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ABSTRACT In recent past, to meet the growing energy demand of electricity, integration of renewable
energy resources (RESs) in an electrical network is a center of attention. Furthermore, optimal integration
of these RESs make this task more challenging because of their intermittent nature. Therefore, in the present
study power flow problem is treated as a multi-constraint, multi-objective optimal power flow (MOOPF)
problem along with optimal integration of RESs. Whereas, the objectives of MOOPF are threefold: overall
generation cost, real power loss of system and carbon emission reduction of thermal sources. In this work,
a computationally efficient technique is presented to find the most feasible values of different control
variables of the power system having distributed RESs. Whereas, the constraint satisfaction is achieved
by using penalty function approach (PFA) and to further develop true Pareto front (PF), Pareto dominance
method is used to categorize Pareto dominate solution. Moreover, to deal with intermittent nature of RES,
probability density function (PDF) and stochastic power models of RES are used to calculate available
power from RESs. Since, objectives of the MOOPF problem are conflicting in nature, after having the
set of non-dominating solutions fuzzy membership function (FMF) approach has been used to extract the
best compromise solution (BCS). To test the validity of developed technique, the IEEE-30 bus system has
been modified with integration of RESs and final optimization problem is solved by using particle swarm
optimization (PSO) algorithm. Simulation results show the achievement of proposed technique managing
fuel cost value long with the optimal values of other objectives.

INDEX TERMS Fuzzy membership function, multi-objective optimal power flow problem, renewable
energy sources.

I. INTRODUCTION

An electrical power system is comprised of generation
sources, transmission lines and distribution system. Com-
plexity of electrical power system is enhanced with the socio-
economic growth of the modern society. With the exponential
increase in consumers load, the energy demand increases
day by day. In the meantime, rise in power demand and
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quick depletion of fossil fuels may pose serious challenges to
utilities regarding supply and demand management. To deal
with this issue, one attractive solution is to motivate con-
sumers to reschedule their demand patterns using price based
demand response programs [1] and second is to install on-site
distributed RESs to enhance power system quality, reliability,
stability and economics [2]. Evolution of traditional grid to
smart grid drives to integrate information and communication
technologies (ICTs) with the traditional grid [3]-[6]. In this
regard, it is necessary to consider and incorporate the aspects
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of modern control technologies into optimal power flow
(OPF) study. OPF is a key tool to measure the transmission
and distribution system losses along with power generation
cost [7], [9].

In power system operation and control, to ensure the stabil-
ity and reliability of system OPF algorithms are considered a
basic and vital tool for power system operator [10]. In order
to optimize power system operation, OPF algorithms usually
run after specific time intervals to tune the values of different
control variables at optimal value [11]. From literature, it can
be seen that various researchers have used classical OPF algo-
rithms which consider the problem of economic environment
dispatch EED, caters only thermal generators leading to CO»
emissions [12], [13]. However, the OPF problem is complex
in economical, and computational view point [9]. In regard
of economically optimal power system, load flow can be
seen as an economic load dispatch (ELD) problem, along
with an objective to minimize the cost of thermal genera-
tors. However, ELD seems incapable in handling power flow
constraints [14]. On the other hand, it is the load or power
flow problem in which non-linearities of load, transmission
loss, and generation capacity may increase the complexity of
problem [15]. Computationally, the OPF is required to find
optimal values of different control variables during its opera-
tion, which enhances the computational complexity [16].

Generally, in power flow studies, the reactive power, ther-
mal limits of transmission system and security constraints
are not considered. Therefore, the solution provided by these
techniques may not be optimal and seems infeasible. There-
fore, the objective of OPF is to find feasible solution for
the selected objective i.e. (cost, power loss, voltage stabil-
ity, etc.) without violating these constraints [17]. Where,
the voltage, real and reactive power limits and transmission
line capacity comprises the inequality constraints [18]. The
objective function may include both, binary and continuous
variables.

In the meantime, particular attention is given to the integra-
tion of variable energy resources into grid with the objective
of de-carbonizing the electric power system [19]. Because
of the concerns related to global warming due to climate
change, solar photovoltaic and wind installations are steadily
increasing. On the contrary, adaptation of fossil fuels based
power generation sources are decreasing [20]. Recent studies
show that variable energy resources such as solar and wind
pose dynamics that span multiple time scales, hence affecting
different layers of power system’s control. These findings
illustrate that traditional load flow studies are no longer suffi-
cient to ensure reliability through optimal resource allocation,
as penetration of RESs continue to grow [21]. It is also
confirmed that due to high penetration of RESs, the oper-
ators face some problems in managing power demand and
thus rely on manual curtailment to manage the demand [22].
In addition, the uncertainty and intermittency of variable
energy resources are likely to increase the reserve capacity
requirements, hence blackincreasing the marginal cost of
electricity [23].
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While the challenges of renewable energy integration and
OPF may seem unrelated, their resolution is potentially syner-
gistic. Along with the reduction in carbon emissions renew-
able energy technologies provide provision of easy storage.
Therefore, it has potential to act as flexible energy source for
both supply and demand sides of electricity system. On the
other hand, power flow study is considered an efficient tool
in managing supply-demand by considering control and other
variables [24]-[26]. Therefore, to maintain reliability of the
electric power system with the high penetration of RESs,
it is required to have system operators to flexibly manage
generation resources to handle uncertainty of solar and wind
generation. In this context, this topic is novel in such a way
that equilibrium states have been obtained through mathemat-
ical formulation.

A. CONTRIBUTION OF THE PAPER

The MOOPF problem is formulated such that it considered
the integration of RESs in the power system. In this research
study major contributions are as follows:

+ The MOOPF problem is formulated to deal with three
conflicting objectives of power generation cost, active
power loss of power system and carbon emission of
thermal generators.

o When the contribution of RESs varies (i.e., as they are

weather dependent) real loss, overall cost and carbon
emission also varies.
Therefore, the major contribution of this work is that the
proposed technique is able to find the BCS in all study
cases presented in the paper while ensuring the intermit-
tent nature of RESs. Additionally, to reduce the com-
putational complexity of computer program, proposed
technique is equipped with some common mathematical
models.

o To calculate the optimal contribution of the RESs in
the total generation the triangular FMF based model is
used. This model helps to identify the ratio of RESs and
thermal generators. This helps to identify the remaining
demand which satisfied by most economical thermal
generators to balance the power system economics.

« Moreover, Based on traditional stochastic model and
PDF mechanism (section V), a novel computational
mechanism is proposed to find most feasible values of
control variables of power system presented in Table6.
Overall cost function is formulated such that it considers
the direct, penalty and reserve cost of RESs along with
the generation cost of thermal generators (section IV-A).

o To guarantee the feasible solution, PFA is used for
constraint handling because of its computational sim-
plicity (section IV-E). Furthermore, to develop set of
non-dominating solutions pareto dominance method
is used to categorize the pareto dominate solution
(section I'V-F).

o In simulations PFs are plotted to show the conflict-
ing nature of MOOPF problem objectives. FMF base
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decision making approach is used to pull out the BCS
form non-dominating solutions in different combina-
tions of optimization cases (section VIII-D).

