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ABSTRACT A quasi-cyclic (QC) low-density parity-check (LDPC) code is called type-II, if the maximum
weight over all circulants appearing in the parity-check matrix has the value of two. On the basis of
multiplicative subgroup analysis for the prime field, a novel algebraic approach for type-II QC-LDPC codes
is proposed from Tanner’s method. For column weight of four, the new type-II codes possess girth at least
six and include a subset with very small circulant sizes almost attaining the theoretical lower bound. The
new approach can yield type-II codes with two times smaller circulant sizes, in comparison with the state-
of-the-art method. To enhance the flexibility of circulant sizes, a generalized Chinese-remainder-theorem
(gCRT) method is proposed as well for type-II codes. Simulation results show that combining gCRT with
the proposed short code yields compound type-II codes with a very promising decoding performance and
flexible circulant sizes.

INDEX TERMS Circulant, girth, low-density parity-check (LDPC) codes, prime field, quasi-cyclic (QC).

I. INTRODUCTION
Recently, type-II quasi-cyclic (QC) low-density parity-check
(LDPC) codes have attracted increasing attention [1]–[10],
owing to the merit of commonly possessing larger upper
bounds on distance [5], in comparison with traditional
QC-LDPC codes [11]. On one hand, for column weight of
four and small (even) row weight, type-II codes with the
smallest circulant sizes (meeting the theoretical lower bound)
have been reported via the computer-based search methods
in [9] and [10]. On the other hand, type-II codes with small
circulant sizes can also be explicitly constructed by a couple
of algebraic methods, for example, [3], [6], [7], [10]. Among
these studies, the state-of-the-art method (appendix B, [10])
can yield a class of type-II codes (with columnweight of four)
possessing circulant sizes only about two times larger than the
theoretical lower bound.

In this article, a novel construction is designed for type-II
QC-LDPC codes. In a special case, the new type-II codes
possess circulant sizes which are much smaller than those
of the existing algebraic methods; indeed, their circulant
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sizes are only marginally larger than the lower bound by
one. To the best of our knowledge, this is the first alge-
braic construction capable of almost attaining the lower
bound. To enhance the flexibility of circulant sizes, a gen-
eralized Chinese-remainder-theorem (gCRT) method is also
proposed. As a byproduct, the rationales behind several con-
jectures and empirical rules on the girth of Tanner’s method
are disclosed as well.

The remainder of the paper is organized as follows. Basic
notations and definitions are presented in Section II. New
results on the girth of Tanner’s method are put forward in
Section III. In Section IV, novel type-II QC-LDPC codes are
algebraically constructed on the basis of Tanner’s method.
Section V presents a generalized CRT method for enhancing
the circulant-size flexibility of the new type-II QC-LDPC
codes. Performance of the proposed type-II QC-LDPC codes
and existing counterparts is compared in Section VI. Finally,
Section VII concludes the whole work.

II. PRELIMINARY
An LDPC code is the null space of a sparse parity-check
matrix (PCM). The PCM of a QC-LDPC code [5], [10], [12]
is anM × N array of circulants with the same size of P× P.
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A weight-k circulant has k ones in its first row, where 0 ≤
k ≤ P. In particular, a weight-0 circulant and a weight-1
circulant are called a zero matrix (ZM) and a circulant per-
mutation matrix (CPM), respectively. If the maximumweight
over all circulants isK (K ≥ 1), then the PCMyields a type-K
code. For instance, type-1 and type-2 can be also denoted by
type-I and type-II, respectively. A type-I code without ZMs
in its PCM is called classical.
For a weight-k circulant within the PCM of a type-K code,

a K -tuple is formed by the k positions of ones (in the first
row of the weight-k circulant) and K − k ∞’s (i.e., using
K − k ∞’s to fill as many spare places). The components in
theK -tuple are also called exponents. Therefore, a QC-LDPC
code is associated with an M × N array of K -tuples. The K
exponents for each K -tuple are randomly assigned to the K
entries (in one-to-one correspondence) located in the same
position of K matrices of sizeM ×N , leading to a total of K
matrices, E0, E1, · · · , EK−1, which are referred to as expo-
nent matrices. Via the K exponent matrices and the circulant
sizeP, the PCMcan be uniquely described by

∑K−1
i=0 f (Ei,P),

where the function f transforms a non-∞ exponent (say, e)
within Ei to a specific P × P CPM (where ‘1’ in the first
row is located in the e-th column), and transforms ∞ to a
P× P ZM.
A PCM with column (resp. row) weight J (resp. L) corre-

sponds to a (J ,L) code. A cycle of length 2l within a PCM is
called a 2l-cycle and the length of the shortest cycle is called
girth. In this article, we denote girth at least g and exactly g
by Gg+ and Gg, respectively.
We finish this section by introducing two important results

which are associatedwith the new contributions of this article.
The first one is a lower bound on the circulant size for a
G6+ type-II (2J ′, 2L ′) QC-LDPC code, as described by the
following lemma.
Lemma 1: For a G6+ type-II (2J ′, 2L ′) QC-LDPC code

whose PCM is composed of weight-2 circulants, the circulant
size is greater than or equal to 4L ′ [9].
The other one is a well-known construction for classical

