IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 13, 2020, accepted July 24, 2020, date of publication August 3, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3013849

The Weighted Word2vec Paragraph Vectors
for Anomaly Detection Over HTTP Traffic

JIELING LI'", HAO ZHANG ~, AND ZHIQIANG WEI

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China

Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116, China

Corresponding author: Hao Zhang (zhanghao @fzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672159, and in part by the Joint
Straits Fund of Key Program of the National Natural Science Foundation of China under Grant U1705262.

ABSTRACT Anomaly detection over HTTP traffic has attracted much attention in recent years, which
plays a vital role in many domains. This article proposes an efficient machine learning approach to detect
anomalous HTTP traffic that addresses the problems of existing methods, such as data redundancy and
high training complexity. This algorithm draws on natural language processing (NLP) technology, uses the
Word2vec algorithm to deal with the semantic gap, and implements Term Frequency-Inverse Document
Frequency (TF-IDF) weighted mapping of HTTP traffic to construct a low-dimensional paragraph vector
representation to reduce training complexity. Then we employs boosting algorithm Light Gradient Boosting
Machine (LightGBM) and Categorical Boosting (CatBoost) to build an efficient and accurate anomaly
detection model. The proposed method is tested on some artificial data sets, such as HTTP DATASET CSIC
2010, UNSW-NB15, and Malicious-URLs. Experimental results reveal that both the boosting algorithms
have high detection accuracy, high true positive rate, and low false positive rate. Compared with other
anomaly detection methods, the proposed algorithms require relatively short running time and low CPU

memory consumption.

INDEX TERMS Anomaly detection, Word2vec, TF-IDF, LightGBM, CatBoost.

I. INTRODUCTION

Industrial Internet continues to advance, and new-generation
information technologies and applications such as 5G,
blockchain, and cloud computing continue to deepen, are
accelerating the process of digitalization and industrial
upgrading in various industries. In the development of big
data, Web security will remain a popular hot topic in network
security. With the widespread use of network technologies
such as JavaScript, etc., new types of attacks continue to
emerge. New attack methods such as “XML External Entities
(XXE)” and “Insecure Deserialization” have been added to
the Open Web Application Security Project (OWASP) Top
Ten Attack Types list [1]. Attack methods are becoming
more and more diversified, which brings very serious chal-
lenges to Web security defense. Hypertext Transfer Proto-
col (HTTP) is an application-layer protocol for transmitting
hypermedia document, such as HTML. It was designed for
communication between Webs. Anomaly detection for

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

HTTP traffic has become the main research direction of
security tools.

Anomaly detection for HTTP traffic is performed tradi-
tionally based on statistical analysis [2]-[4]. However, not
all behaviors can be expressed by using statistical models.
For some hidden attack methods, the establishment of cor-
responding behavioral models by pure statistical methods is
impossible. This makes the research on new detection meth-
ods particularly important, i.e., research on anomaly detec-
tion based on machine learning methods and deep learning
methods.

HTTP traffic data consists of hundreds or thousands of
features. The rich network characterization methods can be
found in the literature [5], [6]. Usually these features con-
tain a large number of unrelated and redundant features,
which increase the complexity of the anomaly detection
model. Mimura and Tanaka [7] proposed a language-based
agent log detection method. This approach divides proxy
logs into words and uses the words as feature vectors. They
utilized paragraph vector to convert the words into feature
vectors automatically. However, they ignored the complete

141787

https://orcid.org/0000-0001-5561-4104
https://orcid.org/0000-0002-2092-074X
https://orcid.org/0000-0002-9568-9669
https://orcid.org/0000-0001-7573-6272

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

HTTP request context, namely contextual semantics problem,
so it may not contribute the detection rate. In addition, it is
difficult to collect a sufficient amount of HTTP traffic to
train the model, and only a small number of samples can be
marked as malicious. In order to produce a distinctive feature
representation, the corpus must be effectively summarized.
In order to effectively summarize the corpus, the important
words of classification must be extracted.

To address these issues, we employed the Word2vec algo-
rithm for extracting word vectors to solve the problem of
contextual association in this article. Then, we calculated
the TF-IDF value of each word to generate a complete
weighted paragraph vector to reduce the dimension. Finally,
we adopted the LightGBM and CatBoost algorithms to
quickly and accurately train the anomaly detection model.
During the experiment, we used three benchmark datasets
to evaluate the performance of our model, namely, HTTP
DATASET CSIC 2010, UNSW-NB15, and Malicious-URLSs.
We compared the prediction results of our model with those
of other models at the present stage. Experimental results
indicated that our model performed well on the three datasets
above.