Simulations results from figure 5a to figure 6 show that
the propose approach is capable to handle the complexity
of MOOPF problem and to solve it efficiently. Furthermore,
present study depicts the conflicting nature of different objec-
tives related to OPF problem and a trade-off solution is pre-
sented in different test cases.

Paper is comprises as follows: Section II is of literature
review. Motivation hs been address in section III. Mathemat-
ical modeling and problem formulation is presented in section
IV. Power and stochastic models are reviewed in section
V. Section VI describes the proposed approach. Section VII
illustrate the experimental setup and section VIII narrate the
results and discussion. Section IX concludes the paper.

II. LITERATURE REVIEW

About half a century ago in 1962 Carpentier formulated the
first OPF problem. Since its formulation, OPF remains a
widely-cultivated topic for power system research commu-
nity across the globe. The OPF problem can be divided into
two methods: conventional methods and modern metaheuris-
tic methods. Conventional methods are based on mathemat-
ical programming (e.g. linear programming and quadratic
programming, interior point method, and dynamic program-
ming technique, etc.). In these methods, initial guess, step
size, approximations, and engineering judgments are used
to find a feasible solution. But algorithms based on these
techniques may have slow convergence characteristics and
sometimes get stuck in the local optima due to the inappro-
priate initial guess, step size, and approximation, thus suffers
from inaccuracy and provide infeasible solutions. In recent
past researchers have developed some modern metaheuristic
techniques to deal with the non-linear and multi-modal (more
than one local optimum) nature of the OPF problem [27].
These methods are quite competent to handle the nonlinear
and multimodal nature of the OPF problem. They are versatile
and can find multiple solutions in a single run simulation.
Still some disadvantages are associated with these intelligent
methods like large dimensionality and the choice of training
methodology. Some common examples of these methods
which are generally found in the literature are: differential
evolution (DE), non-dominating sorting genetic algorithm
(NSGA), and particle swarm optimization algorithm (PSO).
The Basic Jaya algorithm is modified to solve multi-objective
OPF (MOOPF); a novel quasi-oppositional based (QOB)
modified Jaya algorithm is introduced in [28]. By deploying
the QOB learning strategy the exploration capability of Jaya
is improved. To compare the best and worst solution fuzzy
decision-making approach is used. The crowding distance
approach is to maintain the diversity of PF. The IEEE 30-bus
system is used to validate the QOB modified Jaya algorithm.
A modified firefly algorithm is proposed in [29] for the
solution of MOOPF problem non-dominating sorting, and for
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well distributed PF crowding distance approach is utilized
along with integration of fuzzy affiliation for picking BCS.
IEEE 30 and 57-bus test models, are used to validate the
results by considering nine different cases.

A Pareto dominance-based approach is used to guarantee
the non-violation of the constraints. The single objective
OPF problem is transformed into MOOPF by weighted sum
approach the suggested algorithm is implemented using Dif-
ferential search algorithm (DSA) as applied in [30]. Different
OFs are optimized and the superiority of DSA is validated
from the obtained results. The multi-objective multi-hive
bee algorithm (MHBA), which is the extension of basic bee
algorithm (BA), is used in [31] for solving MOOPF problem.
By incorporating an external archive the basic BA is modified
for solution of the MOO problem. For the determination
flight behavior of bees, the comprehensive learning method is
utilized. By using the weighted sum approach, modified arti-
ficial bee colony (ABC) algorithm is used to solve MOOPF
problem in [32]. The optimization of different objectives
reveals the dominance of ABC over other algorithms. Objec-
tive functions of cost, power loss and emission are considered
to solve the MOOPF problem in [33]. By applying dynamic
population-based ABC (ABC-DP) approach, a comparison is
made with multi-objective ABC and NSGA-II. Better perfor-
mance of ABC-DF has been demonstrated by the simulation
results. Multi-objective cuckoo search (CS) and QOB multi-
objective CS (QOB-MOCS) are introduced in [34] to solve
MOOPF problem. The QOB learning strategy is deployed
in the CS to speed up the convergence, and crowding dis-
tance approach is applied for PF dominance. To ensure the
feasibility of solution, the feasibility prior domination rule is
considered. The PFs obtained by QOB-MOCS out perform
the PFs of other algorithms.

Improved differential evolution (DE) with a self-adaptive
strategy and mixed crossover operator is considered in [35]
for single objective OPF and MOOPF problem. The simula-
tion results prove the competency of enhanced DE algorithm.
In [36] multi-objective DE algorithm is used for the solution
of multi-objective reactive power dispatch. The basic DE
algorithm is modified by integrating crowding distance with
a combination of non-dominated sorting approach. The PF
solution obtained from multi-objective DE outperforms the
strength Pareto evolutionary (SPEA) algorithm. Metaheuris-
tic algorithm with incremental power flow (IPF) model for
the solution of MOOPF is presented in [37]. The IPF model
is used to decrease the computation time by reducing the
number of power flow computations. Results validate the
effectiveness and robustness of the proposed algorithm. The
imperialist competitive algorithm (ICA), which is based on
imperialistic competition, is modified, and MO-ICA is devel-
oped and successfully deployed for the solution of MOOPF
problems in [38]. All metaheuristic techniques have their
limitations to provide an optimal solution for these objectives
due to the inconsistency of the solution. So, there is always a
room available to develop a new algorithm that solves this
multi-objective problem efficiently. It is required to solve
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the conflicting objective simultaneously in the real world
OPF problem. For this multi-objective optimization (MOO)
problem there are two approaches: a priori and posteriori
approach [39]. In a priori approach, MOO problem is con-
verted into a single objective optimization (SOO) problem
by using weighted sum by assigning weight to different
objectives and summing them together. The choice of weight-
ing coefficients is essential to assign a preference order by
the decision marker to the multiobjective. In second MOO
approach, weighting coefficients are defined by an expert. For
weighting coefficients variety of solutions are presented, and
the PF is approximated even in a single run [40], [41].