QC-LDPC codes presented by R. M. Tanner [13], [14].
Tanner’s method [13]: Let P be a prime number and denote

by FP the prime field with P elements. Let α and β be two
nonzero (different) integers from FP with orders of J and L,
respectively. It is evident that J |P − 1 and L|P − 1. Define
Etan(i, r) = (αi · βr )P, where 0 ≤ i ≤ J − 1, 0 ≤ r ≤ L − 1
and (x)P denotes x modulo P. The code associated with Etan
and P is called Tanner’s (J ,L) QC-LDPC code.

III. NEW RESULTS ON GIRTH OF TANNER’s METHOD
Let P be a prime number. It is well known that for each
positive integerK (K |P−1), there are ϕ(K ) different elements
with order K over the prime field FP, where ϕ(·) is Euler’s
totient function. Therefore, for Tanner’s method (where
J |P−1 and L|P−1), at first glance there might exist as many
as ϕ(J ) · ϕ(L) different forms for Etan, one for each possible
pair (α, β). However, we have the following result.

Lemma 2: Among all the ϕ(J ) · ϕ(L) exponent matrices,
where each of them is associated with a pair (α, β), there
exists and only exists one inequivalent exponent matrix upon
row and/or column permutations.

Proof: If α is an element with order J , then each element
with order J is in the set {α0, α1, · · · , αJ−1}, which is a cyclic
multiplicative subgroup of FP \ {0}. Therefore, if α1 and
α2 are of order J , then the vector (α01, α

1
1, · · · , α

J−1
1 )P is a

permutation of the one (α02, α
1
2, · · · , α

J−1
2 )P. Likewise, if β1

and β2 are of order L, then the vector (β01 , β
1
1 , · · · , β

L−1
1 )P

is a permutation of the one (β02 , β
1
2 , · · · , β

L−1
2 )P. As a result,

the two resultant exponent matrices E(1)
tan(i, r) = (αi1 · β

r
1 )P

and E(2)
tan(i, r) = (αi2 · β

r
1 )P are equivalent upon a certain row

permutation, and the two ones E(2)
tan(i, r) = (αi2 · β

r
1 )P and

E(3)
tan(i, r) = (αi2 · β

r
2 )P are equivalent upon a certain column

permutation. Consequently, any two exponent matrices are
equivalent upon row and/or column permutations. �
Example 1: Let P = 37, J = 4 and L = 9. Obviously,

there are ϕ(J ) = 2 elements ({6, 31}) of order J = 4,
each of which can be chosen as α. Similarly, there are
ϕ(L) = 6 elements ({7, 9, 12, 16, 33, 34}) of order L = 9,
each of which can be chosen as β. We first choose α = 6 and
β = 7 to generate Etan.

1 7 12 10 33 9 26 34 16
6 5 35 23 13 17 8 19 22
36 30 25 27 4 28 11 3 21
31 32 2 14 24 20 29 18 15

 (1)

Next, we choose α = 31 and β = 12 to generate Etan.
1 12 33 26 16 7 10 9 34
31 2 24 29 15 32 14 20 18
36 25 4 11 21 30 27 28 3
6 35 13 8 22 5 23 17 19

 (2)

It is easily verified that upon a row permutation
(row indices from (0, 1, 2, 3) to (0, 3, 2, 1)) and a col-
umn permutation (column indices from (0, 1, · · · , 8) to
(0, 5, 1, 6, 2, 7, 3, 8, 4)), the second exponent matrix can be
transformed into the first one. Therefore, the two exponent
matrices are equivalent. Similarly, all other choices of α
and β lead to exponent matrices equivalent to the first one.
Consequently, there is only one inequivalent exponent matrix
from Tanner’s method for a feasible triple of (J ,L,P).
Owing to Lemma 2, without loss of generality, α and β in

Tanner’s method can be set as (x(P−1)/J )P and (x(P−1)/L)P,
respectively, where x is a primitive element of FP.
Lemma 3: If there are three pair-wisely shifted rows in the

exponent matrix of a classical QC-LDPC code, i.e., a0 a1 · · · aL−1
ar amod(r+1,L) · · · amod(r+L−1,L)
as amod(s+1,L) · · · amod(s+L−1,L)

 , (3)

where 0 < r < s ≤ L − 1, then the associated PCM has
6-cycles regardless of the CPM size.

