint violation, if they can be reasonably
utilized, is propitious to accelerating the particles to close
the constraint boundary, thus improving the convergence
efficiency.

Based on this idea, the selection of gbest not only takes
into account the minimum target value point in the feasible
solution, but also the ‘‘useful information’’ of the individual is
very valuable and should be utilized if the infeasible solution
with smaller target value appears in the same or adjacent
angle area.

Generally speaking, the particle with the smallest target
value in the arc_p is selected as gbest. If there is a particle
with smaller target value in the arc_s, which is located in
two adjacent angular areas of gbest, this particle will be
selected as gbest. As shown in Fig. 2, the individual gb1 with

FIGURE 2. Schematic diagram of local adaptive angle region division in
the second stage.
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Algorithm 1 Framework of TABC-PSO in the First Stage
Input: Number of particles in arc_p Parc_p, number of particles in arc_s Parc_s, number of iterations n, number of initial

divisions D, number of divisions i, number of archive particles in both arc_p and arc_s Parc
Termination conditions:1) Parc ≥ 100

2)There still no new feasible areas after 10 iterations of continuous updating
Termination while 1) or 2)

Step1: Global adaptive angle region division
1) Angle regions are partitioned in f -v space in the light of Parc = Parc−s + Parc−p

While (i−1)P
imax

< Parc ≤ iP
imax

, divide the target space into D · i regions
(if D · i ≥ 100, order D · i = 100) regions

2) Count Parc_p, Parc_s, Parc and the number of particles in each angel region in arc_p and arc_s
Step2: gbest selection

1) if Parc_p = 0
go to 3)

else
go to 4)

end
2) if Parc_p>0

go to 5)
else

go to 6)
end
3)The particle xA in arc_s that satisfies the condition: f (xA)−1v(xA)−1

≤ 1 and has the smallest constraint value in
the ‘‘sparse’’ angle region is selected as gbest;

4) The individual xC in arc_s with the smallest constraint value is selected as gbest;
5) The feasible solution with the minimum target value in arc_p is selected as gbest_1;
6) The infeasible solution xB satisfying the conditions: f (xB)−1v(xB)−1

≤
f (xA)−1
v(xA)−1

in arc_s and having the smallest
constraint value is selected as gbest_2.

Step3: Maintenance of arc_p and arc_s
If the number of particles in the region is >1, the excess particles in arc_p with large target values are deleted;
while the redundant particles in arc_s with high degree of constraint violation are deleted.

Output: a group of solutions

the smallest target value in arc_p is usually regarded as a
gbest, but if there is an individual gb2 with a smaller target
value in two adjacent angular regions of gb1 (in arc_s), then
gb2 will be regarded as gbest. This diversity gbest selection
mechanism can not only guide other particles to approach the
constraint boundary, but also promote the in-depth search of
local areas.

We propose the second stage of gbest selection mecha-
nism: the minimum target particle gb1 in arc_p is adopted
as gbest_1. If there is a smaller target value individual gb2
in arc_s than gb1 in the same area or two adjacent areas,
then the particle gb2 is taken as gbest_2. gb1 and gb2 are
respectively applied as gbest to guide population update, and
the updated population is maintained again according to the
update mechanism of the external archive set. If there is
no one in arc_s that meets the requirements, only gb1 is
selected as the only gbest. By this means, the information
in population obtained by gb1 and gb2 are respectively taken
as gbest is exchanged, the approach of particles to the con-
straint boundary is accelerated and the search efficiency is
improved.

C. ANGLE BASED ADAPTIVE REGION PARTITION
MECHANISM
1) STAGE I: THE WHOLE TARGET-CONSTRAINT SPACE
The significance of self-adaptive division of angle areas lies
in: in the initial stage, the number of particles in the external
archive set is small, the division area is too thin, the particle
distribution is ‘‘sparse’’ or there are many areas without
particles, it is difficult to guide the particle update of these
areas in a targetedmanner, which is close to random selection.
The angle area is adaptively divided in the company of the
increase of the number of particles in the external archive
set, which makes the angle area gradually reduce. This is
more conducive to the directivity of guidance and further
search of particles in the ‘‘sparse’’ area. Meanwhile, aiming
at the ‘‘no particle’’ region, the search is enhanced through
the guidance of particles in adjacent angle regions, which is
beneficial to the development of new feasible regions. Conse-
quently, we make use of the method of adaptive angle region
division to strengthen the local search of ‘‘sparse’’ regions
and ‘‘blank’’ regions, which is contribute to the development
and exploration of feasible regions, can avoid premature
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Algorithm 2 Framework of TABC-PSO in the Second Stage
Input: Number of particles in arc_p Parc_p, number of particles in arc_s Parc_s,

number of archive particles in both arc_p and arc_s Parc
Termination conditions:Reach the maximum number of iterations
Step1: Initial angel of local adaptive region division