lll. MOTIVATION

It is quit clear by reviewing of literature in section II, that
all the matahuristic techniques are efficient to solve the
MOOPF problem with conventional generators, when dealing
with the minimization of generation cost of a system having
only conventional fossil fuel generators. It has recently been
studied in a few literatures, that unconventional generation
sources e.g. wind and solar power plants are also incorpo-
rated in power system. In [42] Gbest guided artificial bee
colony (GABC) has been used to solve the OPF problem.
In [43] OPF is formulated with the integration of doubly
fed induction generator (DFIG) model and Modified bacteria
foraging algorithm (MBFA) is used to find feasible solution.
Ref [44] proposed a modified power system having wind and
conventional generators and the load flow problem is solved
using ant colony optimization (ACO). A model of wind mill
is proposed by authors in [45]. Carbon emission, valve point
effect of steam turbine are incorporated in [46] as dynamic
ED problem. An hybrid model of solar PV, diesel generator
and battery is presented in [22] to manage the power flow.
System constraints are considered in literature [47], but con-
straints validation have been not explicitly addressed.
Although above methods are perfect candidates for solving
MOPs, but when it comes to a larger system having uncertain
RESs, other techniques are required to solve constrained
MOOPF problem. This is due to the fact of their compu-
tational complexity and large dimensionality [48]. To the
best of our knowledge most of the reported algorithms and
techniques do not investigate the integration of intermittent
RESs while investigating the optimal power flow rather they
considered conventional thermal generators only. Moreover
it has been found that optimal power flow problem has not
been addressed as MOOPF problem along with RESs. Hence,
there is always an opportunity to enhance the efficiency and
to reduce the complexity of computer program while sov-
ing MOOPF problem for a power system having distributed
RESs. In summary, further attention is required to solve
the MOOPF problem. Therefore A multi-constraint multi-
objective optimal power flow MOOPF problem is formed for
power system operation with intermittent RESs, and after-
wards is solved by the particle swarm optimization(PSO)
algorithm hybrid with the probability density function (PDF),
penalty function approach (PFA), fuzzy membership function
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(FMF). The idea behind the work is different from those men-
tion earlier and it is mainly established on the interpretation
of RESs estimated output power (section V).

The same idea which is used in [21] has been adopted,
in which RESs are incorporated to investigate the cost, loss
and emission profile of modified power system. In the present
study, first we calculate the estimated available power from
RESs using PDF and stochastic models. Then most eco-
nomical thermal generators are found and placed in IEEE
modified 30-bus system. Afterwards, developed optimization
problem is solved as MOOPF problem using PSO base ELD
algorithm. A set of non-dominating solution is developed
using categorizing process (section IV-F). Moreover, pro-
posed technique is equipped with the PFA to avoid constraint
violation (section IV-E). FMF is used to assign different
weight to RESs contribution to investigate the conflicting
objectives variations (section IV-D). Finally, table 7 presents
the results obtained using proposed mechanism are compared
with the existing results from literature to validate the key
findings.

IV. PROBLEM FORMULATION

In mathematics and computational science, any multi-
objective optimization problem can be generally expressed
as follow:

minimize : f(x,v) = [f1(x,v),f2(x,v),...,.fpx,v)] (1)

subjected to :

gitx,v) >0, j=12...M 2)
h(x,v)=0, k=1,2....N 3)
where, in Equation (1), x = x],xz,...,x”T represents

a vector of independent decision variables, and v =
o' v2 ... T represents a vector of dependent decision
variables. Inequality, constraints are g;j = 1,2, ..., M, and
equality constraints are hg(x)k = 1,2, ..., N. In this prob-
lem formulation variables can be classified as follow [49]:
The control (independent) Variables are gives as:
Pgp : Real power at generator buses except the slack bus.
Ve : Voltage magnitude at generator buses.
And state(dependent) Variables:
Pg : Slack bus real power
V1 : Load bus voltage magnitude.
Qg : Generator bus reactive power.
S7 : Line burden.

A. OBJECTIVES OF OPTIMIZATION
In this work, three minimization objectives are formulated.
First objective is to minimize the fuel cost with and without
valve point effect along with RESs cost, second objective is
consists of real power loss minimization and third objective
is to minimize the carbon emission.

Cost of electricity production is mainly dependent upon
operating cost which majorly consist of fuel cost of thermal
generators. It can be explain by the quadratic equation with
single polynomial. Cost function with regard to real power
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output is described in equation (4).

Ng

feost = Y_(ai + biPgi + ciPy)$/h €

i=0
where, feosr denotes the total fuel cost, N, gives the total
number of generators, a;, b; and c¢; are the coefficients of
generators cost function connected to i bus, respectively.
Finally, P,; gives the real power of the i generator.
Cost function in terms of valve-point effect can be express
through Equation (5).

Ng
= D (@i +biPgi + ciPyd;
i=0

fcostv,,

x sin(e; x (PZ?" — P $/h (5)

where, total fuel cost with valve-point effect is represented by
Jeost,p» cost coefficients with valve-point effect of generator
connected to i bus are shown by d; and ;. Real power
limit of the i generator is given by Pérf;i”. Generally, Private
bodies own RESs and they are responsible to operate and
control them. As RESs do not require any conventional fuel
for electricity generation. Yet, they charge maintenance and
operation cost. Therefore, due to the contractually agreed
scheduled power, the independent system operator (ISO)
must pay, accordingly [50]. Therefore, the direct cost of all
RESs i.e., wind, solar and small hydro units can be stated as
follows:

Cw(Py) = gwPy (6)
va(va) = hpvav @)
Cn(Pp) = gnPhn 3

where, P,,, Ppy and P, represent the scheduled output power
from wind farm, solar photovoltaic and small hydro, respec-
tively. Where, gy, h,, and gj, represent direct cost coefficients
of RESs. The actual power produced by RESs varies because
of ever changing and rendom behaviour of these sources.
Therefore, this variable provides the opportunity to ISO to
have reserve generation capacity for fulfilling load demand.
Reserve cost model for these sources are taken from the [51]
and described as follows;

CWR,,‘(AP) = kpw,i(AP) ©)
AP = Pwsp,i — Pwac,i (10)
Pywsh,i
CWR_[(AP) = krw,i/O (PWsh,i _Pwac,i)fw(pw,i)dpw,i
(11)

where, Pwsh,; & Pwac,i denote scheduled and available power
capacities from wind power source, f,,(py,;) gives the PDF of
wind source and k., ; denotes the reserve cost coefficient for
wind. If the excess power available from RESs is not used
by ISO, then it will pay penalty cost as per following penalty
cost function:

Cwp(AP) = kpy,i(AP) 12)
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Pywsh,i
CWP_,-(AP) = kPw,i/ (PWaC,i _pwsh,i)fw(pw,i)dpw,i
0
(13)
where, kp,,; denotes penalty cost coefficient for i’ wind
mill. Similarly, reserve and penalty cost of solar and small

hydro (Cpyy;, Cpvp;» Crg, CHp) power sources can also be
calculated. The cost coefficient values are given in table 1.

TABLE 1. Cost coefficients for RESs.

Direct cost coefficient
Wind gw = 1.6
Solar gs = 1.6
Small hydro | gp, = 1.5
Reserve cost coefficient
Wind krw =3
Solar krs =3
Small hydro | k., =3
Penalty cost coefficient
Wind kpw = 1.5
Solar kps = 1.5
Small hydro | kpp = 1.5

Mathematically, the cumulative cost function can be writ-
ten as:

OF 1 : feost
= feostyy + [Cw(Py) + Cpv(Ppv) + Ch (Pi)]
+ [Cwi, (A P) + Crv,(/\ P) + Cr ,(/\ P)]
+[Cwp (A P) + Cry, (\ P)+ Cu, (/\ P $/h (14)

Transmission system losses because of resistive nature of the
transmission lines. When electrical power flow in a branch
from one node to another, power dissipate in form of heat.
When this loss occur it effects the node voltages and it can
be explain in terms of node voltage magnitude and its angle.
Hence, Second objective function to minimize real power loss
of transmission network can be expressed as equation (15).

