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ABSTRACT In order to improve the performance and change the current situation of the cost minimization
model widely used in the cold chain logistics distribution process, a multi-objective optimization model
based on cost, carbon emissions and customer satisfaction is proposed. Considering the characteristic of
this proposed optimization model, we design an improved ant colony algorithm with a multi-objective
heuristic function to solve it, termed as ACOMO. Experimental results show that the proposed ACOMO can
effectively solve the vehicle routing problem of the multi-objective optimization model, and outperforms
the classic ant colony algorithms, resulting in more Pareto optimal solutions. It offers an environmentally
friendly distribution solution for the problem. Specifically, the distribution path obtained by the improved
ant colony algorithm manages to achieve the above multiple goals, including reduction of distribution costs
and carbon emissions, and improvement of customer satisfaction. In addition, compared with a single-target
model that only provides one single distribution route to cost minimization, multi-objective optimization
can provide a variety of distribution route options for logistics companies in practice. Finally, through the
sensitivity analysis of temperature changes and cargo damage coefficients, the proposed system successfully
provides reference for the optimization of the path of cold chain logistics enterprises, and promotes logistics
enterprises to effectively arrange their work and to be more socially responsible.

INDEX TERMS Cold chain logistics, path optimization, multi-objective optimization, carbon constraints,
customer satisfaction.

I. INTRODUCTION
With the improvement in the living standards of consumers
and the change of consuming ideas, the cold chain logistics
of the fresh products has developed rapidly in recent years,
which brings higher requirements for the distribution process
to the logistics companies. To ensure the freshness of the per-
ishable foods, low-temperature control is required throughout
the distribution process, which is also the most remarkable
feature of cold chain logistics that differs from traditional
logistics. The cold chain logistics causes the carbon emis-
sions to increase since two factors contribute to this issue,
which are called the vehicle itself causing carbon emission
due to the delivery process and the refrigeration equipment
leading higher energy consumption to keep the product at
lower degrees. However, the issues relating to environmental
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protection, energy conservation, and emission reduction have
been highly considered by the international community. The
carbon tax as a useful policy tool and an essential criterion
for environmental protection has been introduced for energy
conservation and emission reduction, which increases the dis-
tribution costs of the logistics companies. Therefore, ensuring
the freshness of the products while reducing environmental
pollution and achieving low-carbon green transportation is a
problem that should be addressed in the distribution of the
cold chain logistics in real life.

In December 2009, the World Climate Conference in
Copenhagen focused on energy conservation and emission
reduction. The concept of low-carbon life such that ‘‘low
energy consumption, low pollution, and low emissions’’ has
received increasing attention. Global statistics on carbon
emission show that the carbon emissions of the transportation
industry account for 14% of the total emissions. The carbon
emissions of road traffic account for more than 70% of the
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entire transportation industry [1]. The EU started to increase
carbon taxes in 2012. China also proposed that by 2020 CO2
emissions will be reduced by 40% - 45% compared with that
of 2005 [2]. At the same time, the cold chain transportation,
as an industry that satisfies the needs of residents for multiple
varieties of food, grows at a rate of more than 10% per
year, and its logistics costs are 40% - 60% higher than the
costs of ordinary logistics. The cold chain is responsible for
storing and transporting perishable food in an appropriate
temperature range. If the temperature is much higher or lower
than the product’s optimal specific temperature range, it will
cause a certain of cargo damage and unnecessary waste
of resources, and even endanger food safety [3]. The cold
chain logistics distribution vehicle is equipped with a freez-
ing chamber and a cold storage chamber, which can keep
the product at a low temperature [4]. However, refrigeration
requires a certain amount of electric consumption, which
in turn leads to the increasement of distribution costs [5].
Also, fuel consumption and carbon emissions will make an
impact on the environment [6]. Recently, low-carbon logis-
tics is attracting more and more attention from enterprises
and professionals. Reducing energy consumption and carbon
emissions have become an inevitable trend in the develop-
ment of the logistics industry [7], [8]. In view of these factors
that need to be considered in cold chain logistics distribution,
this paper proposes a multi-objective optimization model.
It aims to improve the customer satisfaction while reducing
costs and carbon emissions during the distribution process.
The sensitivity analysis to the temperature control and the
cargo damage coefficient is carried out to explore the deep
impact of temperature difference and changes of cargo dam-
age coefficient on carbon emissions and distribution costs.

The remaining of this paper is organized as follows:
Section II briefly reviews some representative works in the
field. Section III explains the proposed multi-objective model
in detail, including problem descriptions, symbols, andmodel
formulas. Solutions of the improved ant colony algorithm
are introduced in Section IV. Finally, Section V compares
and experimentally analyzes the proposed method, while
Section VI concludes the work.

II. RELATED WORK
A. MULTI-OBJECTIVE OPTIMIZATION
It is often difficult to judge the quality of a plan by only
one indicator. Multiple measurements are thus needed for
evaluation, i.e., multi-objective goals. However, those multi-
objective goals are sometimes not coordinated or even con-
tradictory. Multi-objective optimization is thereby a complex
mathematical process that aims to find a best trade-off for
a given problem by satisfying all constraints [9]. As a con-
sequence, multi-objective planning has increasingly gained
research attention:

Paksoy et al. [10] developed a fuzzy multi-objective lin-
ear programming model for discussing the optimization of
the production distribution network for edible vegetable oil

manufacturers. Sahar et al. [11] proposed a multi-objective
optimization model for a two-tier dairy product supply chain,
which aimed at minimizing the carbon dioxide emissions
during transportation and the total product distribution costs.
Teimoury et al. [12] presented a multi-objective model for
determining the optimal import quota policy of the supply
chain of fruit and vegetables. Liu et al. [13] solved the
problems in global supply chain production, distribution and
capacity planning, and developed a multi-objective mixed
integer linear programming method to optimize the three
goals of the total cost, circulation time and sales loss. Özcey-
lan et al. [14] adopted the fuzzy multi-objective linear pro-
grammingmethod to solve the designing problem of the fuzzy
dual-objective reverse logistics network, which considers two
goals, i.e., minimizing the total cost of the system and the
total delivery time. Bortolini et al. [15] proposed a three-
objective distribution planner to solve the tactical optimiza-
tion problem of fresh food distribution network, involving the
operation cost, carbon footprint and delivery time objectives
into consideration. Finally, Wang [16] et al. introduced a
green vehicle routing problem with multiple warehouses.
It also proposes a dual-target model to minimize total carbon
emissions and operating costs, and implement staged fines for
advancement and delay to reduce waiting time and increase
customer satisfaction. The above are typical applications of
multi-objective optimization.