The main contributions of this article are summarized as
follows:

1) The Word2vec algorithm is used to solve the problem
of contextual semantics. At the same time, the weight
calculation of TF-IDF is introduced to improve the
detection rate and accuracy of the model.

2) Customizing the size of the paragraph vector resulted in
the reduction of the redundancy and complexity of the
vector representation method, and the training efficiency
of the anomaly detection model is improved.

The remainder of this article is structured as follows.
Section II describes the related work. Section III briefly
reviews the characteristics of the selected technology to make
this article rational. Section IV presents the proposed algo-
rithm. Section V presents the experimental results and cor-
responding analysis. Finally, the conclusions are presented
in Section VI.

Il. RELATED WORK

This section provides related work in the areas of feature
engineering and detection algorithms used for choosing a
classifier for anomaly traffic detection.

A. FEATURE ENGINEERING

Feature engineering methods include feature selection and
feature extraction [8]. The HTTP traffic feature selection is
based on certain rules to select some features from exist-
ing HTTP traffic features to represent the original HTTP
traffic data. Many feature selection techniques have been
developed for network traffic over the years, for exam-
ple, Maximum Information Coefficient [9], General Feature
Selection [10], [11], the combination of discretization and
Filter [12], Information Gain Ratio [13], [14], Restricted

141788

Boltzmann Machine [21], [22](RBM) [15], Improved-
RBM [16], Improved-Grey Wolf Optimization [17], and
Hybrid Feature Selection [18], [19]. These approaches
remove irrelevant and redundant features. The HTTP traffic
feature extraction is used to extract a new set of features
from the original HTTP traffic feature set through function
mapping. The biggest benefit of this method is it obtain the
smallest new feature set through transformation [20]. The
commonly used network traffic feature extraction algorithms
are as follows: the metric learning [21], the linear dis-
criminant analysis [22], and the principal component anal-
ysis [23], [24]. The above mentioned feature selection and
feature extraction algorithms can greatly improve the per-
formance of the algorithm. However, the detection accuracy
is not high enough, because it ignores the relevance of the
full request context. The imbalance of traffic data and the
popularity of compound attacks pose higher requirements on
the reduction of HTTP traffic dimensions.

Some methods are employed to extract important words
from HTTP logs using some NLP techniques. Liu ez al. [25]
proposed an integrated Web intrusion detection system that
combines feature analysis and support vector machine (SVM)
optimization. They extracted the characteristics of key
parameters based on the summed detection points, which
summarize the data features of the Web attacks for solving
the limitations of large network data traffic and high dimen-
sionality in data feature extraction. Mimura and Tanaka [7]
utilized paragraph vector to convert the words into fea-
ture vectors automatically. In this approach, paragraph vec-
tor provides feature vectors to discriminate between benign
traffic and malicious traffic. After that, Mimura [26] made
improvements to the previous method, he calculated the word
importance score (Term Frequency, TF) from malicious and
benign words, and extracted the top N important words, then
used Doc2vec to train it into a feature vector. Therefore,
before performing anomaly detection on a large amount of
high-dimensional HTTP traffic data, it is necessary to opti-
mize and reduce the characteristics of the HTTP traffic data.

B. DETECTION ALGORITHMS

In recent years, researchers have designed many anomaly
detection models to protect the network against attacks
perpetrated by malicious users against Web applications.
Zhao et al. [27] introduced a semi-supervised discrimi-
nant auto-encoder, they understood the nature of the attack
based on the generalized transformation features derived
directly from the unknown Web environment and data.
Gong et al. [28] proposed model uncertainty to evalu-
ate predictions made by DeepLearning-based Web attack
models. There are also many algorithm models that use
deep learning to detect Web attacks: Long Short-Term
(LSTM) [29], [30], Specially Designed Convolution Neural
Network (SDCNN) [31], Character-Level Convolution Neu-
ral Networks (CLCNN) [32], Channel Boosted and Residual
learning-based CNN (CBR-CNN) structure [33]. It can be
continuously optimized during training and testing to extract

VOLUME 8, 2020

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

IEEE Access

more accurate feature values, but training complex network
nodes or layers is slow.

Boosting is mainly used to boost a weak classifier or weak
learner with the aim of achieving a higher accuracy classi-
fier [18]. Adaptive boosting (Adaboost) is the most popular
boosting algorithm, it focus on the misclassified samples dur-
ing training, weak classifiers with high accuracy have great
weight. Yuan et al. [34] proposed a semi-supervised intrusion
detection system (SS-IDS) by combining tri-training with
three different Adaboost algorithms. Kamarudin et al. [18]
introduced the Logitboost algorithm to solve the limitations
of Adaboost in handling with noise and outliers. Although
the proposed algorithm can achieve a detection rate close
to 100% relative to Web attacks, the overall calculation speed
is still slow. The introduction of the LightGBM [35] and
CatBoost [36], [37] algorithm was designed as an alternative
solution to address the limitations in dealing with paralleliza-
tion and memory consumption.