N;
OF2 : fpipss = Y CIlVE + V7 = 2V;VjcossjIMW . (15)
=1

where, total active power loss is denoted by fpjyss, N; repre-
sents total number of branches power system, conductance of
the I" line from i to j node is represent by C;. Where as, V; &
V; represent voltage magnitudes of bus i and j, respectively.
Moreover, §;; gives the voltage angle difference between bus
i and j. Finally, angle the §;; gives the voltage angle difference
between bus i and .

Similarly, the third objective function is introduced to min-
imize carbon emission caused by sulphur and nitrogen oxides
particles. In fossil fuel plants due to the combustion of fuel,
flue gases emits from chimney and pollutes the environment.
Main objective is to distribute the power demand among the
schedule generator so that the volume of emission is kept at
minimum level. Volume of this carbon emissions can be mod-
eled as a combination of quadratic and exponential function
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in terms of generator power [52], and mathematically can be
stated as the equation (16).
NX
OF 3 femission = Z[aipﬁi + BiPgi + vi + U)ie(mpgi)]ton/h
i=1

(16)

where, the coefficients of carbon emission for i’ generator
are o4, By, vi, wj and ;.

B. EQUALITY CONSTRAINTS
a) Active power balance at the i’ bus is given as follows:

PGi — Ppi — Pross =0 ieN (17
where, real power loss is given as:
NB
Pross = Vi Z VilGijcos(8;j) + Byjsin(5;)] =0 (18)
j=1

b) Reactive power balance at the i bus is given as:

06i —Opi —Qross =0 €N (19)
NB
QLoss = Vi )_ VjlGijcos(8;) + Byjsin(8ij)]
j=1
=0 (20)

where, elements of the Y Bus matrix are calculated as,
Yj = Gjj + Bjj 21

Equality constraints shown in equations 17-20 are discussed
in detail in [29]. The convergence process of running load
flow will eventually minimized the equality constraints in the
allowable boundaries.

C. INEQUALITY CONSTRAINTS
a) Real power generation limits of generators are,

Pu" < P < Pp™ fori=1,2,...,NG (22)

b) Reactive power generation limits of generators is written
as,

Qmit < Qg < QU fori=1,2,....NG  (23)

c¢) Generation bus voltage limits are given as,

ViminEViSVimax fori=12,...,NG (24)

d) Power flow limit of all branches is given as,
Pij < TLij (25)

where, TL;; gives thermal limit of the power flow line from
node i to j. The specific meaning of each variable in equa-
tions (22—25) is given in [29]. The optimization algorithm
picks the feasible value of dependent variables to satisfy the
inequality constraints from their allowable limits.
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D. FMF

The aggregate power from RESs is calculated by using FMF
which is obtain from fuzzy decision making approach. The
use of FMF provides the true variation in the contribution
of RESs real power, in this way its helps to investigate the
variation in real power loss, over all cost and carbon emission.
When different coefficients have been assigned to RESs,
system losses vary but proposed technique is able to find
the most feasible contribution ratio of RESs where losses,
generation cost and emission can be compromise and a trade
off solution has been achieved during run of OPF program.
The FMF values p for RESs contribution are computed and
defined as (26):

0 fory; <y
wiy) =1 0 —yD/02—y1) fory; <y <y (26)
1 fory; > y»

Here, y; denotes the value of contributing index. In this
work, y; and y, are considered as 0 and 1.25 respectively
[53]. Where, cumulative active power from RESs is expressed
through equation (27):

RE7P = {ityy X Py} + {ttpvin X (Ppy + Phya)} 27

E. CONSTRAINTS HANDLING APPROACH (CHA)

When equality constraints violates their specified ranges,
they are repaired in process of load flow program as follows
in (28):

Cimin  1f ¢i < Cimin
ci=1¢ if Cimin < €i < Cimax (28)

Cimax  1f ¢i > Cimax

It is also worth noting here that when optimization algorithms
are used to solve any type of objective function, it is difficult
to handle all respective constraints of diverse nature. So, there
must be some mechanism to deal with constraints handling
task. For this purpose, penalty function approach (PFA) is
considered as a widely adopted method i.e. to allow the search
process to reach global feasible optima, while discarding the
infeasible solution. The proposed technique is equipped with
PFA to convert the constrained MOOPF problem into the
unconstrained optimization problem, as given bellow in 29:

h eF
minfpy = 19 where fo (29)
min(f; + penalty) otherwise
NI”{ . Ng )
penalty = Ky ) (Vi = Vi) + Ko ) ) Qg — Q™)
i=1 i=1
Ny N
+Kp Y (Perey — Pl + Ks Y (i — SI™)
i=1 i=1

(30)

where, f; is the ith objective function, K, K, K,,, K are the
penalty factors and lim shows the maximum limit of the
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specified dependent variable. If no violation occurs, then
penalty will be considered zero and positive otherwise.

F. CATEGORIZING PROCESS

To further categorize the obtained solution, we have used the
Pareto dominance method. Mathematically, it is stated as in
Equation 31:

filxt,v) < filxa,v) Vie{l,2,....,m}

. 3D
filxr,v) < filxa,v) Fefl,2,.....m}

x1<x2iﬁ!

Let the solution space for P objectives be R” and the decision
variable search space be Q, for all x € Q and f(x,v) € R,
If we consider two objective functions f; and f;, which map
in the solution space R’ through decision variable vectors
x1 and xp. Then x; Pareto dominates xp, when both condi-
tions in above equation are satisfied. This relationship shows
that (x1, v) is a Pareto optimal point and can not be further
improved i.e. there is a trade off between one objective and
deterioration of any other objective. The set of such Pareto
optimal points in known as set of “non dominating solution™.
The surface defined by these non-dominating set of solutions
is called the PF.

V. POWER AND STOCHASTIC MODELS OF RESs
The uncertainty of RESs is incorporated as per following PDF
models:

A. MODEL OF WIND GENERATOR
In this section the wind generator model is discussed.

1) POWER MODEL

In this work, we consider a wind farm having 25 turbines
which is connected at bus 13. The rated power of each turbine
is 3MW. However, the output power obtained from a wind
farm depends on wind speed. So, the real output power as a
function of wind speed is described in as [21]. So, the real
output power of each turbine is dependent on wind speed.
Mathematically textcolorblackexpressed as Equation (32)::

0 forv < vip, &v > vy
V—Vin
Py(v) = 1 Pwr ( ) forvi, <v=<v, (32)
r — Vin
Pwr for vy < v < vour

where, p,, gives rated power of the wind turbine and
V, Vr, Vin, Vour are the actual speed of wind, rated speed of
wind, cut-in speed of wind and cut-out speed of wind, respec-
tively. In the proposed work, the rated values are considered
as, v, = 16m/s, vi, = 3m/s, and vy,; = 25m/s.