Proof: The mod(L − s,L)-th column of the middle row
is amod(r−s,L), and the same column of the last row is a0.
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Similarly, the mod(r − s,L)-th column of the first row is
amod(r−s,L), and the same column of the last row is ar . There-
fore, in the three columns (indexed by 0-th, mod(L − s,L)-
th and mod(r − s,L)-th), there are 6-cycles described by
(a0−ar )+(amod(r−s,L)−a0)+(ar−amod(r−s,L)) = 0 (mod P),
regardless of P and the sequence {a0, a1, · · · , aL−1}. �
Lemma 4: For an even L (L ≥ 4), there exist 8-cycles in

the PCM of the codes from Tanner’s method.
Proof: As ord(β) = L and 2|L, we have (βL/2)P =

(−1)P. Select two rows (the i-th row and j-th row, 0 ≤
i < j ≤ J − 1) from the exponent matrix. Then select
four columns (the r-th, s-th, (r + L/2)-th and (s + L/2)-
th columns, 0 ≤ r < s ≤ L/2 − 1) from the two
rows. Owing to (βL/2)P = (−1)P, there is a pattern of
8-cycles associated with the selected rows and columns,
which can be expressed as [Etan(i, r)−Etan(j, r)]+[Etan(j, s+
L/2)−Etan(i, s+L/2)]+[Etan(i, r+L/2)−Etan(j, r+L/2)]+
[Etan(j, s)−Etan(i, s)] = 0 (mod P). �

Note that Lemma 4 is also applicable to any even J (J ≥ 4).
The proof is similar and omitted.
Lemma 5: If J = ab and L = ac hold, where a ≥ 3 and

1 ≤ b ≤ c, then the girth of codes from Tanner’s method is
six.

Proof: Obviously, the girth of codes from Tanner’s
method is at least six. Now, we prove the existence of
6-cycles. Obviously, x(P−1)/a is an element with order a.
From the exponent matrix, take the row whose first entry is
in the set {x i(P−1)/a|0 ≤ i ≤ a− 1}. There are in total a such
rows. Next, from the selected rows, take the column whose
first element is also in the set {x i(P−1)/a|0 ≤ i ≤ a − 1}.
There are in total a such columns. Thus, an a × a matrix is
obtained. Performing row and column permutations yields an
a × a circulant matrix (i.e., the mod(i + 1, a)-th row can be
obtained by cyclically shifting the i-th row to right by one
position, 0 ≤ i ≤ a − 1). Therefore, The proof is completed
due to Lemma 3. �

Combining Lemma 4 and Lemma 5 (with b = 1), we have
proved an unsolved conjecture regarding the girth of Tanner’s
method.
Corollary 1: (Conj. 1, [15]): If J |L, then Tanner’s (J ,L)

QC-LDPC codes have girth eight for J = 2, and six for
J ≥ 3.
By setting a = 3 and b = 2, Lemma 5 implies a corollary,

which justifies the empirical observation made in [15].
Corollary 2: Tanner’s (6,L) QC-LDPC codes have girth

six when mod(L, 3) = 0.
On the basis of Lemma 4 together with Lemma 5,

we have the following corollary, which provides the rationale
behind the empirical results on the girth of Tanner’s method
in Tables 6–8 of [15].
Corollary 3: For a G10+ Tanner’s (J > 2,L) QC-LDPC

code, J and L should be odd integers satisfying that
gcd(J ,L) = 1.

For instance, besides each pair of two different primes,
the two pairs, (3, 25) and (5, 9), are the two smallest ones
with potential to guarantee G10+ Tanner’s QC-LDPC codes

for a properly selected P. Actually, P = 64 · 3 · 25 + 1 for
(3, 25) and P = 36 · 5 · 9+ 1 for (5, 9) really work.

IV. NEW TYPE-II QC-LDPC CODES DERIVED FROM
TANNER’s METHOD
A. NEW METHOD
Let J ≥ 4 be even and L > J/2. Suppose that P is a
prime number such that J |P − 1 and L|P − 1. Let α and
β be two integers from the prime field FP with orders of
J and L, respectively. Define Ek (i, r) = (αi+(k·J )/2 · βr )P,
where k ∈ {0, 1}, 0 ≤ i ≤ J/2− 1 and 0 ≤ r ≤ L − 1.
Remark 1: The novel construction is motivated by Tanner’s

method [13]. To be specific, the two exponent matrices
(E0 and E1) in the new construction are just the upper and
lower parts, respectively, of the exponent matrix (Etan) in
Tanner’s method. It should be pointed out that Tanner’s
method is only applicable to classical QC-LDPC codes, while
the new construction is designed for type-II QC-LDPC codes.
Lemma 6: E1(i, r) = (−E0(i, r))P.
Proof: It is obvious owing to (αJ/2)P = (−1)P. �

By Lemma 6, it is obvious that E0(i, r) 6= E1(i, r); there-
fore, the construction yields a type-II QC-LDPC code whose
PCM is composed of weight-2 circulants.
Example 2: Set J = 4, L = 7 and P = 29. Obviously,