Ill. KNOWLEDGE BACKGROUND

A. NLP TECHNIQUE

Word vector technology is used to convert words in natural
language into dense vectors. Words with similar semantics
have similar vector representations. Word2vec is a more
classic language model. It is a method of word clustering,
and it achieves the purpose of word semantic inference
and sentence sentiment analysis. It trains a neural net-
work to obtain the weight matrix of the network, which
can quickly and efficiently train word vectors. The model
includes continuous bag of words (CBOW) and Skip-Gram
training models. As show in Fig.1 (a), CBOW predicts the
probability of the headword by context, whereas in Fig. 1
(b) Skip-Gram predicts the probability of the context by
headword. CBOW’s training speed is several times faster
than that of Skip-Gram. The accuracy for common words
is slightly higher for CBOW; Skip-Gram works well with
a small amount of training data, well represents uncommon
words or phrases [38], [39].

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

W(t-2) W(t-2)

W(t-1) w(t-1)
SUM —— W(t) W(t) —— SUM

W(t+1) W(t+1)

W(t+2) W(t+2)

(a) CBOW

FIGURE 1. CBOW and Skip-Gram models.

(b) Skip-Gram

TF-IDF is a commonly used weighting technique. It is a
statistical method that is used to evaluate the importance of a
word to a document set or a document in a corpus. If a word
or phrase appears frequently in one article and rarely appears
in other articles, that word or phrase has a good ability to
distinguish categories.

VOLUME 8, 2020

B. LIGHTGBM AND CATBOOST

Traditional Gradient Boosting Decision Tree (GBDT) is
faced with the adjustment of accuracy and efficiency with the
geometric growth of data volume in recent years. To solve
this problem, LightGBM [35] algorithm was proposed.
It promotes the accuracy of prediction, greatly acceler-
ates the prediction speed, and reduces the memory utiliza-
tion [40]. LightGBM is a gradient boosting framework that
uses tree-based learning algorithms. As shown in Fig. 2,
compared with a traditional method like level-wise, the leaf-
wise can reduce more losses when growing the same leaf.
It transforms continuous eigenvalues into discrete histograms
to reduce the feature dimension and improve the optimization
of training speed [41]. In addition, LightBGM supports par-
allel tree enhancement operations, providing faster training
speeds even on large data sets and can better adapt to the trend
of sharp increase in HTTP traffic.

Level-wise Leaf-wise

FIGURE 2. The generation strategy of tree in LightGBM [40].

CatBoost, like all standard gradient boosting algorithms,
builds a new tree to fit the gradient of the current model. How-
ever, all classical lifting algorithms have overfitting problems
caused by biased pointwise gradient estimation. CatBoost
uses oblivious trees as basic predictors [36]. This tree is
balanced and less likely to overfit. In order to use all the
samples for training, CatBoost provides a solution, that is,
first randomly sort all the samples, and then for a certain
value of the categorical features, each feature of the sample
is converted to a numeric type. The average value is based on
the category labels ranked before the sample, and the priority
and priority weighting factors are added at the same time [37].
This approach can reduce the noise caused by low-frequency
sub-features in the category feature.

IV. OUR ALGORITHM

In the field of traffic anomaly detection, the pre-processing
and feature extraction methods are generally used to solve
the high-dimensional complexity of traffic data, and then
the model and fine-tuning model are established through
machine learning. In this research, our anomaly detection
approach consists of three parts, namely, data preprocess-
ing, feature extraction, and boosting classification algorithm.

141789

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

Fig. 3 presents the proposed anomaly detection algorithm in
detecting Web attacks supported by HTTP protocol.

Source dataset

Data
preprocessing Data
deduplication
Data
segmentation
Feature
extraction Word2vec

CBOW [Skip-Gram

Generating weighted

paragraph vector Calculating TF-IDF

v
Computing
N-dimensional vectors

Boosting

dlassification Boosting algorithms

LightGBM | CatBoost

l

| Anomalous traffic

| Normal traffic |

FIGURE 3. The proposed anomaly detection algorithm.

A. DATA PREPROCESSING

Datasets for network anomaly detection are very important
for training and testing systems. For the next word vector
training, we need to perform word segmentation on the data
set. Fig.4 shows the data preprocessing process for three
public datasets. This article focuses on the contextual depen-
dencies of the processed data to better describe the purpose
of the full request.