B. CARGO DAMAGE AND CARBON EMISSIONS
How to reduce the carbon emissions in the distribution pro-
cess of the cold chain logistics has become a hot topic
in current research, and there exist some works [17], [18]
targeting on it. Generally, the distribution models of cold
chain logistics need to take into account many factors. Here,
we briefly review some example works. Hsu [19] proposed
an SVRPTW model for the randomness of the distribution
process of the perishable food by taking into account the
effect of temperature changes. Ji [20] proposed a VRPSDP
optimization model for multiple customer nodes in a single
distribution center by minimizing the total cost of the cold
chain logistics and combining the distribution and the pick-
up operations of the cold chain logistics. Mehdi [21] con-
ducted a comprehensive study of the factors that affect fuel
consumption in the time-varying path selection for vehicles,
where these factors include load, vehicle speed, road slope,
and urban traffic and so on.

There is another problem that needs to be studied. For
example, perishable foods may lose their values in the dis-
tribution process. Chen et al. [22] proposed a nonlinear
mathematical model for production scheduling and vehicle
routing, regarding the time window for the freshness of the
perishable foods. Neder-Mead method and heuristic algo-
rithm were also studied for the same type of problem. Osvald
[23] proposed a fresh vegetable allocation algorithm with
perishability as the key factor. This algorithm calculated the
impact of perishability as part of the overall distribution cost,
where a specific problem expressed as the vehicle routing
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problem of VRPTWTD was addressed. Amorim [24] split
the tow concepts of minimization of distribution costs and
maximization of product freshness, and studied the tradeoffs
between distribution scenarios and cost-freshness, showing
the conflict between the two goals of cost and freshness.

In addition to freshness, there are also some works con-
ducted research on reduction of carbon emissions and impact
of the carbon tax policies. For example, Zhang [25] presented
a path optimization model of the cold chain logistics which
involved into the cost of carbon emissions. It combined the
ribonucleic acid calculation and the ant colony algorithm to
reduce the total cost of logistics and the carbon emissions.
Govindan et al. [26] formulated a two-level location routing
problem with time windows (2E-LRPTW) for the sustainable
design and optimization of the economic environment in the
supply chain of the perishable food. Zhan [27] proposed a
decision model for the cold chain logistics system using a
two-level planning method, pointing out that as the demand
for low-carbon cold chain logistics continues to grow, cor-
responding subsidy policies and carbon emissions trading
policies are needed to guide cold chain logistics enterprises
to conduct cold storage. The transformations pertinent to
energy-saving and emission reduction provide a scientific
basis for the decisions of governments and enterprises. It can
be seen that the re-examinations of the impact of the cold
chain logistics on the environment and society are aimed at
reducing the carbon footprint of the entire network and the
costs caused by greenhouse gas emissions.

C. CUSTOMER SATISFACTION
Customer satisfaction is the subjective feelings of customers
about the goods or services that they buy or use. Therefore,
understanding customer satisfaction has an important role in
improving the quality of products and the service levels of
enterprises. To improve the customer satisfaction in the distri-
bution service, higher demands are made to the organization
and coordination of the cold chain enterprises. Specifically,
Wang [28] suggested that customer satisfaction was mainly
reflected in freshness. Due to the great losses in the distri-
bution process of the cold chain enterprises, the complexity
of the vehicle routing problem increases. Therefore, it is very
important to devise an effective distribution route tominimize
the total cost and maximize the freshness of the distributed
products. To this end, Song [29] proposed a nonlinear math-
ematical model and a heuristic algorithm to find efficient
vehicle routes. Its goal is to maximize customer satisfaction.
Shi [30] proposed a satisfaction function based on the service
time window by conducting a simulation model under the
time-varying conditions and devised a minimum envelope
cluster analysis method and a hybrid genetic algorithm to
solve it.

D. ROUTE OPTIMIZATION
The traditional path planning methods mainly include arti-
ficial potential field methods [31], Dijkstra algorithm [32],
A ∗ algorithm [33], and so on. Path planning is an NP-hard

problem. Hence, many heuristic algorithms such as particle
swarm optimization [34]–[36], genetic algorithm [37], [38],
artificial bee colony algorithm [39], [40], fruit fly optimiza-
tion algorithm [41], [42], Tabu search algorithm [43], [44],
ant colony algorithm are used to solve the problem. Among
all of them, the ant colony algorithm was first proposed
by Dorigo [45], and its characteristics can be defined as
positive feedback and a heuristic random search. It simulates
the foraging of biological groups and has some advantages
such as better robustness, strong global search capability,
and convenient expression of environmental constraints. As a
result, the ant colony algorithm has been applied to data
mining area [46]–[48] and to solve VRP derivative problems
such as two-dimensional loading VRP problem [49], and
multi-distribution center problem [50], [51] dynamic vehicle
routing problem [52], weighted vehicles Routing problem
[53], time-varying vehicle routing problem [54], etc.

In summary, most of the existing studies on traditional
vehicle routing problems employ a single-objective model
that minimizes only the cost. Although there are some works
have taken into account the factors such as carbon emissions
and customer satisfaction, they just merge the cost of product
freshness loss and the cost of vehicle carbon emissions and
regard them as one objective. When the subject is considered
under the title of cost accounting, the diversity of objectives is
ignored. This paper proposes a multi-objective optimization
model that minimizes the transportation costs and carbon
emissions costs andmeanwhile maximizes customer satisfac-
tion. In particular, we design an improved ant colony algo-
rithm, which dynamically improves the pheromone concen-
tration, limits the pheromone concentration range, and sets
the number of periodic loop iterations to update the global
pheromone. Besides, we redesign the heuristic function so
that the ants not only take into account the distance factor
whenmoving to the next node but also consider the time limit.
It also sets the parameters of the selection rule of the pseudo-
random proportional action so that the ants can choose the
optimal pathwith a higher probability. This operation can also
accelerate the convergence. Hence, the optimal solution can
be obtained in a relatively shorter time. As a result, a Pareto
solution set based on the proposed multi-objective optimiza-
tion is achieved. Finally, the effectiveness of the model and
the algorithm is demonstrated by using the Solomon test set.

III. PROBLEM FORMULATION
The path optimization problem in the cold chain logistics that
takes into account carbon emissions has three components as
follows: (1) a distribution center serving multiple customers;
(2) multiple refrigerated trucks starting the process from the
distribution center; and (3) traversing each customer to com-
plete the delivery service and then returning to the distribution
center. A customer can only be served by one refrigerated
truck, and the freshness of goods has to be within certain
time limits. On the other hand, the delivery vehicle should
meet the time window requirements. A specific penalty cost
should be given for early or late arrivals to improve customer

VOLUME 8, 2020 142979



B. Zhao et al.: Cold Chain Logistics Path Optimization via Improved Multi-Objective Ant Colony Algorithm

satisfaction. The penalty cost for late arrival is higher than that
of early arrival. When such a delivery is a concern, we need
to take into account several factors such as carbon emissions,
customer satisfaction, and minimization of the costs to find
the optimal distribution path besides the requirements of
goods, refrigerated vehicle weight, and time window.