2) STOCHASTIC MODEL

Probabilistic models can be used to estimate the real output
power of the wind farm. The wind speed at certain locations
follows a specific pattern. So, it is required to use predic-
tion or estimation theory to better estimate the value. In this
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regard, the Weibull PDF stochastic model is considered best
for wind speed approximation [21], which is given as;

£0) = (k) )E Ve~ T v oy 200 (33)
Mean value of a Weibull distribution is define as:
Myp =cxT(1+k™ 1 (34)

Gamma function I < x > is stated bellow;
o
I <x>= / exp~! dr (35)
0

The Weibull curve shape and scale parameters are represented
by k and c, respectively. The shape parameters k and c¢ are
selected in such a way that maximum Weibull mean value
remains nearly equal to 10. Whereas, the PDF parameters
used in this study are given in Table 2. The actual maximum
Weibull mean calculated in this study is v = 8.862m/s.
Unless mentioned, we use this value in current case study.

B. MODEL OF PHOTOVOLTAIC GENERATION
In this section the photovoltaic generation model is discussed.

1) POWER MODEL
For solar power, energy conservation function is given in [21]
expressed through Equation (36):

2

G
P,— for0<G <R,
Py(G) = G(s;thc (36)
Py —— forG>G
G

where, G, Gy4, R., and Py, are forecasted solar irradiation,
solar irradiation at STP, actual solar irradiation and solar
rated output power, respectively. In this article the Gy =
800 W /m?, R. = 120W /m? values are used.

2) STOCHASTIC MODEL

For solar irradiance, it is also possible to predict the solar
radiations through stochastic model. In [21], solar irradiance
is given by log-normal PDF, where p is mean and o is
standard deviation:

£o(G) = [1/GoN/2mle”MW-1w*/2% o G~ 0 (37)

Mean of lognormal distribution is stated bellow:
)
(wt+—57)
Mlgn =e 2 (38)

C. MODEL OF SMALL HYDRO PLANT

1) POWER MODEL

For small hydro power plant, a mathematical function is given
in [50], [51]. Where, the river flow rate and effective head of
water determine the electrical output from run-off of the river.

Py (On) = peQnHy, (39)

where, p, ¢, g, O and Hy, denote density of water, efficiency,
gravitational acceleration, flow rate and effective pressure
head, respectively. Here, ¢ = 0.85 and H;, = 25m values
are used for experimental purpose.
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2) STOCHASTIC MODEL

Form literature [54]-[56], it is found that Gumbel distribution
curve is considered best to estimate the river flow rate Qy,
which follows distribution curve with scale parameter y and
location parameter 3;

fua(Op) = [l/y]g(Qh—ﬁ)/V) x = (@n=P)/7) (40)

TABLE 2. Parameters for stochastic models.

Generating Cumulative | Stochastic

Units Power Parameters

Rarm @ bus 11| 7MW DOF. o210 and ke
ﬁﬁfﬁr@ bus 13 | OOMW P 6 and p=6
E;I(l;g @ bus 13 SMW SB[I?:bZI: 15and y = 1.2

D. CALCULATION OF WIND POWER PROBABILITIES
Referring to Section III-A, it can be seen that there are two
regions in which wind power is discrete, this is due to wind
speed variation. The wind power is zero when the wind speed
is below and above the cut-in and cut-out values. However,
it is equal to rated power of wind mill when wind speed is
in between the rated and cut-out speed. Probabilities of these
discrete zones are calculated as [46]:

Fupu)pw =0} = 1 — e[_(Vin/C)k] + e[_(Vuut/C)k] (41)
Fin(Pw)Pw = Pur} = e[—(v,-/c)k] _ e[—(vout/c)k] (42)
Itis also observed that other then these two regions, the output
power of wind turbine is continuous in between cut-in and

rated speed [46]. The probability of wind power in continuous
region is calculated using ;

o k—1
Swpw) = M [Vin + D vr — Vin)]

ck x Pwr Pwr
Vin + p_w(Vr — Vin) (43)
X exp —( Pwr )k
C

E. CALCULATION OF OVER AND UNDER ESTIMATION
COST FOR SOLAR PV

As discussed before, scheduled power can be any amount of
active power as per mutual agreement between ISO and solar
park owner. When available power varied from the scheduled
power, it can be a case of over or under estimation, which are
further described in the following section [57], [58].

1) OVERESTIMATION COST

If the available power Py, remains shorter than the scheduled
power Py (i.e., the case of overestimation) and occurrence
frequency for particular schedule power is given by f;,, then
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the reserve cost can be calculated as:
N-

CR,S(AP) = er(Pss - Psav) = krs Z[Pss - Psn] *fbn (44)
n=1

where, k,; gives the reserve cost coefficient, N~ is the number
of pairs of (P s,,) generated for PDF.

2) UNDERESTIMATION COST

Similarly if the available power Py, increases to the scheduled
power Pg; (i.e., the case of underestimation) and occurrence
frequency for particular schedule power is given by f;;, then
the penalty cost can be calculated as:

N+
CP,S(AP) = ps(Psav — Pg) = kps Z[Psp — Pyl *fsp (45)

n=1

where, kp,; denotes the penalty cost coefficient, and Nt gives
the number of pairs of (Py) £,,) generated for PDF.

Vi. PROPOSED MIOOPF APPROACH
This section describes the overview and computational flow
of the proposed technique.

Limitations are always associated with the optimiza-
tion techniques to find the global optimum solution of
the MOOPF problem. However, there is always a room to
improve the working of any algorithm such that to find the
optimal solution of the MOOPF problem. In this work, rather
than using true Pareto base optimization, we have devel-
oped a computationally efficient approach which finds the
global optimal solution of MOOPF problem by using split
approach. Initially, we split the aggregate demand in optimal
ratio which lowers the overall generation cost of the power
system. Then, we accommodate the remaining demand from
RE sources. In this case, the sharing of power demand on
RE sources is further calculated by using a PDF models of
RESs and FMF. This allows us to integrate the RESs in such
a way that the active power loss of the power system can
be lowered. As the MOOPF problem has threefold objective:
cost, loss and carbon emission minimization. Therefore, there
is always a trade-off solution exists among these three objec-
tives. Hence, upon having a set of non-dominating solutions
PFs are plotted and BCS has been picked.

A. EVOLUTION OF TRADITIONAL GRID

In the traditional power system, thermal generators con-
sume fossil fuel, but increase in electrical demand may also
increases the pollution index. This would certainly motivate
the researchers to adopt renewable energy sources RESs to
cater the environmental concerns. Furthermore, the integra-
tion of RESs such as wind and solar greatly reduces the
carbon emission and global warming [1].