For the original HTTP DATASET CSIC 2010 datasets,
the GET, POST, and PUT request data are extracted for detec-
tion. After requesting data extraction, string segmentation
is performed on the data. The segmentation is performed
according to the characteristics of the HTTP request. The next
involves URL decoding and replacing special symbols with
English space characters. For anomaly detection, information
such as User-Agent, Pargma, and Cookie in the HTTP request
header has little effect in distinguishing abnormal from nor-
mal request traffic. Therefore, this article only extracts fields,
such as Method, Host, Path, and Parameters.

The Malicious-URLs dataset is similar to HTTP
DATASET CSIC 2010 dataset. We extract the normal URL
and the malicious URL separately and re-save them into new
files. Next, we perform URL decoding and replace special

141790

HTTP DATASET o
DataSet CSIC 2010 Malicious-URLs UNSW-NB15

fffffffffffffffffffffffffff e

Extracting Extracting
GET,POST,PUT Extracting URL HTTP traffic
request data
Data l
deduplication String splitting Removing

and URL URL decoding redundant
decoding ! fields

Data Replacing

Segmentation special symbols

FIGURE 4. Data preprocessing steps diagram for three public datasets.

symbols with English space characters. Through experiments
on the above two data sets, we found that the “&” symbol
has an important effect on the parameter field. Thus, the
“&” symbol is not replaced.

On the other hand, in UNSW NB-15, 8,287 instances in
the training data and 18,724 instances in the testing data are
based on HTTP traffic. We filter features with the same field
value, including proto, service, is_ftp_login, ct_ftp_cmd,
and is_sm_ips_ports. In addition, the source TCP window
advertisement value ““swin,” destination TCP window adver-
tisement value “dwin,” source TCP base sequence num-
ber ‘“stcpb,” and destination TCP base sequence number
“dtcpb” are not significant for recognizing Web attacks sup-
ported by HTTP protocol. Therefore, we also filter the above
mentioned features.

B. FEATURE EXTRACTION

In this article, we combine normal and abnormal traffic
requests into a corpus. Then, we use the Word2vec algorithm
to train each word in the corpus and convert each word
into a 300-dimensional vector. The HTTP DATASET CSIC
2010 dataset includes high-frequency words. So, we use the
CBOW model for training. However, the Malicious-URLSs
dataset and UNSW NB-15 dataset includes low-frequency
words. Thus, we use the Skip-Gram model for training. Out-
of-vocabulary (OOV) problems occur due to too little corpus.
We initially adopted FastText [42] to deal with OOV, but
the detection effect was not good. Then, we continue to
train the word using the word2vec model and use custom
random vectors for low frequency words. Although random
vectors will be a loss of some training effect here, the overall
detection effect is still good.

Word2vec mean model is a text file representation method
to characterize the content of text files. The Word2vec mean
model averages the word vectors corresponding to each word
in a text file to characterize the content of the text file.
Equation (1) shows Word2vec mean model. Suppose the
word vector is Model(word), then

n
> Model(word;)

V(doc) = :17 (1)

VOLUME 8, 2020

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

IEEE Access

Among them, V(doc) represents the vector used to charac-
terize the text file doc, and n is the number of words contained
in doc.

TF-IDF is a classic statistical method for calculating word
weights, which consists of two parts of data: TF and IDF.
As show in formulas (2) and (3).

t(word)

N

TF =

(@)

Among them, t(word) represents the number of occur-
rences of the word in the file, and s represents the sum of
the number of occurrences of all words in the file.

len(M)
IDF =log — 3)
1 + d[word]

Among them, M represents the word frequency of the
entire corpus, and d[word] represents the number of docu-
ments containing feature terms. To avoid the double count-
ing of the number of documents containing feature items,
we store this value in the dictionary after calculating it once.

Multiply formulas (2) and (3) to get the weight of text
feature words. Equation (4) shows the calculation method of
the original TF-IDF.

TF — IDF = TF x IDF)

In text classification research, the text in the text library
is usually marked into several different categories, and the
TF-IDF algorithm only considers the total frequency of fea-
ture words in the entire text library, ignoring the distribution
in the category, resulting in certain Words contributing to cat-
egory judgment are missing. Therefore, this article proposes
to introduce the TF-IDF algorithm of quasi-frequency vari-
ance. The quasi-frequency variance measures the distribution
of words in different categories. The calculation formula
of the quasi-frequency variance measurement is shown in
formula (5).

\/ch=1 (M — dci[word])?
T= C ©)

Among them, t represents the quasi-frequency variance of
the word; C represents the number of text categories; d[word]
is the number of documents in the entire text library con-
taining feature terms; dcj[word] is the number of documents
containing the feature terms in the category C;. The larger
the 7, the greater the fluctuation of the word in the category,
the more uneven the distribution, and the greater the judgment
effect on the category, so the calculation of the TF-IDF algo-
rithm based on the variance of the class frequency is shown
as below.