Since the problem is related to a distribution of path,
we need to explain some of the notations that will be used
in the method. Let G = (V ,A) be a fully directed graph, rep-
resenting the network of the cold chain distribution. Specif-
ically, V = {0, 1, 2, . . . , n} is a set of all nodes, where
0 represents the distribution center and 1, 2, 3, . . . , n repre-
sents the customer points. A = {(i, j) : i, j ∈ N , i 6= j}
denotes the routes. Assuming that the distribution center,
customer location, and demand are all known in advance. The
Euclidean distance between two customers (i, j) is defined as
follows: dij =

√
(xi − xj)2 + (yi − yj)2.

FIGURE 1. Speed model.

A. COST MODEL
1) FIXED COSTS
The fixed cost mainly composes of the vehicle wear, the
maintenance, the depreciation expense, and the salary of the
driver. Let fk indicate the used vehicle k . xkij is a 0-1 decision
variable, where xkij = 1 denotes that the vehicle k departs from
the distribution center to the customer i and j, and otherwise,
xkij = 0. Thus, the fixed cost, C1, can be computed as:

C1 =

K∑
k=1

n∑
i=1

n∑
j=1

xkij fk (1)

2) TRANSPORTATION COSTS
The customer’s demand could be utilized to calculate the
distribution cost of the refrigerated truck. tc represents the
freight price per unit weight and dij is the distance between the
customer i and j. qi denotes the cargo demand of the customer
i. The transportation cost of the cold chain truck is denoted by
C2.

C2 =
K∑
k=1

n∑
i=1

n∑
j=1

xkij tcdijq
i (2)

3) COST OF CARGO DAMAGE
The fresh products are perishable. In existing works, they
compute the cost of cargo damage from the timestamp that
the vehicle leaves the distribution center. However, the fresh
products are delivered to the customer within a preset time
window requirements. In other words, the cargo damage
occurred within that time window would be accepted by
customers. Hence, the time start point in the cost computation
should be the first time window exceeding the time accep-
tance. Moreover, The relationship between the distance and
the damage coefficient is exponential. Supposing that δ is the
decline coefficient of the freshness of the product, ti is the
actual time to reach the customer i and t0 is the latest time
window required by the customer, we have the cost of cargo
damage, C3, as following:

C3 =

K∑
k=1

n∑
i=1

n∑
j=1

xkij tcdijq
i(1− e−δ1(ti−t0)) (3)

B. CUSTOMER SATISFACTION
Satisfaction is defined as the measure of the time that the
distribution center responds to the needs of the customer. If it
is in the expected time of the customer, the satisfaction index
will be higher. The expected period of the customer is denoted
by an interval [ei, li], the arrival time of the delivery vehicle is
denoted by Ai and the number of customers is denoted by n.
Besides, the total customer satisfaction is 100 for a delivery.
The time penalty factor is ε. We have the early delivery
penalty factor ε1 and the late delivery ε2, where ε1 < ε2.
The satisfaction Gi of a single customer i is defined by:

Gi =



100
n
− ε1

ei − Ai
ei

, if ei > Ai

100
n
, if ei < Ai < li

100
n
− ε2

Ai − li
li

, if li < Ai

(4)

When the refrigerated truck arrives out of the expected time
of the customer, the penalty coefficient is utilized to generate
the penalty cost of the distribution (C4) as:

C4 = 5ε1
ei − Ai
ei
+ 10ε2

Ai − li
li

(5)

C. MEASUREMENT OF CARBON EMISSIONS
According to the green logistics requirements, the carbon
emissions of the cold chain logistics vehicles mainly induces
from two sources. The first one is related to the fuel emissions
during the driving, while the second one is the additional
carbon emissions generated by the refrigeration equipment
at low temperatures. Carbon emissions from refrigeration
maintenance are due to the heat transfer during the delivery
of refrigerated vehicles and the heat exchange when the doors
are open at the customer service point. The classic automobile
energy consumption model proposed by Barth et al. [55] is
employed to construct the energy consumption model of the
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refrigerated truck distribution as:

CA =
k∑

k=1

n∑
i=0

n∑
j=0

xkij
dij
vij
Rh,

R = δ(φTVs + P)/µ,

P = Pt/η + Pc,

Pt= (Mqav+Mqgv sin θ+
p
2
CdAv2+MqgvCr cos θ )/1000,

Pc = γ1T
√
SwSv+ (0.54n+ 3.22)(1T )λ,

(6)

The parameters in (6) are described as follows:
CA: Carbon emissions generated during vehicle distribu-

tion (unit: kg).
R: Fuel consumption rate per unit time (unit: g/s).
h: Conversion factor of fuel consumption and carbon emis-

sions.
δ: Fuel-air mixture ratio.
φ: Engine friction factor.
T : Engine speed of the refrigerated truck.
Vs: Exhaust capacity of a refrigerated truck.
P: Power of refrigerated truck (unit:W ).
Pt and Pc represent the normal power in the distribution

process of the refrigerated truck and the additional power
generated by the refrigeration equipment, respectively.
η: Transmission effective power.
µ: Energy consumption constant.
Mq: Refrigerated vehicle weight (unit: kg).
a: Vehicle driving acceleration.
v: Vehicle speed (unit: m/s).
g: Gravity acceleration.
p: Air-Density.
A: Frontal area of the vehicle (unit: m2).
Cd : Traction coefficient.
Cr : Rolling resistance coefficient.
θ : Road gradient.
γ : Heat transfer derivative of the refrigerated truck

(W−2m K ).
1T : The temperature difference between the refrigerated

truck and the outside environment.
Sv, Sw: Internal and external surface area of refrigerated

truck (unit: m2).
λ: Frequency of door opening.
n: Number of customers.
After obtaining the carbon emissions, i.e., CA, of the dis-

tribution vehicles by equation (6), the carbon emission cost
of the cold chain distribution C5 can be calculated as:

C5 =

k∑
k=1

n∑
i=1

n∑
j=1

xkij
dij
vij
RhY (7)

where Y represents the carbon tax.

D. AVERAGE SPEED MODEL
According to the speed model proposed by Poonthalir [56],
it is assumed that the vehicle speed fluctuates between

30 km/h and 40 km/h. The average expected speed of the
vehicle during travel is calculated according to its expected
speed. The initial speed limit is chosen as 30km/h. The
maximum speed limit and the maximum speed limit before
the acceleration reduction are considered as 40 km/h, and
37 km/h, respectively. The acceleration is equal to a = 0
when the vehicle speed increases to 40 km/h. The distribution
of the expected speed is shown by the triangular distribution
FIGURE 1.