J |P − 1 and L|P − 1. Choose α = 12 and β = 7 such that
ord(α) = J = 4 and ord(β) = L = 7. According to the
new construction, we have two exponent matrices,E0 andE1,
as follows. [

α0β0 α0β1 · · · α0β6

α1β0 α1β1 · · · α1β6

]
(4)

and [
α2β0 α2β1 · · · α2β6

α3β0 α3β1 · · · α3β6

]
, (5)

which are [
1 7 20 24 23 16 25
12 26 8 27 15 18 10

]
and [

28 22 9 5 6 13 4
17 3 21 2 14 11 19

]
,

respectively. Obviously, E0(i, r)+E1(i, r) = 0 (mod P) for
any i and r (0 ≤ i ≤ 1, 0 ≤ r ≤ 6), as expected by
Lemma 6. It is readily verified that the two exponent matrices
correspond to a G6+ type-II (4, 14) QC-LDPC code with
circulant size of 29, which almost attains the lower bound (28)
in Lemma 1.
Remark 2: (i) Due to Lemma 6, the index of the row (in

E0) with the entry (αi)P is the same as that of the row (in E1)
with the entry (−αi)P, where 0 ≤ i ≤ J/2 − 1. Combining
this observation with Lemma 2, it is evident that our method
also yields only one inequivalent exponent matrix upon row
and/or column permutations. (ii) If L is even, then there
always exist two 2-tuples, i.e., (1, (−1)P) and ((−1)P, 1),
which are associated with the first row and the two columns
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(0-th and L/2-th columns) of the two exponent matrices.
As the two 2-tuples lead to 4-cycles, L must be an odd integer
if G6+ type-II QC-LDPC codes are required.
Example 3: Set J = 4, L = 6 and P = 73. Obviously,

J |P − 1 and L|P − 1. Choose α = 27 and β = 9 such that
ord(α) = J = 4 and ord(β) = L = 6. According to the
new construction, we have two exponent matrices,E0 andE1,
as follows. [

1∗ 9 8 72∗ 64 65
27 24 70 46 49 3

]
(6)

and [
72∗ 64 65 1∗ 9 8
46 49 3 27 24 70

]
. (7)

It is observed that there are two 2-tuples, (1, 72) and (72, 1),
corresponding to the first row and the two columns (0-th and
3-th columns) of the two exponent matrices, which lead to
4-cycles described by (1−72)+(72−1) = 0 (mod P) regard-
less of P. Therefore, to ensure girth at least six, L should be
odd in our new construction.
Remark 3: 4-cycles for a type-II (2J ′, 2L ′) QC-LDPC code

can be identified by the following steps: (i) for each 4-tuple
of (i, j, r, s) (0 ≤ i < j ≤ J ′ − 1, 0 ≤ r < s ≤ L ′ − 1),
select two row (i-th and j-th rows) and two columns (r-th and
s-th columns) from the two exponent matrices, E0 and E1;
(ii) identify all patterns of 4-cycles associated with the two
resultant 2 × 2 matrices. In step (ii), all patterns of 4-cycles
are summarized in Table 1, according to [10]. The exponent
corresponds to the i′-th row and r ′-th column is denoted by
{e0(i′, r ′), e1(i′, r ′)}, where 0 ≤ i′, r ′ ≤ 1. In Table 1, for
the case of c(n) (0 ≤ n ≤ 15), the inequality avoiding
4-cycles can be expressed by en0 (0, 0)−en1 (1, 0)+en2 (1, 1)−
en3 (0, 1) 6= 0 (mod P), where (n3, n2, n1, n0) is the binary
form of n. For example, the binary form of 3 is (0, 0, 1, 1).

TABLE 1. Inequalities avoiding 4-cycles for any type-II QC-LDPC code.

B. CASE OF J=4
Let L be an odd integer. As gcd(J ,L) = 1,P can be expressed
as 4mL + 1, where m ≥ 1 is an integer.

Lemma 7: If r and s are two integers, 0 ≤ r < s ≤
L − 1, then we have (i) α 6= (−1)P; (ii) (βs−r )P 6= (−1)P;
(iii) (α ± βs−r )P 6= 0; and (iv): (αβs−r )P 6= (±1)P.