TF — IDF; = TF x IDF x t (©)

In this article, in order to get the weight of each word,
we calculate TF-IDF manually and use equation (6) to cal-
culate the TF-IDF value. Algorithm 1 presents the detailed
process of calculating TF-IDF. The while loop (step 1-10)
takes O(n?xm) time in the worst case. Where n and m denote

VOLUME 8, 2020

the total number of document and the length of each request,
respectively. The other for loops will iterate n*m times to
read each word, which will take O(n*m) time in the worst
case. Therefore, The overall computational complexity of the
algorithm turns out to be O(n**m), whereas data dictionary
takes up O(n) space. Calculating TF-IDF is the highest time
complexity in this scheme, but accurately calculating the
weight of each word can greatly increase the detection rate.

Algorithm 1 Calculating TF-IDF
Input:Data set D, word
Output: TF-IDF value

Stepl. Calculate t, s.

Step2. Calculate TF.

Step3. Calculate M, MC. M is the word frequency of
the entire corpus, and MC is the word frequency of the
category C;.

Step4. Calculate the number of documents containing
feature terms and save it to dictionary d and dc;.

1. for text in D do
2. for word in text do

3. if word not in d then
4. d[word] = sum(1 for ¢ in M if word in ¢)
5. end if
6. if word not in dc; then
7. dci[word] = sum(1 for ¢ in MC; if word in ¢)
8. end if
9. end for
10. end for

Step 5. Calculate IDF value.
Step 6. Calculatervalue.
11. if dcij[word] == NULLthen
12. 7 =1
13. end if
14. return TF x IDF x T

The core innovation of this article is the way by which
word vectors are effectively represent as paragraph vec-
tors. We multiply the previously trained word vector by the
TF-IDF value, add them, and divide them by the number
of words to get the paragraph vector. The detailed pro-
cess are shown in Algorithm 2. The general meaning is
shown in Fig 5. For instance, the result of the weighted
average of {0.89,...,0.29,...,0.59} is 0.09. It is an efficient
vector mapping algorithm (with complexity of O(N*n)).
Where n represents the length of each request, and N can
be set freely, which is equivalent to a constant. There-
fore, The overall computational complexity of the algorithm
turns out to be O(n) and the temporary variable takes up
O(n) space.

C. BOOSTING CLASSIFICATION ALGORITHMHI

In this section, the proposed ensemble classification method
based on a boosting algorithm is described. We use the
boosting algorithm LightGBM and CatBoost to boost

141791

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

Word(1)ixm Word(j)ixm Word(n)ixm

0.89 0.75 -

0.05 0.51 -

0.29 0.8 --- 084 0.79 - 059 0.62 --- 0.19 0.49

TF-IDFword (1) TF-IDFword (n)

0.09 029 -

Weighted Average 0.84 0.66

Paragraph_vectorixu

FIGURE 5. Paragraph vector generation diagram.

Algorithm 2 Generating Weighted Paragraph Vector
Input: Data set D, word
Output: paragraph vector

Stepl. Initialize N(N is the dimension of the paragraph
vector), Load data set D.

Step2. Extract terms Word; from each sample obtained
Doc(i)eD (Doc is a paragraph of variable size composed
of PATH, PARAMETERS, etc.),

0 <i<|D|,0 <j<|Doc(i)|.

1. if Model(Word;) == NULL then

2. Model(Word;) = np.random.uniform(0, 1, 300)

3. end if

Step3. Calculate the TF-IDF; value of each word as
described in Algorithm 1.

Step4. Compute N-dimensional vectors.

paragraph_vector
N _|Doc(i)|
> > (TF — IDF(Word)) e Model(Word,))[n]
nogj

|Doc(d)]

4. for n in range N do

5 temp =0

6. forjin |Doc(i)| do

7 temp+ = (TF-IDF(Word;)* Model(Word;))[n]
8

end for
9. temp = temp/|Doc(i)|
10. end for

// The size of paragraph_vector is N (N can be set according
to the actual situation).

classification. Through preliminary experiments and liter-
ature research, these two algorithms are more suitable for
improving training efficiency and detection accuracy than the
widely used Adaboost algorithm. We consider a training data
set with N samples and divided into two classes. In this study
the two classes are abnormal and normal. The two classes
are defined as y € {0, 1}, i.e., samples in class y = O are
instances of normal traffic, whereas those in y = 1 are the
samples of abnormal traffic. We let the set of training data be
{x1, Y1)5--+» (Xib¥i)se--» (Xn, Yn)}, Where X; is the feature
vector, and y, is the target class. The pseudo code of
Algorithm 3 shows the implementation of Boosting

141792

algorithms. The conditional operators take O(1) time. Next,
the for loop iteratively judges the prediction result until n
times which takes O (n) time in the worst case. Therefore,
The overall computational complexity of the algorithm turns
out to be O(n), whereas the overall space complexity is only
O(1). Gradient Boosting is an efficient implementation that
can accelerate and reduce memory consumption.