1) particle xK with the minimum target value in arc_p in f -v space is selected as gbest_1
2) angel region of particle xK (gbest_1) is determined

While tan
(
π
2 ·

p
50

)
≤

f (xK)−1
v(xK)−1

< tan
(
π
2 ·

(p+1)
50

)
xK is in the pth angel region

Step2: Local adaptive angle region division
1) if particle xL in arc_s: f (xL) < f (xK)

if tan
(
π
2 ·

p
50

)
≤

f (xL)−1
v(xL)−1

< tan
(
π
2 ·

(p+1)
50

)
.

divide the pth angel region equally
else if f (xL) < f (xK)
if tan

(
π
2 ·

(p+1)
50

)
≤

f (xL)−1
v(xL)−1

< tan
(
π
2 ·

(p+2)
50

)
.

divide the (p+ 1)th angel region equally
else if f (xL) < f (xK)
if tan

(
π
2 ·

(p+2)
50

)
≤

f (xL)−1
v(xL)−1

< tan
(
π
2 ·

(p+3)
50

)
.

divide the (p+ 2)th angel region equally
go to 2)

else if
go to 3)

2) if xL is selected as gbest_2
3) if gbest_1 is selected as gbest

Step3: Maintenance of arc_p and arc_s
If the number of particles in the region is >1, the excess particles in arc_p with large target values are deleted;
while the redundant particles in arc_s with high degree of constraint violation are deleted.

Output: a group of solutions

convergence more effectively, and also maintain the diversity
of the population.

When the angle region is divided in the target constraint
space, if (0,0) is still used as the reference point to divide
the angle region, due to the final requirements must satisfy
the constraints, the search of the optimal individual will
concentrate on the target axis of v(x) = 0. No matter how
small the angle division is, the entire target value axis f (x)
coordinate axis only belongs to one angle region. In this
way, at most 2 solutions (one is in the arc_p and the other
is in the arc_s) corresponding to each angular region in the
external archive set can be saved, which greatly reduces
the in-depth search of the f (x) axis. Here, we consider the
point (1,1) as the reference point for angle regionalization.
Under the circumstances, the entire f (x) coordinate axis
will be finely searched with the increase of angle regions,
which is contribute to the exploration of the optimal solution
in such important local angle regions, as well as diversity
maintenance.

Usually the optimal solution is located at the edge of the
feasible region. That is to say, the optimal solution is the par-
ticle with the minimum target value that just does not violate
the constraint conditions. Accordingly, the optimal solution
is the region of v(x) = 0 in the f -v space, as shown in Fig. 1.
The conventional multiobjective optimization algorithm is to

delete redundant individuals through calculating the conges-
tion degree, so as to maintain the number of individuals in the
external archive set, thus making the non-dominated solution
set have better uniformity. This method does not reinforce
the local search of the target value axis f (x), which is such
an important region. For this hence, we propose that the
boundary points (1,1) are applied as the benchmark to divide
the angle region adaptively in the f -v space.

In stage I, in the whole f -v space, in pace with the increas-
ing number of particles in the region, the divided regions
gradually increase until the upper limit of the region is
reached and the division is stopped.

(i− 1)P
imax

< Parc ≤
iP
imax

(7)

where D is the number of regions initially divided, i is the
number of divisions, and Parc is the number of particles stored
in the arc_s and arc_p, as shown in Equation 8, where the
maximum capacity of the external archive set is set to 100.

Parc = Parc−s + Parc−p (8)

In the first stage, the algorithm of adaptive angle region
division, external archive set maintenance and gbest selection
is expanded as Algorithm1.
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TABLE 1. Characteristics of the benchmark functions in CEC 2006.

TABLE 2. Parameter settings of compared algorithms in solving CEC 2006.

2) STAGE II: AREA OF LOCAL ANGLE
When the first stage reaches the switching condition, it enters
the second phase. Switching conditions: when the number
of particles in arc_p reaches the upper limit or no new fea-
sible areas have been found after continuous updating for
10 generations.