The average speed is calculated as follows:

V (x) =
∫ b

a
xf (x)dx

=

∫ 40

30
xf (x)dx

=

∫ 37

30
x

2(x − 30)
(40− 30)(37− 30)

dx

+

∫ 40

37
x

2(40− x)
(40− 30)(40− 37)

dx

= 35.6667 (8)

E. MULTI-OBJECTIVE OPTIMIZATION MODEL
Considering the factors of distribution such as cost, customer
satisfaction, and carbon emissions, the final path optimization
model of the cold chain distribution can be descripted as
follows (9)–(11), as shown at the bottom of the next page.

Eqs. (12) and (13), as shown at the bottom of the next
page: customers can only be served by one refrigerated truck,
whichmeans that each customer has only one delivery vehicle
service. Eq. (14), as shown at the bottom of the next page:
all delivery vehicles depart from the distribution center to
deliver the goods and then return to the distribution center.
Eq. (15), as shown at the bottom of the next page: the sum
of the weights of the goods required by customers on each
distribution route cannot exceed the maximum load of the
vehicle. Eq. (16), as shown at the bottom of the next page:
the number of refrigerated trucks in the distribution center
is limited. Eq. (17), as shown at the bottom of the next
page: the time relationship between refrigerated trucks k from
customer i to customer i+1. Eq. (18), as shown at the bottom
of the next page: after giving service to the customer i, the
weight of the refrigerated vehicle is reduced by qi. Eq. (19),
as shown at the bottom of the next page: the vehicle departing
from the distribution center is the same vehicle of returning
to the distribution center. Eq. (20), as shown at the bottom
of the next page: the demand cannot be negative. Eq. (21), as
shown at the bottom of the next page: the value of the decision
variable takes 0-1. Eq. (22), as shown at the bottom of the
next page: time window requirements. Eqs. (23) and (24), as
shown at the bottom of the next page: the delivery vehicle
arrives early or late.

IV. ALGORITHMIC SOLUTION
Strong global search ability, positive feedback mechanism,
distributed computing, and strong robustness are the main
characteristics of the ant colony algorithm. The distributed
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computer system of the ant colony algorithm constitutes
a distributed multi-agent system, which enhances the reli-
ability and search ability of the algorithm. The algorithm
does not depend on the initial solution selection, i.e., the
initial solution does not have any considerable impact on the
solution. It adaptively adjusts the optimization route during
the entire process with strong adaptability and stability. The
traditional ant colony algorithm calculates the transition
probabilities according to the pheromone concentration τij(t)
and the distance between the paths nij. Although the positive
feedback mechanism facilitates the continuous convergence
of the ant colony algorithm during the search process, it
increases the possibility of falling into the local minimum.
The proposed method in this paper dynamically improves the
pheromone concentration in the algorithm design, limits the

range of pheromone concentration, and updates the global
pheromone in 20 iterations. Besides, the heuristic function
is redesigned such that the ants no longer only consider the
distance factor when moving to the next node, but also the
time limit. The rule parameters are selected using Pseudo-
random proportional action to increase the probability of
finding the optimal path and approximating the optimal solu-
tion. Accordingly, the Pareto solution set of multi-objective
optimization is obtained.

A. ALGORITHM PRESENTATION

pkij =


[τij(t)]a[nij]β∑

j∈allowdik
[τij(t)]a[nij]β

, j ∈ allowedik ;

0, else.

(25)

MinC = C1 + C2 + C3 + C4 + C5 =

K∑
k=1

n∑
i=1

n∑
j=1

xkij fk +
K∑

k=1

n∑
i=1

n∑
j=1

xkij tcdijq
i
+

K∑
k=1

n∑
i=1

n∑
j=1

xkij tcdijq
i(1− e−δ1�ti−t0))

+

k∑
k=1

n∑
i=1

n∑
j=1

xkij
dij
vij

(δ(φTVs + (Mqav+Mqgv sin θ +
p
2
CdAv2 +MqgvCr cos θ )/1000/η

+ γ1T
√
SwSv+ (0.54n+ 3.22)(1T )λ)/µ)hY + 5ε1

ei − Ai
ei
+ 10ε2

Ai − li
li

(9)

MinT =
k∑

k=1

n∑
i=0

n∑
j=0

xkij
dij
vij

(δ(φTVs + Pt/η + Pc)/µ)h (10)

MaxG = (
100
n
− ε1

ei − Ai
ei

)+
100
n
+ (

100
n
− ε2

Ai − li
li

) (11)

st.
n∑

i=1,j=1

K∑
k=1

xkij = 1, (12)

n∑
i=1

K∑
k=1

xkim −
n∑
j=1

K∑
k=1

xkmj = 0, m ∈ n, (13)

n∑
i=1

K∑
k=1

xkio =
n∑
j=1

K∑
k=1

xkoj = K , ∀i, j ∈ V , k ∈ K , (14)

n∑
i=1

xkri q
i
≤ Qrk , ∀k ∈ K , r ∈ Rk , (15)

K∑
k=1

n∑
j=1

xkj ≤ K , ∀k ∈ K , (16)

tok(i+1) = toki + sik + ti(i+1)k , ∀k ∈ K , i ∈ V , (17)
n∑
j=0

(Qpji − Q
p
ij) = qi, ∀(i, j) ∈ V , (18)

K∑
k=1

n∑
i,j=0

xkij =
K∑
k=1

n∑
i,j=0

xkji, ∀i, j ∈ V , k ∈ K , (19)

qi ≥ 0, ∀i ∈ V , (20)
xkij(1− x

k
ij) = 0, ∀i, j ∈ V , k ∈ K , (21)

ei ≤ Ai ≤ li, i ∈ n, (22)
ei − Ai > 0, ∀i ∈ V , (23)
li − Ai < 0, ∀i ∈ V . (24)
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We will provide the meanings of some notations used in
the algorithm.
pkij: The k ant chooses the state transition probability of

the next node. τij(t): The pheromone concentration of (i, j)
sections. nij: Heuristic function value, which is set according
to the specific problem. α and β are the weight parameters
of τij(t) and nij, respectively. The ant colony Algorithm will
be a random greedy algorithm with multiple starting points
when α = 0. The bigger α is, the more likely it is to choose
a path with more pheromones. β plays a role in expanding
the solution space of the optimization problem in a positive
feedback search. allowedik : The k ant is located at i, it can be
transferred to the next node-set. allowedik is equal to allowedi
that has removed the visited node.
nij is a heuristic function, and generally nij = 1/dij.