Algorithm 3 Boosting Classification

Input: Training data named x, training label named y, boost-
ing algorithms named type

Qutput: The score result, include accuracy_score and confu-
sion_matrix

1. tra_x, test_x, tra_y, test_y = train_test_split(x, y)
2. if type == "LightGBM’then
3. tra_xl1, val_x1, tra_yl, val_yl =

train_test_split(tra_x, tra_y)
4. train = lightgbm.Dataset(tra_x1, tra_y1)

5. eval = lightgbm.Dataset(val_x1, val_y1)

6. model = lightgbm.train(train, valid_sets =
[eval,train])

7. end if

8. if type == ’CatBoost’ then
9. model = CatBoostClassifierfit(tra_x, tra_y)
10. end if
11. y_pred = model.predict(test_x)
12. for i in range(0, len(y_pred)) do
13. ify_pred[i] >= 0.5 then

14. y_pred[i] =1
15. else

16. y_pred[i] =0
17. endif

18. end for

19. return score(test_y, y_pred)

In a nutshell, the computational complexity of the design
model depends on the sum of the computational complexities
of the above algorithms. Therefore, the overall time and space
complexity is computed as follows.

T(C) = O(n**m) + O(n) + O(n) => O(n**m)
S(C) = O(n) + O(n) + O(1) => O(n)

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section evaluates the performance of the proposed
methods by performing various experiments on three public
standard intrusion detection datasets. The experiments were
conducted on a 2.4 GHz Intel Core i5 with 8GB RAM running
on Windows 10 operating system.

A. DATA DESCRIPTION
Data constitute the basis of computer network secu-
rity research. The accurate choice and reasonable use of

data are the prerequisites for conducting network security
research. The datasets like DARPA or KDD’99 are outdated

VOLUME 8, 2020

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

IEEE Access

and do not cover many of the current attacks [43]. From
the few public datasets, we choose HTTP DATASET CSIC
2010 [44], UNSW-NB15 ()[45], and Malicious-URLSs [46] as
our experiment datasets. Three different benchmark datasets
have been used to perform extensive performance evaluation.
These datasets vary in size and dimensionality.

HTTP DATASET CSIC 2010 dataset was produced by
the Spanish Research National Council. It contains already
marked requests for Web services. The data set is automati-
cally generated. It contains 72,000 normal requests and more
than 25,000 abnormal requests, where 36,000 are normal
data for training, and 36,000 are normal data for testing.
As shown in Table 1. The dataset contains many main types of
attacks, such as SQL injection, buffer overflow, information
collection, file disclosure, CRLF injection, XSS, server-side
inclusion, parameter tampering, and so on.

TABLE 1. Distribution of HTTP DATASET CSIC 2010 dataset.

]gZEa Normal Data Anomaly Data
CSIC Train Test Train Test

2010 36,000 36,000 0 25,065

The UNSW-NB 15 was simulated by using the IXIA Per-
fectStorm tool in the Cyber Range Lab at the Australian
Centre for Cyber Security, which extracts a total of 49 fea-
tures to reflect the nature of network traffic, including
5 stream features, 13 basic features, 8 content features,
9 time features, 5 general features, 7 connection features.
UNSW-NBI15 is more complex than KDD99 and is consid-
ered as a new benchmark data set for evaluating NIDSs [47].
The full dataset contains captured raw traffic of 100GB with
nine synthetic types of attacks, namely, Backdoors, DoS,
Analysis, Fuzzers, Generic, Worms, Reconnaissance, Shell-
code and Exploits [18]. In these sets of traffic, 9,361 instances
in the normal data and 17,650 instances in the anomaly data
are based on HTTP traffic, as presented in Table 2.

The Malicious-URLs dataset is a project on Github that
uses machine learning to detect malicious URL. It is a very
effective method to detect abnormal traffic by identifying
whether the domain name of the Host is a malicious domain
name. If the host domain name communicating with a host
or server comes from a malicious domain name, we can use
this information to determine that the request is a malicious
request. Either normal URL or malicious URL are present
for tagging. The total traffic captured is 420,464. These data
are divided into two sets, namely, normal and abnormal,
which consist of 344,821 and 75,643 instances of traffic,
respectively. As shown in Table 3, this dataset has a larger
amount of training data than the two previous public datasets.

B. EVALUATION METHOD

True Positive (TP): real normal traffic and the model clas-
sification result is also normal traffic. False Negative (FN):
real normal traffic but the model classification result is attack

VOLUME 8, 2020

TABLE 2. Distribution of HTTP traffic for UNSW-NB 15 dataset.