B. FMF

As itis easy to take decision for human in real world but when
it comes to machines it is difficult to take decision due to
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the fuzziness of available knowledge. In order to calculate
the real contribution of RESs in total generation, preference
order is assigned to each RES. Furthermore, to extract the
BCS from set of non dominated solution FMF has also been
used in this article [59].

In this proposed technique triangular FMF based math-
ematical model has been used to calculate the true mem-
bership of RESs in the total generation of power system.
The main advantage of this model is to analyze the vari-
ations in different conflicting objectives of MOOPF prob-
lem. Therefore, contribution indexes have been assigned to
the estimated produce power from RESs. Upon having the
estimated power of RESs, a set of different combination
indexes has been generated to create a pool of distributed
RESs. Furthermore, remaining demand has been satisfied
with the most economical thermal generators. In this way
before going into the categorizing process a reasonable set
of trade-off solution has been achieved. Optimal combination
of generation sources is shown in figure 7. Moreover, after
the categorizing process a confident solution from the set of
non-dominating solutions has been picked with the highest
value of membership (section VIII-D). It is worth mentioning
that the hypothesis which is built in this work to use FMF to
investigate the variations in defined objectives has not been
found in literature.

C. ELD USING PARTICLE SWARM OPTIMIZATION (PSO)

PSO is a nature inspired population based matahuristic tech-
nique that is developed to solve the engineering and scientific
optimization problems. In this technique, individuals change
their state (position) as the algorithm converge. Initially a
swarm of random particles is created and random veloci-
ties are assign to them, when they move through the search
space best position or fitness stored as “pbest”. In the global
version of PSO, another value is tracked by the algorithm
which is “gbest”. Position of each particle is effected by the
best fit particle in the entire swam. Information regarding
best solution is shared throughout the swarm by using star
social topology. The loop is ended when a pre-define stopping
criterion is met or convergence results are obtained [60].

D. PROPOSED TECHNIQUE FOR MOOPF

In the proposed technique, we calculate the available power
from RESs using stochastic and PDF models. Calculate the
preference order of RESs to contribute in the power gen-
eration and then split the demand to calculate the thermal
generation. Then, we compute the fitness value of the objec-
tive functions. Afterwards, we calculate the constraint vio-
lation penalty and add that value in objective function to
avoid the infeasible solution. Moreover, we developed a non-
dominated set of solutions using Pareto dominance method to
plot the PFs for different study cases. To analysis all possible
operating values of control variables load flow program has
been used as a deterministic tool in algorithm loop. Once non-
dominated solutions from pareto-optimal set are obtained,
one BCS is extracted in all study cases. Flow chart which
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depicts the proposed idea of the proposed technique is shown
in figure 1, and pseudo code is given in algorithm 1.

Perform the Base Case Load
Flow using Guass Seidel

Calculate the RESs active
power using stochastic
models

Calculate the aggregated
active power from all RESs
ng FMF

Calculate the remaining demand for
Thermal generation

Pgi=Total Load — RESs Generation

Initialization of PSO base ELD

parameters, set t = 0

v
Compute the optimize objectives for
MOOPF and constraints violation
penalty for each particle

]

Non dominating
categorizing process

Retain the output as the Pareto
optimal solutions to the next
iterations.
Sett=t+1

individual Pbest and Gbest.
t=thl

Extract the best compromise
solution using FMF

Print Results

FIGURE 1. Process Flow Chart.

VII. EXPERIMENTAL SETUP

The proposed technique has been developed to solve
the multi-objective and non-linear constrained optimization
problem. A sequential procedure is adopted to search the
feasible solution at each phase of the optimization algorithm.
This procedure guarantees the feasibility of non-dominated
solutions. To meet the load demand efficiently by OPF,
a mathematical formulation of a system model is proposed
with thermal generators and RESs. The proposed algorithm
based on MOOPF problem has been applied on a modified
IEEE 30-bus system as shown in figure 2. The proposed
system is modified as per details given in Table 3.

VIIl. RESULTS AND DISCUSSIONS

This section described the results of formulated multi-
objective and non-linear constrained optimization problem.
A sequential procedure is used to find an optimal solution
at each phase of the search algorithm. This procedure guar-
antees the feasibility of non-dominated solutions. Modified
IEEE 30-bus system is used as a test bench. To implement
and check the validity of proposed technique, a PC of 2.
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Algorithm 1 Pseudo Code for MOOPF

1: Initialization of load flow parameters.

Base case load flow analysis.

Calculate the RESs active power using stochastic models.
Calculate the aggregated active power from all RESs
using FMF.

B

5: Calculate the remaining demand for thermal generation.
6: Initialization of PSO base ELD parameters, set t = 0.
7: while ¢+ < Tmax maximum iteration do
8: Set the penalty factors as per PFA for constraints
handling.
9: Calculate the fitness of objective functions.
10: Compute the constraint violation penalty and add to
objective function.
11: fori =1t N, do
12: forj =11 N, do
13: if x1lold < x20ld then
14: Algorithm loop.
15: if x1new < x20ld then
16: select x 1new as a new solution in PF;
17: end if
18: else
19: Sort and extract the BCS using FMF
approach.
20: end if
21: end for
22: end for
23: t+ +;
24: end while
25: end
29 e 27— DN —
v v v
26— 25—
30kt v v
v
23 24
v v
1 Sty 18— | 9—
v v v
2
v
2 —
|7 e v
e | 16— Y 220
v A J
10
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g, ]"‘—;. Wind Power T
Ll B gl b o
=i v
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1 3 — ] — 6 £
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G S G PV Array
v s
2 5 - Thermal Generators :G:)

G

FIGURE 2. Modified IEEE 30-Bus system with RESs.

13 x 2.13 GHz clock CPU with 4GB volatile memory and
64-bit windows 7 has been used. And to reveal the results
of developed technique 64-bit MATLAB 2018a software has
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TABLE 3. Data for the modified IEEE 30-bus network.

Items Quantity | Details
6
Buses 30 Generator buses and 24 load buses
Branches 41
Thermal 4 Bus 1 is slack bus and
Generators Buses @ bus number 2,5 and 8
Solar + 1 @ bus
Small Hydro 13
Wind 1 1@1 bus
Connected 283.4MW,
load 102.5MVAr

been used. It is also required to consider the conflicting nature
of the three objective functions as explained in Section II.
Therefore, five cases are considered to exemplify the conflict-
ing nature of the MOOPF problem.

TABLE 4. Different combinations of conflicting objective functions.

Study Cases | Objectives’ combinations

1 min fCOSt & fPloss

2 min feost vp & fPioss

3 min fcost;up & femission

4 min fCOSt & fPloss & femission

5 min fCOSt,’UP & fpioss & femission

TABLE 5. Different parameters of algorithm.