When calculating the probability of moving to the next node,
the basic ant colony algorithm only takes into account the
distance factor. Differently, our method also considers cargo
demand, distance, and time window constraints. Qj is the
demand for cargo at the node j, dj is the distance to the node
j, and lj is the expected arrival time.

nij=3−
Qj−MinQij

MaxQij−MinQij
−

dj−Mindij
Maxdij−Mindij

−
lj−Minlij

Maxlij−Minlij
(26)

In the process of moving from node i to node j, the ant
k calculates the probability of moving to the next node Pkij
according to the action selection rule. The ant selects the next
node by playing roulette:

p =
pkij∑

j∈allowdik
pkij
, j ∈ allowedik . (27)

The significance of the roulette method is that it allows
ants to choose the optimal path with a greater probability.
When the transfer probability which is calculated according
to the parameters of the selection rule of action is relatively
larger, the possibility of being selected by roulette is greater.
However, this strategy cannot guarantee that the optimal path
is selected. Therefore, we set the parameter of the selection
rule of the pseudo-random proportional action as pf . When
the optimal node transfer probability pkij < pf , the optimal
node j is directly selected for transfer.When pkij > pf , the state
transition probability is selected based on the roulette. In sum-
mary, by setting a fixed threshold value of pf , we realize the
unity of random search and deterministic search to increase
the search space for a better solution. Thus, it is avoided
being trapped into the local optimum by expanding the search
range.

In the single-target ACS(ant-cycle system) pheromone
incremental model, only the path distance needs to be con-
sidered.While multi-objective optimization considers costC ,
carbon emissions T , and customer satisfaction G as shown
in Eq. (28), as shown at the bottom of the next page, where
w1,w2 and w3 represents the weighting factors of the opti-
mization goal.Clocal , Tlocal , andGlocal represent that each ant

runs the full distribution cost, carbon emissions, and satisfac-
tion. During this iteration,MinClocal andMaxClocal represent
the minimum and maximum distribution costs, respectively.
It is the same to carbon emissions T and customer satisfaction
G. As expressed in Eq. (28), the pheromone increment is
related to the overall search path, so that it can be regarded
as a global information update.

It is assumed that the pheromone concentration on the
initial path is zero, and the pheromone concentration on the
path should be readjusted after completing each iteration. Let
p be the pheromone volatility coefficient on the path and

1τij =
m∑
k=1

1τ kij being the incremental pheromone released

during the transfer process of the ant. Then, after all ants
completing a path search, the total amount of pheromones on
the path can be adjusted as follows:

τij(t + 1) = (1− p) ∗ τij(t)+1τij (29)

When there are a lot of pheromones left in the path, the pos-
sibility of searching the previously selected path increases,
and the ants would eventually concentrate on the same path,
which thus affects the random performance of the algo-
rithm. Especially, when dealing with the problems of large-
scale nodes, it is not easy to find paths that have never
been searched. Thus, the randomness of the search process
is weakened, leading to reduce the feasible solution space
and the algorithm’s global search ability. Although small
pheromone concentration can improve the random perfor-
mance and global search ability of the algorithm, it will affect
the convergence rate of the algorithm to a certain extent.
Therefore, the total amount of pheromones on the path needs
to be constrained to maintain the total amount of pheromones
between τmax and τmin. When τij(t + 1) > τmax constrain
τij(t + 1) = τmax; τij(t + 1) < τmin, τij(t + 1) = τmin, where

τij(t+1)=


τmax τij(t + 1) > τmax,

(1−p)∗τij(t)+1τij, τmin<τij(t + 1) < τmax,

τmin τij(t + 1) < τmin.

(30)

The node is saved by constructing a local L_Tab tabu
list where L_Tab is an empty list at the beginning of each
iteration. It has a restrictive effect on the ants of the current
iteration, and only records the optimal path that occurs during
one iteration. According to the probability of a random search
algorithm, the iterative search process may cause the loss of
the optimal solution that has been found, that is, it does not
appear in the next iteration due to the volatilization effect of
the pheromone on the path. If the lost optimal path is not
found, its pheromone will gradually decrease, which is not
conducive to the convergence of the algorithm. In the iterative
process, the searched optimal path needs to be saved. In each
iteration, the optimal path searched by the ant is compared
with the historical optimal path and it save the historical
optimal path.
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B. IMPLEMENTATION OF THE IMPROVED ANT COLONY
ALGORITHM
Step1: Initialization of algorithm parameters. Parameters of
the algorithm mainly include the number of ants m, the max-
imum number of iterations N_max, the number of renewed
pheromone iterations Rn, the weights of the pheromone con-
centration and the heuristic function α and β, the volatility
coefficient ρ, the parameter of the selection rule of the
pseudo-random proportional action qf , and themaximum and
minimum values of the pheromone τmax and τmin.
Step2: Randomly placing m ants on different nodes, ini-

tializing the path pheromone concentration, and selecting the
next available node based on the current node.
Step3:Updating the pheromone concentration and restrict-

ing it between τmax and τmin. According to Eqs. (26) and (28),
the state transition probability of the ant pkij is obtained, and
the passed nodes are added to the Tabu list L_Tab until all the
ants have completed the visit of all nodes.
Step4: Calculating the distribution cost C , carbon emis-

sions T , and satisfaction G. If C and T are smaller and
meanwhile G is larger than theirs previous results, we add
them into the Pareto matrix table {Ci,Ti,Gi}.
Step5: Letting N = N + 1, adding the optimized solution

obtained in this iteration into the Pareto matrix table, and
updating it. When N reaches Rn, the pheromone concentra-
tion is re-initialized.
Step6: If N < N_max, going to Step2, otherwise, finishing

the iteration and outputting the Pareto optimization set and
the optimal distribution path.

C. PARETO OPTIMAL VALUE
The number of multi-objective Pareto optimization solution
sets is not unique, so it is necessary to determine the opti-
mal solution for the optimal distribution path. In this work,
we assign weights of 1/3 to each of the factors, which
are called cost, carbon emissions, and customer satisfaction
{Ci,Ti,Gi}, respectively. Then, we calculated the final score
for the optimized solution set Si separately. Cost and carbon
emissions are the goals of minimization, and customer satis-
faction is the goal of maximization. Eqs. (31) and (32) are the
minimization and the maximization, respectively. Meanxi is
the average.

MinXi =
n∑
i=1

Meanxi
xi

(31)

MaxXi =
n∑
i=1

xi
Meanxi

(32)

Si =
1
3
MinCi +

1
3
MinTi +

1
3
MaxGi (33)

The largest Si is the optimal value in the Pareto optimal
solution set.

V. CASE ANALYSIS
A. DATA SELECTION
We take the Solomon standard test set c101as an example for
analysis, where 0 represents the distribution center and the
numbers from 1 to 100 are the customer indexes. Specific
information includes location coordinates, customer demand,
service time, time window constraints, as shown in Table 1.