Data

Set Normal Data Anomaly Data
UNSW Train Test Train Test
-NB 15 4,013 5,348 4,274 13,376

TABLE 3. Distribution of Malicious-URLs dataset.

Data Set Normal Data Anomaly Data
Malicious
_URLs 344,821 75,643

traffic. False Positive (FP): real attack traffic but the model
classification result is normal traffic. True Negative (TN): real
attack traffic and model classification results are also attack
traffic.

To better evaluate the performance of the proposed method
in this article, evaluation is performed by using various indi-
cators such as Accuracy (ACC), true positive rate (TPR), and
false positive rate (FPR), which are defined as follows:

TP + TN
ACC = 7
TP + TN + FP + FN
TP
TPR = —— 8)
TP + FN
FP
FPR= —)
FP+ TN

C. EFFECTS OF OUR ALGORITHM STRATEGIES

In order to ensure the validity of the experiment, we try to
maintain the consistency of parameters that are not involved
in the comparison. We have set the test sample ratio to 10%.
When we experiment with one parameter, we choose the best
value for other parameters.

1) WORD SEGMENTATION CONTRAST

When data preprocessing is used for word segmentation, all
special characters are replaced with spaces, but some special
characters have special meanings, such as “&”. In order to
quickly perform comparison experiments, we took the same
amount of data as the HTTP DATASET CSIC 2010 dataset,
that is, only a part of its dataset, because the Malicious-URLs
dataset is relatively large. Table 4 shows that the ““&”” symbol
has an important effect on the parameter field, and keeping
the “&” symbol can achieve higher accuracy, higher TPR,
and lower FAR than deleting it. The injection attack generally
carry more parameters, and the “&” symbol can reflect this
feature.

2) WORS2VEC'S ITERATION COUNT

The core innovation of this article is to propose a weighted
Word2vec paragraph vector. Thus, we first compare the
parameters of the Word2vec word vector training model.
Wors2vec’s iteration count defaults to 5. We gradually

141793

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

TABLE 4. Word segmentation contrast experiment.

HTTP DATASET CSIC 2010 Malicious-URLs
Algorithm Special symbol
ACC TPR FPR ACC TPR FPR
LigthtGBM Delete “&” 98.69% 99.28% 3.03% 94.37% 96.29% 8.36%
Keep “&” 99.40% 99.73% 1.57% 95.11% 97.13% 7.77%
CatBoost Delete “&” 98.71% 99.33% 3.11% 94.18% 95.71% 8.01%
Keep “&” 99.49% 99.82% 1.45% 94.34% 95.96% 7.97%
TABLE 5. Performance for different iteration count.
HTTP DATASET CSIC 2010 UNSW-NB 15
Algorithm Iter
ACC TPR FPR ACC TPR FPR
5 98.56% 99.48% 4.12% 95.15% 89.98% 2.09%
25 98.96% 99.57% 2.79% 99.25% 98.29% 0.22%
LigthtGBM 50 99.13% 99.65% 2.38% 99.40% 98.61% 0.17%
100 99.28% 99.72% 1.98% 99.37% 98.50% 0.17%
500 99.36% 99.72% 1.70% 98.88% 97.65% 0.45%
1000 99.40% 99.73% 1.57% 97.33% 93.82% 0.79%
5 98.94% 99.62% 3.03% 94.89% 90.09% 2.55%
25 99.23% 99.65% 1.98% 98.70% 97.33% 0.56%
CatBoost 50 99.35% 99.80% 1.98% 99.14% 98.29% 0.39%
100 99.37% 99.70% 1.61% 99.18% 98.18% 0.28%
500 99.43% 99.76% 1.53% 98.11% 95.84% 0.68%
1000 99.49% 99.82% 1.45% 96.18% 91.05% 1.07%
TABLE 6. Performance for different implementation.
HTTP DATASET CSIC 2010 UNSW-NB 15
Algorithm Implementation
ACC TPR FPR ACC TPR FPR
LigthtGBM CBOW 99.40% 99.73% 1.57% 94.30% 88.92% 2.83%
Skip-Gram 99.34% 99.75% 1.86% 99.40% 98.61% 0.17%
CatBoost CBOW 99.49% 99.82% 1.45% 94.74% 89.98% 2.72%
Skip-Gram 99.44% 99.76% 1.49% 99.14% 98.29% 0.39%

increase the number of iterations. As shown in Table 5,
in the HTTP DATASET CSIC 2010 dataset, with increasing
iteration count from “5” to “1,000,” TPR and ACC have
increased gradually, whereas FPR has decreased progres-
sively. The LightGBM algorithm is generally less accurate
than the CatBoost algorithm. For the UNSW-NB 15 dataset,
our approach achieves the best performance when the iter-
ation count is 50 and 100. Considering the training time,
we choose 50 as the best iteration count. Furthermore,
the LightGBM algorithm performs better than the CatBoost
algorithm on this data set, contrary to the performance on the
previous data set.