Parameters Values

Y1 0

Y2 1.25
Pppulatlon 50

size

Numbers of iterations for 500

PSO convergence

Inertia

of particles 0.9

Weight

of particles 0.4

Base

MVA 100

Accuracy 0.001
Acceleration 1.8

Max Iteration for 200

load flow convergence

a; 320, 310, 370
b; 11.5,12,11.7
c; 0.00211, 0.00200, 0.00623
d; 18, 16, 12

e; 0.037, 0.038, 0.045
Pgmin 20, 20, 25
Pgmax 130, 110, 200

A. PARAMETERS SETTING

Parameters of Fuzzy function, ELD, power system model
and thermal generators are adjusted as given in TableS.
Parameters are tuned many times to get the suitable
combination.
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TABLE 6. BCS for all study cases.

Variables Study Study Study Study Study
Names Case 1 Case 2 Case 3 Case 4 Case 5
TG1 139.9998 140 140 140 139.9999
TG1 51.46717 52.244 53.79177 58.886 5291711
TG1 18.8946 | 20.40975 | 23.44755 | 34.41584 | 22.02893
WFg 30.64751 | 33.09879 | 38.00135 | 55.16033 | 35.55007
S+Hg 56.66667 | 51.94444 42.5 9.444444 | 47.22222
V@busl 1.06 1.06 1.06 1.06 1.06

V @bus2 1.043 1.043 1.043 1.043 1.043
V@bus5 1.01 1.01 1.01 1.01 1.01

V @bus8 1.01 1.01 1.01 1.01 1.01
V@busll | 1.081998 | 1.081998 | 1.081998 | 1.081998 | 1.081998
V@bus13 | 1.070998 | 1.070998 | 1.070998 | 1.070998 | 1.070998
Q@busl 55.34849 | 55.34849 | 55.34849 | 55.34849 | 55.34849
Q@bus2 -16.7187 | -16.7187 | -16.7187 | -16.7187 | -16.7187
Q@bus5 -25.1761 | -25.1761 | -25.1761 | -25.1761 | -25.1761
Q@bus8 25.83227 | 25.83227 | 25.83227 | 25.83227 | 25.83227
Q@busll | 28.40549 | 28.40549 | 28.40549 | 28.40549 | 28.40549
Q@busl3 | 23.46115 | 23.46115 | 23.46115 | 23.46115 | 23.46115
Total

Cost 676.4 704.8 715.8 724.7 710.3
($\hr)

Total

Loss 13.95 13.85 13.73 13.77
MW)

Total

Emission 10.43 1043 10.43
(ton/hr)

B. VARIATION OF GENERATION COST OF RESs

In this section, the simulation results of cost variation of wind
and solar power plant are discussed. The Weibull parame-
ters are taken as described in Table2. The scheduled power
of wind and solar is varied from zero to the rated power
and variation in direct, penalty, reserve and total cost is
shown in Fig. 3 and 4. Moreover, with the increase of sched-
uled power, reserve cost is escalates due to large spinning
reserve requirement. In addition, the direct cost increases
linearly with the scheduled power. Whereas, the penalty
cost decreases monotonically with the increase of scheduled
power.

Similarly, the variation in cost of solar power plant is
shown in Fig. 4 for the over/under estimation cases. It is quit
visible that total cost of solar power is not monotonically
increasing, actually it is decreasing near 15SMW and then
increases again with the increase in scheduled power. Cost
coefficients are using the same parametric values as given in
table 1. Log-normal PDF parameters are used same as given
in table 2.

C. PF COMPUTATION

Simulation results of three different combinations of opti-
mization objectives which are shown in Table 4 are expressed
in this section. PFs are developed to analyze the different
solutions upon having non-dominated solutions. From these
a best compromise solution is extracted.

o Case 1 (minfeost & fpioss): When the generation
capacity increases cost also increases due to the
proportional relation. Moreover, voltage difference
between the buses decreases when the generation
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FIGURE 3. Wind power cost variation vs schedule power.
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FIGURE 4. PV power cost variation vs schedule power.

on generator buses increase, which becomes the
cause in the reduction of power loss. Therefore,
at the same time when cost is increase power loss
decreases. This conflicting nature can be seen from
figure 5a which is obtained after running the opti-
mization algorithm.

o Case 2 (minf(cost_vp) & fPioss): For study case 2 PF
is shown in figure 5b. Similar, from case I cost and
loss shows same relation but due to the sinusoidal
effect of valve opening overall cost increases. This
can be noted in figure when cost with valve point
effect increase from 715%/hr to 720$/hr and power
loss remains almost constant while it follows same
pattern in study case 1 when cost increase from
690%/hr to 695%/hr.

o Case 3 (minficost_vp) & femission): PF obtain in Fig-
ure 5c¢ shows conflicting nature of emission and
cost with valve point due to the characteristics of
objective function equations. It can be seen from
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FIGURE 5. Analyzing the impact Pareto Front for different objective functions.

the figure that there is a trade-off between the
said objectives. It can be seen that the PF forms
almost straight line due to the fact that there is little
variation in thermal generation. This is due to the
intervention of RESs which are inherently green in
nature.

o Case 4 (minfeost & fpioss & femission) and Case 5
(minf(cost_vp) & fPioss & femission): To show the
results of case 4 and case 5 PFs for tri-objective
optimization are shown in figure 5d and figure 6
respectively, tri-objective are simultaneously opti-
mized and set of non-dominating solutions are
plotted to form the PFs. Smooth PF is obtained
despite the non linear effect of valve point.
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Power Loss (MW) 135 660 Fule cost ($/hr)

FIGURE 6. Test Case 5:Pareto Front for Tri-objective.

To minimize total generation cost given by Equation 16
for all generators PSO based ELD optimization algorithm
is integrated with the proposed technique. Cost and PDF
coefficients are same as provided in table 1 and 2 respectively.
The convergence of PSO based ELD is plotted in figure 8.
It can be seen that the optimized cost is achieved after the 50
iteration due to fixed value. Figure 7 shows the contribution
of generation sources in all case studies.

To validate the findings of proposed technique on the
bases of BCS, a detailed comparison of bi-objective and
tri-objectives cases obtained by MOPSOpyr, NSGA — 11,
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MOEAp, WA, MOEAp_sr, MOFAcps, and MOFApgy is pre-
sented in table 7. From this comparison table it can be seen
that the optimal BCS picked by MOPSO/FMF is 710.3$/hr,
13.77 MW and 0.1043 ton/hr, which is quite low in terms
of cost and emission. Reduction in carbon emission level
is observed this is due to the penetration of inherently
clean RESs. Moreover, optimum generation combination of
the renewable sources reduces the overall generation cost
to a good extant, which is 902.54 $/hr and 878.13 $/hr
in MOEA/D and MOFA-CPA algorithms respectively. It is
worth mentioning that the numbers of trial in these algorithms
are also double than the proposed one, hence reducing the
computational complexity of proposed technique, which is
also an objective of this work. Although, in terms of losses
of power system BCS is at higher side than that of compared
ones. But the fact is, this is all because of low reactive
power generation capabilities of RESs, which are replaced by
the conventional thermal generators on the generator buses
as shown in table 2, figure 2. While the other algorithms
only considered thermal generators in their system mod-
els. Moreover, It is noticeable here that the comparison of
MOPSO/FMF between other algorithms is only given for
conventional thermal generators because no comparable lit-
erature is available for the case of multi-objectives optimal
power flow with RESs. Moreover, an extension of this work
in the future can be to compensate these losses by optimal
placement of reactive power compensation devices.