B. THE PARAMETER SETTING
In this work, Dongfeng-Xiaobawang refrigerator car is
selected as the delivery vehicle. Some of the parameters are
pre-determined as follows: the gravitational acceleration g is
9.81 kg/m2; the air density P is 1.225 kg/m3; the gradient θ
is 0; the temperature difference between the refrigerator car
and the outside environment, 1T , is 20◦C; the frequency of
opening the door, λ, is 0.6; the transportation price of per
unit weight of goods, tc, is 1; the decline coefficient of the
product freshness, δ, is 0.01; the early arrival time penalty
coefficient, ε1, is 0.6; the late arrival time penalty coefficient,
ε2, is 0.8; the vehicle maximum load is 200; the refrigerator
vehicle fixed cost is 200; the soft time window is set to 20;
the carbon tax is 20. Table 2 lists other specific parameters
related to refrigerator vehicles.

As shown above, the parameters of the improved ant colony
algorithm are set as follows: the number of iterations of
pheromone renewal, Rn, is 20; the weight α of pheromone
concentration and the weight β of heuristic function are
set to 1 and 3 respectively; the volatility coefficient ρ is
0.8; the parameter of the selection rule of Pseudo-random
proportional action qf is 0.9; the maximum value τmax and
the minimum value τmin of pheromone are set to 10 and
0.001 respectively; the weights w1, w2, and w3 of the opti-
mization objectives are all 1/3. The method is implemented
by using Python 3.7.3 and the visual studio code editor is
running on a computer with Intel Core I5,2.60 GHz, 4.00 GB
RAM,and Windows 10 operating system.

The number of ants has an important influence on the
optimization of the model. Firstly, to verify the influ-
ence of ant numbers, we conduct an experiment by set-
ting different ant numbers. Fig.2 shows the optimal costs
of 500 iterations with different ant numbers. The optimal
costs are 3392.42,3373.9,3406.72,3393.63 and 3387 corre-
sponding to m = {10, 20, 30, 40, 50}. We cannot find a
very positive correlation between the number of ants and the
optimal cost. Therefore, the number of antsmwith the lowest
cost of 3373.9 is 20.When the iteration is around 250, the cost
is stable and near to the optimal one. As a result, we set the
maximum iteration number N−max as 250.

1τij(t) =
(w1 + w2 + w3)− w1 ∗

(Clocal−MinClocal )
MaxClocal−MinClocal

− w2 ∗
(Tlocal−MinTlocal )
MaxTlocal−MinTlocal

− w3 ∗
(Glocal−MinGlocal )
MaxGlocal−MinGlocal

w1 + w2 + w3
(28)
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TABLE 1. Distribution center and customer information.

C. ANALYSIS OF THE RESULTS
The efficient solution of the multi-objective programming
problem is also called the Pareto optimal solution. The set

of Pareto solutions is called the Pareto front. Commonly,
improving any objective function based on a dominant solu-
tion is subject to weaken at least one of the other objective
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FIGURE 2. Parametric experimental iteration.

TABLE 2. Refrigerated vehicle parameter table.

functions. Since all solutions in the Pareto front are not
dominated by solutions outside it (and other solutions within
the Pareto front curve), these non-dominated solutions have
the fewest objective conflicts than the other ones. This fea-
ture provides a superior choice space for the decision-maker.
In this paper, multi-objective optimization of the cost, the car-
bon emission, and customer satisfaction is considered, whose
solution is expressed as a Pareto optimal solution. To attain
a more practical situation, multiple experiments and analyses
are performed on distribution centers for different numbers of
customers.

1) RESULTS WITH 25 CUSTOMERS
FIGURE.3 is the Pareto optimal solution set and multi-
dimensional linear interpolation of the c101 (25) test table.
There are 15 Pareto optimal solutions. As shown in this fig-
ure, smaller values (blue part of the indicator) represents the
better the quality of the Pareto optimal solution, while larger
values (yellow part of the indicator) means that its quality
needs to be further improved.. In the Pareto solution set,

FIGURE 3. C101(25) Pareto optimal solution set and its multi-dimensional
interpolation.

the blue part represents that the optimal solution possesses
low costs, low carbon emissions, and high customer satisfac-
tion. In contrast, the yellow part shows results with high cost,
high carbon emissions and low customer satisfaction. Among
the Pareto optimal solutions, the lowest cost is 3392.42,
the lowest carbon emission is 19.73, and the five optimal
solutions have the highest customer satisfaction, reaching
98.40. In calculating the score, the cost, carbon emissions
and customer satisfaction of the optimal solution are: 3481.3,
19.73, and 98.40, respectively. The distribution vehicle path
is shown in FIGURE.4: It can be seen that the distribution
center needs 5 refrigerated trucks to serve it, and the vehicle
travel path is: (0,20, 25, 23, 22, 21, 0); (0, 5, 3, 7, 10, 11, 9,
4, 2, 1, 0); (0, 24, 8, 6, 0); (0, 17, 19, 14, 12, 0); (0, 13, 18,
15, 16, 0). The refrigerated truck departs from the distribution
center and returns to the departure position after serving all
customers.

FIGURE 4. C101(25) vehicle distribution route.

2) RESULTS WITH 50 CUSTOMERS
FIGURE.5 shows the obtained Pareto optimal solution and
its multidimensional linear interpolation by using the c101
(50) test table with 50 customers. There are 6 Pareto optimal
solutions in the figure. The number of optimal solutions is
less than the one with the test set having 25 customers.
Generally, the fewer the optimal solutions there are, the fewer
distribution plans the distribution center can choose. From
this figure, we can find that the ones with the lowest cost,
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FIGURE 5. C101(50) Pareto optimal solution set and its multi-dimensional
interpolation.

the lowest carbon emissions and the highest customer satis-
faction are shown at the bottom of the interpolation graph,
which means they are the optimal solutions. In this work,
the optimal solution denotes the optimal distribution plan.
The distribution center needs 11 refrigerated trucks to serve
it. The optimal distribution path is: (0, 20, 24, 27, 29, 30, 26,
23, 22, 21, 49, 0), (0, 5, 3, 7, 10, 11, 9, 6, 2, 1, 47,0),( 0, 43, 41,
40, 44, 45, 48, 50, 0),(0, 42, 35, 37, 39, 36, 34, 0), (0, 8, 4, 0,),
(0, 17, 19, 14, 12, 0), (0, 28, 0, 31, 38, 0), (0, 25, 46, 0), (0, 13,
18, 15, 16, 0), (0,32, 33, 0). The specific vehicle path is shown
in FIGURE. 6. Compared with the test set with 25 customers,
when the number of customers reaches 50, it means that the
distribution center needs more refrigerated vehicles to serve
it.

FIGURE 6. C101(50) vehicle distribution route.