Proof: (i) α = (−1)P leads to (α2)P = 1,
which contradicts the premise that ord(α) = 4. (ii) If
(βs−r )P = (−1)P, then (x4m(s−r))P = (−1)P, which implies
4m(s− r) = (P−1)/2 (mod P−1); however, it is impossible
as L is odd. (iii) Supposing (α + βs−r )P = 0, then (xLm)P =
(x4m(s−r)+(P−1)/2)P, indicating Lm = 4m(s − r) + (P −
1)/2 (mod P − 1). This is impossible as mod(L, 4) 6= 0.
Next, if (α − βs−r )P = 0, then (xLm)P = (x4m(s−r))P, which
implies Lm = 4m(s−r) (mod P−1), again impossible due to
mod(L, 4) 6= 0. Therefore, we have (α ± βs−r )P 6= 0. (iv) If
(αβs−r )P = 1, then we have Lm+4m(s−r) = 0 (mod P−1).
It is impossible as mod(L, 4) 6= 0. Next, (αβs−r )P = (−1)P
means Lm+ 4m(s− r) = (P− 1)/2 (mod P− 1); however,
it cannot hold owing to mod(L, 4) 6= 0. As a result, we con-
clude that (αβs−r )P 6= (±1)P. �
Combining the new method and Lemma 7 yield the first

main contribution of this article.
Theorem 1: Let J = 4 and L be an odd integer. Suppose

that P is a prime number such that P = 4mL + 1, where
m ≥ 1 is an integer. Let α and β be two integers from the
prime field FP with orders of J = 4 and L, respectively.
Define Ek (i, r) = (αi+(k·J )/2 · βr )P, where k ∈ {0, 1}, i ∈
{0, 1} and 0 ≤ r ≤ L − 1. Then the two exponent matrices,
E0 and E1, correspond to a G6+ type-II (4, 2L) QC-LDPC
code with circulant size P = 4mL + 1.

Proof: According to [10], 4-cycles for a type-II (4, 2L)
QC-LDPC code can be classified into three categories: within
one, two or four circulants. We consider them one by one.
In the following, each expression governing a possible pattern
of 4-cycles is transformed into a product of factors, and hence
it cannot equal zero modulo P due to the related items in
Lemma 7, or due to the orders of α and β.

(1) Within a circulant. There are two cases: a circulant in
the first row or second row. (1.1) In the first row: the circulant
in r-th column can be denoted by its exponent, (α0βr , α2βr ).
Then we have 2(α0βr − α2βr ) = 2(1 − α2)βr . (1.2) In
the second row: the circulant in r-th column can be denoted
by (α1βr , α3βr ). Similar to (1.1), we have 2(α1βr−α3βr ) =
2α(1− α2)βr .
(2) Within two circulants. There are three cases: two cir-

culants in the first row, in the second row, or in a column.
(2.1) In the first row (r < s): denote the two circulants by
their exponents, (α0βr , α2βr ), (α0βs, α2βs). There are two
subcases, which can be uniformly expressed as (−1)a(α0βr−
α2βr )+ (α0βs − α2βs) = 2βr [βs−r + (−1)a], where a is an
integer in {0, 1}. (2.2) In the second row (r < s): the two
circulants can be expressed by (α1βr , α3βr ), (α1βs, α3βs).
Similar to (2.1), there are also two subcases, which can be
uniformly denoted by (−1)a(α1βr−α3βr )+(α1βs−α3βs) =
2αβr [βs−r + (−1)a]. (2.3) In a column: the two circulants
can be denoted by (α0βr , α2βr ), (α1βr , α3βr ). Again, there
are two subcases which can be uniformly represented by
(−1)a(α0βr − α2βr )+ (α1βr − α3βr ) = 2[α + (−1)a]βr .
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(3) Within four circulants. Denote the four circulants by
their exponents, (α0βr , α2βr ), (α1βr , α3βr ), (α0βs, α2βs)
and (α1βs, α3βs). There are 16 cases, which can be repre-
sented by c(0) to c(15) in Table 2. �

TABLE 2. 16 cases of 4-cycles within four circulants for the new type-II
(4, 2L) QC-LDPC codes, where each factor form is not zero modulo P ,
owing to the related items in Lemma 7.

By replacing L with 2n+1, the constraint of P = 4mL+1
being a prime number becomes that P = (8m)n + (4m + 1)
should be a prime number. Owing to gcd(8m, 4m + 1) = 1,
it immediately follows Dirichlet’s theorem [16] that there are
infinitely many primes with the form (8m)n + (4m + 1) for
each fixed m.
Lemma 8: (Dirichlet’s theorem) [16]: For any two inte-

gers a and b satisfying a > 0 and gcd(a, b) = 1, there exist
infinitely many primes with the form an+ b.

Summarizing the above analysis, we have the following
key corollary.
Corollary 4: For each fixed m ≥ 1, there exist infinitely

many choices of L such that G6+ type-II (4, 2L) QC-LDPC
codes exist with circulant size 4mL + 1.
By setting m = 1 in our method, it turns out that we have