D. EXTRACTION OF BCS

From the set of non-dominating solutions, one confident
solution has been extracted by using FMF. This post-optimal
process is used to extract the non-inferior solution from the
pareto optimal front. As the judgment in decision making is
imprecise in nature, the membership of individual solution is
given by the following Equation 46:

1 for f; < f(i, min)
Ja, —fi
ui = L_X)f for fiiminy < fi < fiimax) (46)
f(t,max) f(t,mm)
0 fOl’fi zf(i,max)

where, f; min and f; uqx denote the minimum and maximum
values of the objective function, and & represents the specific

VOLUME 8, 2020



M. A. llyas et al.: MOOPF With Integration of Renewable Energy Sources Using FMF

IEEE Access

TABLE 7. A comparison of BCS obtained with some existing results.

Reference Techniques giozg hﬁz)r(aﬁigf Trials | CHA | Total Cost ($/hr) Loss}sls(tlf\:/lnzv) Emisfio(:il (pw)

Proposed | MOPSOppy 50 500 15 PFA 710.3 13.77 0.1043
[30] MOFAcpa 100 300 30 CPA 878.13 3.9232 0.2171
[30] MOFAppa 100 300 30 PFA 879.91 42179 0.2165
[73] MOEA?F 300 100000 50 SF 881.012 4.1441 0.2164
[74] NSGA—-11 20 1000 - - 837.416 5.2397 -
[75] MOFEAp 100 500 31 PFA 902.54 3.4594 0.2107
[76] WA 80 300 - - 897.2797 4.6211 0.2175

TABLE 8. A comparison of Fuzzy based control schemes used in literature.
Reference| Technique Objective Remarks

[69] Barrier Lyapunov functions-based | An adaptive output feedback control via com- | As the load flow problem is highly com-
command filtered output feedback | mand filtered backstepping is proposed for class | plex , nonlinear and constraint optimiza-
control for full-state constrained | of uncertain nonlinear systems with full-state | tion problem, so PF problem can be
nonlinear systems constraints model as control system problem and

can be solved as in [69]

[70] Adaptive Hoo sliding mode con- | This paper is focused on the problem of adaptive | When RESs are integrate to the existing
trol of uncertain neutraliARtype | sliding mode control design for uncertain neutral- | power system problem of rotor speed
stochastic systems based on state | type stochastic systems under a prescribed Hoo | and system frequency arises. Parameters
observer performance of power system can be tune to stabilize

the system

[71] Passivity-based robust sliding mode | In this paper, a new methodology of the observer- | On the front of power system quality
synthesis for uncertain delayed | based SMC for uncertain DSS has been pro- | fault analysis of power system can be
stochastic systems via state ob- | posed. A novel linear sliding surface has been | observe and investigate using the system
server presented based on the designed observer. A new | model

sufficient exponential stability condition with
passivity for the closed-loop system during the
predefined sliding surface has been derived by
employing the stochastic stability theory and lin-
ear matrix inequality approach

[72] Adaptive neural command filtering | A command ifiAltered adaptive neural networks | Moreover, to forecast the wind speed
control for nonlinear MIMO sys- | (NNs) control method is presented with regard | and solar irradiance NN based virtual
tems with saturation input and un- | to the MIMO systems by designing the virtual | controllers and error compensator can
known control direction controllers and error compensation signals be designed

140 |
I TG 584.5 | E
20 2 sea ]

TG3
_ I Wind 583.5 ¢ 1
§ 100 I PV+HYD | | 583 | k!
g g 582.5 ]
8 g0 i G 582) :
Zi Ss815) ]
§ 60 1 581 ¢ E
2 580.5 | :

Q

g 40 1 580 ]
© 579.5F :

20 1 o 20 40 60 80 100

epoch
0

Case2 Case3 Case4

Caset

Caseb

FIGURE 7. Contribution of generation sources.

non-dominating solution in the Pareto front space. The nor-

malization of k™ individual is given by following equation
47.
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FIGURE 8. Convergence graph of PSO based ELD.

where, S;,4 represents the numbers of non-dominating solu-
tions. The largest value of the u; will have the best com-
promise solution. Table 6 is presented to exemplify the BCS
found in the Pareto front space in all cases. It can be seen
that the carbon emission is constant for cases 3,4 and 5.
Because, the overall thermal generation is nearly constant.
Other than emission it can be seen that there is always a trade-
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off between the objectives of optimization. Table also shows
the values of generator bus voltage and reactive power limits
which are well truly in allowable ranges.

IX. CONCLUSION
In this research work, OPF problem is formulated as MOOPF
problem. A new and slightly different technique is devel-
oped to find the optimal values of different control vari-
ables in the presence of distributed RESs. To deal with the
intermittent nature of RESs, PDF and stochastic models are
used to calculate the available power. Optimization of overall
cost is achieved in both; under and overestimation scenarios.
Moreover, to address the conflicting nature of formulated
objectives, PFs are plotted for different case studies. Pareto
dominance method is used to categorize the pareto domi-
nate solution. Where, not only PFs are obtained but BCS
is also extracted from the set of non-dominating solutions
using FMF approach. For different combination of objectives,
trade-off solutions are also presented. During the implemen-
tation of multi-objective optimization problem, PFA method
is used in order to avoid violation of physical and security
constraints. As a response, a closed form optimal solution the
solution is obtained. Moreover, computational requirements
are significantly reduced due to simplest form of mathemati-
cal models to achieve the BCS in different trials. To validate
the effectiveness of developed technique IEEE 30-bus system
is modified to incorporate the RESs and simulations are
performed in MATLAB 2018a software. The future scope
on MOOPF front, author propose the possible induction of
battery storage system, pumped or small hydro in the power
system with more number of buses. Doubly fed induction
generator for wind turbine, stand alone PV system with and
without maximum power point tracker (MPPT) and FACT
devices can also be incorporated to extend the research study.
Moreover, author suggest future direction on front of con-
trol system, power system stability and data science, many
stochastic system model control, adaptive fuzzy control and
neural networks methods have been recently developed to
determine the state of control variable in table 8. As the power
flow (PF) problem is highly complex, nonlinear and con-
straint optimization problem, so PF problem can be model as
control system problem and can be solved as in [61]. When
RESs are integrate to the existing power system problem of
rotor speed and system frequency arises. Parameters of power
system can be tune to stabilize the system using [62]. On the
front of power system quality fault analysis of power system
can be observe and investigate using the system model in
[63]. Moreover, to forecast the wind speed and solar irra-
diance NN based virtual controllers and error compensators
can be design as in [64]. So in future we will use these
modern technique of control system and neural network (NN)
to predict and to solve optimal power flow.
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