When the first phase is switched to the second phase,
the bias point of constraint optimization will also change.
In the second stage, local search of the optimal solution is
emphasized. We know that the feasible solution is a point

on the f (x) axis. Consequently, it is necessary to strengthen
the search for the region where the feasible solution lies on
the f (x) axis. Here, we further divide the region where the
particle with the smallest target value in arc_p is located
and the two adjacent regions along the direction of target
value reduction. The above three regions are equally divided
again, and each region is divided into two regions, so that
more particles will have the opportunity to be stored in arc_p
and arc_s. Once a feasible solution with a smaller target
value is found, we will continue to divide the region where
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TABLE 3. Performance comparison between TABC-PSO with six peer algorithms on g01-g13 of CEC 2006 benchmark functions.

the particle is located along the direction where the target
value decreases in the light of the same method. In this
way, we will strengthen the search for the local angle region

in a targeted way by enhancing the particle distribution.
As shown in Fig. 2, if the current particle gb1 with minimum
target is gbest_1, we start from the angle area where gb1
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TABLE 4. Performance comparison between TABC-PSO with six peer algorithms on g14-g24 of CEC 2006 benchmark functions.

is located and divide the two adjacent angle areas together
twice along the direction of target value reduction on the
f (x) axis with (1,1) as the reference point. This occasion,
if particle gb2 with smaller target value appears in arc_s,
gb1 and gb2will be adopted as gbest_1 and gbest_2 to
guide the update respectively. The removal method of redun-
dant particles in the two external archive sets arc_p and
arc_s remains unchanged. After the local area is intensively
searched, if a feasible solution with a smaller target value is
found, wewill start with the angle area where the new feasible
solution is, and continue to divide the area in the above
way.

In the second stage, the algorithm of adaptive angle region
division, external archive set maintenance and gbest selection
is expanded as Algorithm2.

The advantages of the two-stage multiobjective optimiza-
tion method based on adaptive angle region division are as
follows:

First, it is applicable to all COPs using multiobjective
optimization methods, and is not limited to problems. Sec-
ondly, according to the different stages of the constraint
optimization process, different measures are taken: in the
first stage, efforts are striven to explore feasible areas and
strengthen the search of the whole space; In the second stage,
the search intensity of local regions is enhanced for feasible
regions. Third, the establishment of the external archive set
and the preservation of non-inferior solutions in the angle
region not only retain some useful information of infeasible
solutions, but also contribute to the maintenance of diversity.
Fourth, different gbest selection mechanisms are adopted in
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TABLE 5. Parameter settings of compared algorithms in solving CEC 2017.

different stages. The first stage is conducive to the exploration
of unknown feasible regions. In the second stage, infeasible
solutions are used to accelerate the approach to the constraint
boundary.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. COMPARATIVE EXPERIMENTS OF CEC 2006
In order to verify the feasibility and effectiveness of the algo-
rithm, we use benchmark test functions g01-g24 proposed by
CEC 2006 [39] to test the algorithm. These test functions
and constraints involve different dimensions and different
types of functions, including linear, quadratic, cubic polyno-
mial and non-linear, and can evaluate constraint optimization
algorithms from different angles. The basic characteristics of
these benchmark functions are shown in Table 1. D refers
to the dimension of decision variables. Column 3 describes
the types of test functions. ρ is the estimated ratio between
the feasible region and the search space. The lower the ratio
of feasible solutions is, the more difficult it is to search the
feasible solution area. Columns 5-8 in table give the number
and types of constraints for each objective function: LI is
the number of linear inequality type constraints, NI is the
number of nonlinear inequality type constraints, LE is the
number of linear equality type constraints, and NE is
the number of nonlinear equality type constraints. a refers
to the number of active constraints when the optimal solu-
tion x∗ is obtained. f (x∗) gives the optimal solution obtained
so far.

1) ALGORITHMS COMPARISONS USING CEC 2006
We chose two kinds of constrained optimization algorithms
to compare with TABC-PSO algorithm to test the effec-
tiveness of the algorithm. Among them, the first type of
algorithm is the classical algorithm for constrained optimiza-
tion: simple multi-agent evolution strategy (SMES) proposed
by Mezura-Montes and Ceolo [13], and improved random
sorting method (ISR) proposed by Runarsson et al. [6]. The
third is the more classical ATMES algorithm [9], which is
also a phased division and Pareto-based adaptive constrained
optimization algorithm. This article designs corresponding
tradeoff schemes to different stages to obtain an appropriate
balance between objective and constraint.