explicitly presented a class of G6+ type-II (4, 2L) QC-LDPC
codes with almost the smallest circulant sizes (i.e., larger than
the lower bound by one), for infinitely many choices of L.
Compared with several existing methods, the new construc-
tion (J = 4, m = 1) has the following merits. First, although
the two search-based random methods [9], [10] (algorithm 1,
therein) provide the smallest circulant sizes meeting the lower
bound, it is generally difficult to yield type-II QC-LDPC
codes for a relatively large L. Second, for all permissible
choices of L in our method, the circulant sizes for the new
method are much smaller than those of the method in [10]
(Appendix B, therein). Finally, by combining truncation with
our construction, G6+ type-II (4, 2L) QC-LDPC codes for
any L can be readily constructed with small circulant sizes.
For instance, for L = 16, the first 16 columns of the
exponent matrix for L ′ = 25 can be utilized to generate a
G6+ type-II (4, 2L) QC-LDPC code with circulant size of
4L ′ + 1 = 101, which is still much smaller than the coun-
terpart (i.e., 8L = 128) of the method in [10]. In this way,

it can be promptly verified that compared with state-of-the-
art algebraic approach in [10], the method we proposed can
yield a much smaller circulant size for any L ≥ 3, as depicted
in Fig. 1.

FIGURE 1. G6+ type-II (4, 2L) QC-LDPC codes comparison: the smallest
circulant sizes for new and existing methods.

Remark 4: Actually, the curve labeled as ‘‘New method’’
is obtained by combining two classes of L’s. The first class
of L’s is directly permissible for our new method, and the
corresponding smallest circulant sizes almost coincide with
the lower bound (only larger by one). For the second class of
L’s (i.e., the rest choices of L’s), the corresponding smallest
circulant sizes are calculated by combining truncation with
our new method. For this reason, the curve of the proposed
new method is not smooth, and the size is not strictly mono-
tonic with L. On the other hand, if we only consider the first
class of L’s, the curve will be smooth and strictly monotonic
with L.

C. CASE OF J ≥ 6
Unlike the case of J = 4, an odd integer L for the scenario
of J ≥ 6 does not necessarily lead to a G6+ type-II (J , 2L)
QC-LDPC code. For example, the triple (J = 6,L = 9,
P = 37) is not a qualified choice to guarantee a G6+ type-II
(J , 2L) code with circulant size P. Nevertheless, using a
program capable of identifying all types of 4-cycles described
in Table 1, we find many feasible triples of (J ,L,P) which
yield G6+ type-II (J , 2L) codes with circulant size P. For
6 ≤ J ≤ 12, J/2 < L ≤ 12 and J + 1 ≤ P ≤ 1000, all
such triples are listed in Table 3.

Interestingly, by checking a relatively large L, many G6+

type-II (J , 2L) QC-LDPC codes are found with almost the
smallest circulant size (i.e., 4L + 1), just the same as the
case of J = 4. For example, such pairs of (J ,L) are
(6, 27), (6, 45), (6, 57), (6, 69), · · · ; (10, 25), (10, 45), · · · ;
(14, 175), (14, 273), · · · ; (18, 135), (18, 189), · · · . Since the
pair (J ,L) corresponds to a type-II (2J ′, 2L ′) code where
J ′ = J/2 and L ′ = L, the above observation implies that
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TABLE 3. New type-II (J, 2L) QC-LDPC codes without 4-cycles.

the lower bound in Lemma 1 is very tight not only for the
case of J ′ = 2 but also for many (if not all) values of J ′.
Example 4: Set J = 10, L = 25 and P = 101. Obviously,

J |P − 1 and L|P − 1. Choose α = 6 and β = 5 such that
ord(α) = J and ord(β) = L hold. The novel construction
yields two exponent matrices, E0 and E1, as follows.

1 5 25 24 19 · · · 84 16 80 97 81
6 30 49 43 13 · · · 100 96 76 77 82
36 79 92 56 78 · · · 95 71 52 58 88
14 70 47 33 64 · · · 65 22 9 45 23
84 16 80 97 81 · · · 87 31 54 68 37

 (8)

and 
100 96 76 77 82 · · · 17 85 21 4 20
95 71 52 58 88 · · · 1 5 25 24 19
65 22 9 45 23 · · · 6 30 49 43 13
87 31 54 68 37 · · · 36 79 92 56 78
17 85 21 4 20 · · · 14 70 47 33 64

 (9)

It is readily verified that the two exponent matrices corre-
spond to a G6+ type-II (10, 50) QC-LDPC code with circu-
lant size of 101, which almost attains the lower bound (100)
in Lemma 1.

V. GENERALIZED CRT METHOD FOR ENHANCING
CIRCULANT-SIZE FLEXIBILITY
As described in the previous sections, the proposed construc-
tion can enable novel G6+ type-II (4, 2L) QC-LDPC codes
to possess almost the smallest circulant size P, where P is a
prime number in the form of 4L+1. In this section, we present
a method for enhancing the circulant-size flexibility of the
new type-II QC-LDPC codes.