3) RESULTS WITH 75 CUSTOMERS
Let we take c101 (75) as a test table with 75 customers, and
use the proposed algorithm to get the Pareto optimized solu-
tion set. As shown in FIGURE. 7, the solution set contains
21 optimized solutions. Through multi-dimensional linear
interpolation, it can be seen that the more optimal solutions
there are, the more space it takes up, which means that the
distribution center has more choices of distribution solu-
tions. Among all the optimal solutions, the minimum cost is
19598.69 and the maximum cost is 21472.29; the minimum

FIGURE 7. C101(75) Pareto optimal solution set and its multi-dimensional
interpolation.

carbon emission is 94.87 and themaximumone is 109.41; and
customer satisfaction is consistently high. By ranking these
scores, values of the cost, carbon emissions and customer sat-
isfaction in the highest ranked optimal solution are 20195.27,
94.87 and 99.47, respectively. By contrast, the three values in
the lowest ranked solution are 20688.05, 108.31 and 98.67,
respectively. The distribution center needs 17 refrigerated
trucks to deliver to customers. The optimal routes is: (0, 20,
24, 27, 29, 30, 26, 23, 22, 21, 49, 0); (0, 67, 41, 40, 46, 45,
48, 51, 50, 52, 47,0); (0, 5, 3, 7, 10, 11, 9, 4, 2, 1, 75, 0); (0,
65, 62, 72, 61, 64, 68, 66, 69, 0); (0, 43, 42, 44, 59, 0); (0, 55,
53, 56, 60, 34, 0); (0, 8, 6, 0); (0, 17, 19, 14, 12, 0); (0, 35,
37, 36, 0); (0,31, 39, 0); (0, 13, 18, 28, 0); (0,32, 33, 38, 0);
(0, 25, 15, 16, 0); (0,63, 74, 73, 0);(0, 71, 0); (0, 70, 0); (0,57,
54, 58, 0). The specific vehicle path is shown in FIGURE. 8:

FIGURE 8. C101(75) vehicle distribution route.

4) RESULTS WITH 100 CUSTOMERS
The Pareto optimized solution set shown in FIGURE.9 is
obtained from the experiment using the c101 table with
100 customers. There are a total of 12 optimized solutions
in the solution set. Compared with the solution set which
have 21 optimal solutions in the test set with 75 clients,
we can find that the increase in the number of clients does
not show an increase in the number of optimal solutions.
Particularly, among all the optimal solutions, the smallest cost
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FIGURE 9. C101(100) Pareto optimal solution set and its
multi-dimensional interpolation.

is 31116.35 and the largest one is 33232.30; the smallest
carbon emission is 129.87 and the largest one is 149.48.
The darkest blue area shows the highest ranked optimized
solution. The distribution center needs 23 refrigerated trucks
to deliver to customers. The specific routes are: (0, 55, 40, 44,
45, 48, 51, 50, 52, 49, 47, 0); (0, 90, 86, 83, 82, 84, 89, 91,
69, 0); (0, 20, 24, 27, 29, 30, 26, 23, 22, 21, 75, 0); (0,67, 65,
41, 53, 72, 61, 64, 66, 1, 0); (0, 5, 3, 7, 10, 11, 9, 4, 2, 0); (0,
43, 42, 35, 37, 36, 34, 0); (0, 96, 94, 92, 99, 0); (0, 87, 76,
73, 77, 79, 80, 0); (0,62, 68, 0); (0, 8, 6, 0); (0,98, 95, 100,
0); (0, 12, 0); (0, 17, 19, 14, 0); (0, 31, 39, 0); (0, 81, 78, 71,
70, 59, 0); (0, 13, 18, 28, 0); (0, 32, 33, 38, 88, 0); (0, 25,46,
60, 0) ;(0, 63, 74, 85, 0); (0, 57, 54, 56, 58, 0); (0, 97, 0); (0,
93, 0);(0, 15, 16, 0);. The detailed vehicle path is shown in
FIGURE.10:

FIGURE 10. C101(100) vehicle distribution route.

5) COMPARISON WITH DIFFERENT ALGORITHMS
As shown in TABLE. 3, the improved ant colony algorithm
shows significant advantages over the ant colony algorithm
in terms of the used evaluation metrics. More specifically,
the improved ant colony algorithm obtains more Pareto opti-
mal solutions than the ordinary ant colony algorithm. For
example, the number of the optimal solutions obtained by
ACOMO ranges from 6 to 21, while the largest number
of the optimal solutions of ACO is only 7, especially in

the result with the table of 25 customers where the number
is only 2. In practice, the number of Pareto optimal solu-
tions has an important influence on the choice of decision-
making options. That is, the more optimal solutions there are,
the more options decision-makers can select. In addition to
the number of optimal solutions, ACOMO also has advan-
tages in cost, carbon emissions, and customer satisfaction.
Except for the test set with 25 customers, when the number of
customers reaches 50 and 75, the cost of ACOMO is reduced
by 3.44% and 5.73% respectively compared to the classic ant
colony algorithm. Specifically, when there are 100 customers,
the cost of improved ant colony algorithm is reduced by
2.89%. In terms of carbon emissions, the improved ant colony
algorithm possesses consistently less carbon emissions than
those classic ant colony algorithms, with an average reduc-
tion of around 6.17%. Meanwhile, customer satisfaction has
also been improved. Generally, customer satisfaction of the
classic ant colony algorithm has been in a higher position,
while the improved ant colony algorithm further increases it
by 0.71%. In summary, the improved ant colony algorithm
indeed outperforms the classic ant colony algorithms.

FIGURE 11. Relationship between temperature and carbon emissions.

6) SENSITIVITY ANALYSIS OF TEMPERATURE CHANGES
As an important factor in cold chain logistics, temperature
control plays an active role in cold chain logistics distribu-
tion. The strict temperature control can effectively reduce the
impact of temperature fluctuations on cargo in cold chain
transportation. To a certain extent, refrigeration equipment
has caused an increase in carbon emissions. Figure. 11 shows
a sensitivity analysis of temperature changes and the rela-
tionship between temperature changes and the amount of
carbon emissions generated by distribution vehicles during
the cold chain logistics distribution process. It can be seen
that the temperature difference changes have an absolute
linear correlation with the fuel consumption rate and car-
bon emissions. When the temperature difference between the
external environment and the refrigerated truck increases,
carbon emissions also increase. For example, when the tem-
perature difference is 1◦C, the fuel consumption rate per
unit time is 13.89g/s and the carbon emission is 13.22Kg;
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TABLE 3. Comparison of performance using ACOMO and ACO methods.

FIGURE 12. Cost iterations with different cargo damage factors.

when the temperature difference becomes to 50◦C, the fuel
consumption rate reaches up to 35.76g/s and the carbon emis-
sion increases to 34.01Kg. In general, when the temperature
difference increases by 5◦C, carbon emissions will increase
by 10.19%. In this case, refrigerated trucks should have good
thermal insulation to prevent extra carbon emissions caused
by external environmental factors.