The algorithm we advance is based on particle swarm
optimization, so for the second kind of comparison algorithm,
we choose the advanced constrained optimization algorithm
with particle swarm algorithm as the search mechanism.
AHPSOMO algorithm [40] initializes the individuals of pop-
ulation with good point set (GPS) theory and differential evo-
lution (DE) algorithm is introduced for updating local optimal
individuals. PSO+ algorithm [41] also uses particle swarm
algorithm as the search mechanism, and ensures the diversity
and convergence of the population by using feasible repair
operators and improved particle update methods. In addition,
the third comparison algorithm is CVI-PSO [42], in which
the objective and the constraint are regarded as two objective
values respectively, and the constraint optimization is carried
out by using the double-objective method. Interval arithmetic
is used as the evaluation mechanism of constraint degree,
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TABLE 6. Performance comparison between TABC-PSO with six peer algorithms on C01-C14 of CEC 2017 benchmark functions for 10D.

and lexicographic method is used to deal with COPs. The
parameter settings of all compared algorithms are adopted
from the recommendation of their original literatures and
summarized in Table 2.

The initial population number popsize = 100, the initial
number of angle regions in the f -v space D = 2, 3, 4, 5, 6,
the total number of iterations totalGen = 1500, number of
particles in arc_p Parc_p = 50, number of particles in arc_s
Parc_s = 50, number of iterations n, number of divisions i,
number of archive particles in both arc_p and arc_s Parc =
100. The population size is set at 100 for all test problems.
Themaximum number of iterations is set to 1000 generations.
All tests have been run independently for 30 times.

2) TEST RESULTS OF CEC 2006
We compare the TABC-PSO algorithm with the above six
methods. CEC 2006, as a benchmark function commonly
used in literature, is used for testing. The experimental
results of 22 benchmark functions in terms of best results,
worst results, average results and standard deviation are put
in Table 3 and Table 4 are compared with the six classical

algorithms. The results of six algorithms ISR, SMES,
ATMES and PSO+, AHPSOMO and CVI-PSO are directly
extracted from their original papers. The best results of the
six comparison algorithms are marked by boldface.

The comparison between TABC-PSO and other six algo-
rithms shows that, except for the test functions g02 and g09,
TABC-PSO algorithm is superior to all the comparison algo-
rithms or is equal to the comparison algorithm in most cases.
In addition, from the standard deviation data, the proposed
method has zero standard deviation for 17 of the 22 test func-
tions (g01, g03-g08, g10-g17, g23 and g24), so the algorithm
has good robustness. Moreover, the TABC-PSO algorithm
does not affect the optimization effect due to the reduction
of the feasible solution ratio of the test function. Except for
the test functions g02, g04, g12, g19 and g24, the feasible
solution ratio of other test functions is very low, especially
the feasible solution ratio of the test functions g05, g11, g13,
g14, g16-g18, g21 and g23 is very small, so the probability
of finding a feasible solution after population initialization is
very small. However, at the stage when no feasible solution is
found, the TABC-PSO algorithm enhances the development
of possible areas of feasible solutions, which is conducive
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TABLE 7. Performance comparison between TABC-PSO with six peer algorithms on C15-C28 of CEC 2017 benchmark functions for 10D.

to optimizing the test functions with low ratio of feasible
solutions. The ratio of feasible solutions of test function
g02 is very high, so the first stage of comprehensive search
of feasible regions did not show absolute advantages. Overall,
the proposed algorithm has a stable effect.

B. COMPARATIVE EXPERIMENTS OF CEC 2017
CEC 2017 [43] is a constraint function test set proposed
in recent years, which has been tested in some algo-
rithms. To further verify the performance of our proposed
TABC-PSO algorithm, we applied this algorithm to CEC
2017 for testing. In 28 constraint problems of CEC 2017 con-
straint problem, C01-C03, C05, C13, C14, C17 and C20 are
known as inseparable functions, while C04, C06-C12, C15-
C16 and C18-C19 are considered as separable functions.
In addition, C21-C28 are described as rotated problems.

1) ALGORITHMS COMPARISONS USING CEC 2017
CMPSOWV [34] has been introduced in Section II. C2oDE
[44] is a hybrid constraint method using a strategy pool and
a restart mechanism. LSHADE44 [45] is a constrained opti-
mization method based on feasibility rule and dynamically

adjusting population size. L-S44+IDE [46] handles con-
straint problems by coordinating the application of two adap-
tive differential evolution algorithms. UDE [47] applies three
test vector generation strategies and two parameter setting
methods. L-S44-IEpsilon [48] is an improved ε constraint
processing method based on the feasible solution ratio of the
current population. The parameter settings of all compared
algorithms are extracted from their original literatures and
concluded in Table 5.