It is well known that the Chinese remainder theorem (CRT)
method [17], [18] is a very effective technique to construct a
long QC-LDPC code from two short component QC-LDPC
codes, which can guarantee that the girth of the long code is
not less than the larger girth of the two short ones. However,
the original form of the CRT is only applicable to type-I
QC-LDPC codes. In this section, we generalize the CRT
method to the type-K (K ≥ 1) case. The nearly shortest
type-II codewe proposed is utilized as one component code in

the generalized CRT (gCRT) method, while the other compo-
nent code can be randomly generated. Simulations show that
via combining the gCRT procedure with our new short codes,
type-II codes with a variety of circulant sizes can be obtained
with promising decoding performance.
gCRT : Let Pa and Pb be two coprime circulant sizes,

i.e., gcd(Pa,Pb) = 1. Suppose that Uk (0 ≤ k ≤ K − 1)
and Vk (0 ≤ k ≤ K − 1) are 2K exponent matrices that
satisfy the following conditions. (i): they are all of size J×L;
and (ii) the first K exponent matrices are associated with Pa
and the lastK ones associated with Pb. Let B0,B1, · · · ,BK−1
and A be K + 1 positive integers such that gcd(Bk ,Pb) =
1 (0 ≤ k ≤ K − 1) and gcd(A,Pa) = 1. From the 2K
exponentmatrices, we defineK compound exponentmatrices
as Zk (i, r) = A ·Pb·Uk (i, r)+Bk ·Pa·Vk (i, r) (mod Pa ·Pb),
where 0 ≤ k ≤ K − 1, 0 ≤ i ≤ J − 1, and 0 ≤ r ≤ L − 1.
Regarding the gCRT method, we have the following theo-

rem, which is the second main contribution of this article.
Theorem 2: If the K exponent matrices Uk (0 ≤

k ≤ K − 1) correspond to a Gg type-K (JK ,LK ) QC-LDPC
code with circulant size Pa, then the K compound matrices
Zk (0 ≤ k ≤ K−1) yield a Gg+ type-K (JK ,LK )QC-LDPC
code with circulant size Pa · Pb.

Proof: (i) First, we prove that for any given pair (i, r)
the K exponents Zk (i, r) (0 ≤ k ≤ K − 1) are distinct.
Assume that there exist two identical exponents (say Zk (i, r)
and Zk ′ (i, r)). Then A · Pb·Uk (i, r) + Bk · Pa·Vk (i, r) =
A ·Pb·Uk ′ (i, r)+Bk ′ ·Pa·Vk ′ (i, r) (mod Pa ·Pb). Rearranging
terms and taking modulo Pa on both sides, we have A · Pb ·
[Uk (i, r)−Uk ′ (i, r)] = 0 (mod Pa), which is impossible as
Uk (i, r) 6=Uk ′ (i, r), gcd(A,Pa) = 1 and gcd(Pb,Pa) = 1.
Therefore, the K matrices, Zk (0 ≤ k ≤ K − 1), lead to a
type-K (KJ ,KL) QC-LDPC codes.
(ii) Next, we prove the nondecreasing girth property.

Assume there is a cycle of length 2l (2l < g) asso-
ciated with the K exponent matrices, Zk (0 ≤ k ≤
K − 1). Then such a cycle can be expressed by an
ordered series of 2l exponents, Zk0 (i0, r0), Zk1 (i1, r0), · · · ,
Zk2l−2 (il−1, rl−1), Zk2l−1 (il, rl−r ), where il = i0. Thus,
we have

∑l−1
n=0[Zk2n (in, rn)−Zk2n+1(in+1, rn)] = 0 mod (Pa ·

Pb) [10], where (i) in = in+1 and k2n = k2n+1 cannot hold
simultaneously; and (ii) rn = rn+1 and k2n+1 = k2n+2 cannot
hold simultaneously (rl , r0 and k2l , k0). Consequently,
we have A · Pb ·

∑l−1
n=0[Uk2n (in, rn)−Uk2n+1(in+1, rn)] +

Pa ·
∑l−1

n=0[Bk2n ·Vk2n(in, rn) − Bk2n+1 ·Vk2n+1(in+1, rn)] =
0 (mod Pa · Pb). Taking modulo Pa on both sides, we have
A · Pb ·

∑l−1
n=0[Uk2n(in, rn)−Uk2n+1(in+1, rn)] = 0 (mod Pa).

It reduces to
∑l−1

n=0[Uk2n (in, rn)−Uk2n+1(in+1, rn)] =

0 (mod Pa), owing to gcd(A,Pa) = 1 and gcd(Pb,Pa) = 1.
However, this expression means a cycle with length at most
2l (2l < g) associated with the K exponent matrices,Uk (0 ≤
k ≤ K−1), contradicting the premise that theK matrices with
circulant size Pa correspond to girth g. �
By setting K = 1, the above gCRT immediately reduces to

CRT [17], [18] which is only applicable to type-I QC-LDPC
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codes. We note that for K = 3 the girth of the type-K code
from gCRT cannot exceed six [19], as there exists one ormore
weight-3 circulants within the PCM of a type-K code.