7) IMPACT OF CARGO DAMAGE FACTOR ON COST
This section simulates the relationship between the change
in cargo loss coefficient and the distribution cost of cold
chain logistics, as showed in FIGURE.12. It can be seen that
with the increase of cargo loss coefficient, the distribution
cost gradually increases. Specifically, when the cargo dam-
age factor is 0.09, the distribution cost is 3848.6; when the
cargo damage factor is reduced to 0.05, the distribution cost
is down to 3797.8; when the cargo damage factor is 0.01,
the distribution cost is 3463.26. Every time the cargo loss
factor is reduced by 0.01, the distribution cost is reduced by
1.25%. In the process of reducing the cargo damage factor
from 0.09 to 0.05, the distribution cost decreased by 0.33%

FIGURE 13. C201(25) distribution path.

for every 0.01 reduction of the cargo damage factor. While,
when the freight loss coefficient is reduced by from 0.05 to
0.01, the delivery cost is reduced by 2.20% for every decrease
of 0.01. Here, we can conclude that the distribution cost
shows an exponential growth trend with the increase of the
cargo loss coefficient. Therefore, in order to reduce costs, the
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FIGURE 14. R201(25) distribution path.

FIGURE 15. R211(25) distribution path.

FIGURE 16. RC201(25) distribution path.

FIGURE 17. C201(50) distribution path.

refrigerated truck should strictly control the cargo loss and
keep it in a low range during the distribution process.

FIGURE 18. R201(50) distribution path.

FIGURE 19. R211(50) distribution path.

FIGURE 20. RC201(50) distribution path.

FIGURE 21. C201(75) distribution path.

8) RESULTS WITH VARIOUS TEST SETS
In addition to C101, we also conduct experiments on C201,
R201, and R211, RC201 with 25, 50, 75, and 100 customers,
respectively. As shown in the table, the maximum of Pareto
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TABLE 4. Other test set results.

FIGURE 22. R201(75) distribution path.

FIGURE 23. R211(75) distribution path.

solution sets is 46 on C201(25), and the minimum one is 2 on
R211(25). It can be seen that the number of customers have

FIGURE 24. RC201(75) distribution path.

FIGURE 25. C201 distribution path.

no absolute relationshipwith the number of optimal solutions.
Differently, there is a weak relationship between the number
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FIGURE 26. R201 distribution path.

FIGURE 27. R211 distribution path.

FIGURE 28. RC201 distribution path.

of distribution vehicles and the number of customers. That is,
with the increment of distribution customers, the distribution
center needsmore refrigerated vehicles to serve. For example,
in the result of R211(25) test table with 25 customers, it only
needs two refrigerated trucks to complete the distribution
task. While, it needs 13 refrigerated trucks in the C201 and
R201 with 100 customers. Next, we will analyze the table
in detail.The specific distribution routes are shown in the
following FIGURES:

The Pareto optimal solution sets are obtained from the
solutions of all multi-objective optimization problems that are
pertinent to lower cost, lower carbon emission, and higher

customer satisfaction. Then, their optimal solution is chosen
by using the weights. The trends of the cost and the carbon
emission can be seen from the test set optimizations. When
the number of customers increases, both the cost and the
carbon emissions increase significantly. There is a significant
positive correlation between them. Hence, the enterprises
should find the distribution of the optimal path by reducing
the distribution cost and reducing the carbon emissions by
assuming that the corresponding social responsibility is met.

As the number of customers is increased from 25 to 50,
50 to 75, and 75 to 100, carbon emissions are increased by
112%, 54%, and 30%, respectively. In other words, as the
number of customers increases, the growth ratio of carbon
emissions shows a downward trend. When customers reach a
specific size, they can restrain the growth of carbon emissions
to a certain extent. Hence, when multiple distribution centers
deal with a smaller number of customers, they can reduce
carbon emissions by integrating logistics distribution centers
and increasing their capacity to deal with more distribution
tasks.

VI. CONCLUSION
In this work, we have presented the relevant concepts of cold
chain logistics path optimization, and established a multi-
objective optimization model under the real application sce-
nario. The presented model outperforms the widely adopted
single-objective optimization model that focuses only on
cost minimization, and achieves a breakthrough in the path
optimization problem, from one-dimensional goal to multi-
dimensional goals. Moreover, an improved ant colony algo-
rithm is proposed to perform multi-objective optimization by
considering cost, carbon emissions and customer satisfaction.
Experimental results shows that the improved ant colony
algorithm is superior to the classic ant colony algorithm.
It can effectively avoid falling into local optimality and obtain
more Pareto optimal solutions. The improved ant colony
algorithm achieved the goals of reducing distribution costs
and carbon emissions, and improving customer satisfaction.
In addition, this paper also conducted a sensitivity analy-
sis on temperature control and cargo damage coefficient.
When the temperature difference between the refrigerated
truck and the outside increases by 5◦C, carbon emissions
increase by 10.19% accordingly. Strict temperature control
can thus minimize the impact of temperature fluctuations on
cargo during cold chain transportation. Also, when the freight
loss coefficient is in the range of 0 to 0.1, the distribution
cost consistently decreases by 1.25% for every decrease of
0.01 in freight loss coefficient. The distribution cost shows an
exponential growth trend with the increase of the cargo loss
coefficient. In order to reduce the distribution cost, the cargo
loss should be kept in a low range. This research has a
certain of practical significance.Multi-objective optimization
outputs multiple Pareto optimal solutions. That is, there will
be a variety of distribution schemes for the distribution center
to choose, which provides a reference for the distribution
route to the relevant logistics company.
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FIGURE 29. Trends in costs and carbon emissions.

FIGURE 30. Ratio of increase in carbon emissions.

Future research directions mainly include the following:
1) Effective temperature control can minimize the deteri-

oration rate of food during transportation. Different products
such as fruit, vegetables, meat, and aquatic products require
different temperature controls during cold chain transporta-
tion. In the future, the different temperature control adjust-
ments of the same refrigerated truck will be considered as the
entry point for in-depth research.

2) This article establishes a complex vehicle energy con-
sumption model, and quantifies the carbon emissions from
fuel consumption accurately. However, with the emergence
of the concept of green logistics, electric vehicles with clean
energy will become the mainstream of goods distribution in
the future. The cold chain logistics distribution of electric
vehicles with charging stations can be used as the new focus
of future research.

3) The improved ant colony algorithm is used to solve the
multi-objective optimization problem, and multiple Pareto
optimal solutions are thus obtained. In the future, we will try
to use other heuristic algorithms to improve the convergence
of the optimal solution.
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