2) TEST RESULTS OF CEC 2017
We use TABC-PSO algorithm and six comparison algorithms
to solve the benchmark function problem of CEC 2017.
The mean value and SD value of D = 10 are shown in
tables Table 6 and Table 7. It can be seen from the two
tables that when TABC-PSO solved 28 constraint problems
in CEC 2017, 16 functions obtained the best mean value,
and 11 functions acquired the second-best mean value. This
shows that our proposed algorithm is competitive with other
six constraint processing algorithms.

The mean value and SD value of D = 30 are dis-
played in Table 8 and Table 9. Among them, 14 of the
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TABLE 8. Performance comparison between TABC-PSO with six peer algorithms on C01-C14 of CEC 2017 benchmark functions for 30D.

28 test functions in CEC 2017 got the best mean value,
and 8 got the second-best mean value. Therefore, com-
pared with the other six constrained optimization algo-
rithms, TABC-PSO algorithm still has a strong optimiza-
tion effect to tackle the 28 benchmark functions. In addi-
tion, with the increase of dimensions, the difficulty of
solving constraint problems increases greatly, which leads
to a decline in the optimization effect of all algorithms.
Although the advantages of TABC-PSO algorithm are
slightly weakened, it is more advanced than the other six
algorithms.

3) COMPARISON OF NON-PARAMETRIC STATISTICAL TEST
RESULTS
Wilcoxon signed rank test is a nonparametric method, which
is used to evaluate the statistical significance of previous
results. It is employed to compare the significant differences
between two paired samples. The statistical analysis results
are evaluated in terms of the positive rank (R+), the negative
rank (R−) and p-value for the pairwise performance compar-
isons.

The results of Wilcoxon signed rank test for the pairwise
comparison between CMPSOWV with six peer algorithms

are summarized in the table.Wilcoxon signed rank test results
of the mean values of seven algorithms when D = 10 are
shown in Table 10.
Table 11 represents the comparison of algorithms based on

Wilcoxon signed rank test for 30D problem’s mean result.
R+ shows that TABC-PSO algorithm has advantages in solv-
ing COPs in CEC 2017 compared with other six compar-
ative algorithms. In all paired tests with D = 10 and
D = 30, the positive rank is found to be higher than
R−, which means that the TABC-PSO algorithm can get
better average than the other six algorithms. The p-value
indicates the significant difference between the comparison
pairs, and the smaller the p-value, the greater the significant
difference between the comparison pairs. At D = 10, there
are significant differences between TABC-PSO algorithm
and the other six algorithms, while at D = 30, there is
no significant difference between TABC-PSO algorithm and
L-S44-IEpsilon and C2oDE algorithm. This shows that with
the increase of dimensions, the advantages of TABC-PSO
algorithm decrease slightly. This is because the increase
of dimensions will greatly affect the selection pressure.
Of course, TABC-PSO algorithm has obvious advantages
over most algorithms.
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TABLE 9. Performance comparison between TABC-PSO with six peer algorithms on C15-C28 of CEC 2017 benchmark functions for 30D.

TABLE 10. Wilcoxon signed rank test for the pairwise comparison between TABC-PSO with six peer algorithms for 10D.

TABLE 11. Wilcoxon signed rank test for the pairwise comparison between TABC-PSO with six peer algorithms for 30D.

V. CONCLUSION AND FUTURE WORK
This article proposes a single-objective constrained opti-
mization algorithm with bi-objective method as constraint
processing mechanism and PSO algorithm as search mech-
anism. On the basis of the distribution of feasible solutions
in the target constraint space, the global and local angle
districts are divided in stages adaptively. Through the estab-

lishment of primary and secondary external archive sets,
the algorithm completes the selection of the optimal indi-
viduals and the maintenance of the archive sets. Compared
with other classical and advanced constrained optimization
algorithms, TABC-PSO algorithm is proved to be effective
in standard test functions. As a multiobjective optimization
method, TABC-PSO algorithm is beneficial to maintain good
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population diversitywhen dealingwith complex single-objective
constraint problems such as low proportion of feasible solu-
tions and scattered distribution of feasible regions.

The future work is not only to simulate the test function, but
also to apply the proposed algorithm to engineering practice.
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