VI. EXAMPLES AND SIMULATIONS
In this section, several new type-II codes are compared with
existing counterparts in terms of bit error rate (BER) and
block error rate (BLER) performance. Binary phase shift
keying (BPSK) transmission over an additive white Gaussian
noise (AWGN) channel, and iterative decoding using the
sum-product algorithm (SPA) are assumed.
Example 5: Let J = 4, L = 7 and P = 29. Generate two

exponent matrices E0 and E1, according to the new method
in Sect. A, IV. The first five columns of them yield a type-II
(4, 10) QC-LDPC code, which is used as the first component
code (Pa = 29) in gCRT, while the second code is randomly
generated with Pb = 13. Thus, a type-II (4, 10) QC-LDPC
code with length 5 · Pa · Pb = 1885 is obtained by using the
setting of A = 23, B0 = 8 and B1 = 12. For comparison,
a type-II (4, 10) counterpart with circulant size 381 [6] is
constructed by the cyclic difference set (CDS). We notice that
in Fig. 2 the two codes perform almost identically, while the
former possesses a more flexible circulant size, due to the
nearly shortest length of the first component code in gCRT.

FIGURE 2. Performance comparison of type-II (4, 10) QC-LDPC codes
without 4-cycles: new+gCRT and CDS methods.

Example 6: Use the same matrices E0 and E1 as in
Example 5. They yield a type-II (4, 14) QC-LDPC code (C0)
with length 7 · 29 = 203. With the setup (Pa = 29,
Pb = 8,A = 23,B0 = 3,B1 = 5), combining C0 and a
random code yields a type-II (4, 14) QC-LDPC code with
length L · Pa · Pb = 1624. Similarly, by utilizing C0 and a
randomly generated code, another type-II (4, 14) QC-LDPC
code with length 3248 can also be obtained with the setup
(Pa = 29,Pb = 16,A = 23,B0 = 3,B1 = 5). For
comparison, two random type-II (4, 14) QC-LDPC codes
without 4-cycles are generated. We see in Fig. 3 that the two
new compound codes perform almost as well as the their
random counterparts. Compared with codes from the random
construction, the advantage of the new compound codes lies

FIGURE 3. Performance comparison of type-II (4, 14) QC-LDPC codes
without 4-cycles: new+gCRT and random methods.

in that the girth can be guaranteed to be at least six without
computer search, thanks to the first algebraically constructed
short G6+ component code.
Example 7: In this example, we compare the performance

of the new type-II QC-LDPC code and its type-I counter-
part. The two exponent matrices in Example 4 are used
to generate a new type-II (10, 50) QC-LDPC code with
circulant size of 101. The method based on two arbi-
trary sets of a finite field [20] (denoted by TAS) is uti-
lized to yield the type-I counterpart. Use the prime field
GF(53), and choose 2 as the primitive element. Select two
set {6, 7, 8, 18, 21, 24, 26, 41, 45, 46} and {0, 1, · · · , 49}.
According to the TAS method, the two sets lead to a type-I
QC-LDPC code, whose PCM is a 10×50 array of circulants
with size of 52. Except for 9 ZMs, all the circulants are
CPMs. We see in Fig. 4 that the two QC-LDPC codes per-
form almost identically, although the new code has a shorter
length. Besides, since the novel type-II code possesses a much
larger circulant size (101) than its type-I counterpart (52), its
complexity in terms of encoder implementation is much lower
when a two-stage encoder scheme [2] is applied.

FIGURE 4. Performance comparison of QC-LDPC codes without 4-cycles:
new (type-II) and TAS (type-I) methods.
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VII. CONCLUSION
New results on the girth of Tanner’s method are proved,
which solve a couple of conjectures and empirical rules
recently raised regarding Tanner’s method. Inspired by
Tanner’s method, a novel class of type-II QC-LDPC codes
with girth at least six is proposed, which can yield a subset
with nearly the shortest circulant sizes. Moreover, a general-
ized CRT method is presented to enhance the flexibility of
circulant sizes or equivalently the code lengths for type-II
QC-LDPC codes. The compound type-II code obtained by
combining gCRTwith the new short code performs almost the
same as the existing algebraically constructed counterpart,
while possessing a more flexible circulant size.

Since type-II QC-LDPC codes permit not only weight-1/
weight-0 circulant but also weight-2 circulant, they are
more flexible than their type-I counterparts in terms of
row/column weight optimization, decoding threshold opti-
mization and distance optimization. Thus, compared with
type-I QC-LDPC codes, type-II QC-LDPC codes more likely
achieve a better performance in certain application scenarios.
For instance, in the near-Earth satellite communication stan-
dard of CCSDS, a type-II QC-LDPC code designed by
Shu Lin’s group has been adopted. The combination of type-II
QC-LDPC codes with several existing techniques (such as
spatially-coupled method and cycle/absorbing set analysis) is
a promising direction for the possible future developments of
such type-II QC-LDPC codes.
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