3) CBOW AND SKIP-GRAM

CBOW and Skip-Gram are implemented in word2vec for
vector representation of text. The second section of this article
describes their differences. As presented in Table 6, CBOW
is more suitable for the HTTP DATASET CSIC 2010 dataset,
because it has high-frequency words, and the accuracy for
common words is slightly higher for CBOW. By contrast,
Skip-Gram is better for the UNSW-NB 15 dataset due to

141794

its low-frequency words, and because Skip-Gram represents
uncommon words or phrases well.

4) DIMENSION OF THE PARAGRAPH VECTOR

The dimension of the paragraph vector is the most important
parameter of the algorithm in this article. Therefore, we must
measure the effect of the dimension of the paragraph vector
on the method performance and determine the best dimension
of the paragraph vector via multiple evaluation experiments.
In our experiments, the dimension of the paragraph vector
range from 50 to 300, because the dimension of the word vec-
tor training model is 300. As shown in Table 7, those metrics
achieve the best results when the dimension of the paragraph
vector is 150 to 300. In most cases, when the dimension
of the paragraph vector increases to 300, the performance
decreases instead. So, the dimension of the paragraph vector
corresponding to it is steadily chosen to be 250.

5) DIFFERENT WORD VECTOR TRAINING MODELS
Table 8 shows the experimental results in the same dimen-
sion (300) using different word vector training models.

VOLUME 8, 2020

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

IEEE Access

TABLE 7. Effect of different dimension of the paragraph vector (N is the dimension of the paragraph vector).

HTTP DATASET CSIC 2010 UNSW-NB 15
Algorithm N
ACC TPR FPR ACC TPR FPR
50 99.09% 99.54% 2.22% 98.40% 97.23% 0.96%
100 99.20% 99.61% 1.98% 99.11% 98.40% 0.51%
. 150 99.27% 99.72% 2.02% 99.07% 98.40% 0.56%
LigthtGBM 200 99.32% 99.65% 1.65% 99.22% 98.18% 0.22%
250 99.40% 99.73% 1.57% 99.40% 98.61% 0.17%
300 99.37% 99.70% 1.61% 99.33% 98.61% 0.28%
50 99.26% 99.58% 1.65% 98.26% 97.12% 1.13%
100 99.34% 99.68% 1.65% 98.88% 97.65% 0.45%
CatBoost 150 99.51% 99.83% 1.41% 99.03% 97.97% 0.39%
200 99.44% 99.69% 1.29% 98.85% 97.76% 0.56%
250 99.49% 99.82% 1.45% 99.14% 98.29% 0.39%
300 99.47% 99.79% 1.45% 99.33% 98.72% 0.34%
TABLE 8. Effectiveness of different word vector training models.
HTTP DATASET CSIC 2010 UNSW-NB 15

Algorithm Model
ACC TPR FPR ACC TPR FPR
Word2vec 99.36% 99.72% 1.70% 99.40% 98.61% 0.17%
LigthtGBM GloVe 98.81% 99.61% 3.52% 94.41% 90.20% 3.34%
FastText 98.96% 99.62% 2.95% 86.93% 67.94% 2.94%
Word2vec 99.43% 99.76% 1.53% 99.14% 98.29% 0.39%
CatBoost GloVe 99.19% 99.75% 2.44% 94.41% 90.41% 3.46%
FastText 99.24% 99.72% 2.14% 86.89% 70.07% 4.14%

The hyperparameters, such as the number of iterations and
sliding window size, are kept as same as possible. For more
rapid comparison of the differences, we set the number of
iterations to 500 instead of 1000 for the HTTP DATASET
CSIC 2010. Furthermore, for the UNSW-NB 15 dataset,
we choose the best iteration count of 50. As shown in Table 8,
the Word2vec method achieves better results than the other
two word vector training methods. For the HTTP DATASET
CSIC 2010 dataset, the three word vector models performed
well. For the UNSW-NB 15 dataset, the accuracy and TPR
are less than 90%, and the FAR is high when FastText is used.
Therefore, solving the OOV problem in this article is not suit-
able. In addition to its higher accuracy than the other two word
vector models, Word2vec has low CPU memory consumption
and is easy to use, whereas GloVe [48] or FastText consumes
high memory and has a long training time.

6) TF-IDF PERFORMANCE EVALUATION

The TF-IDF performance evaluation section shows the clas-
sification results using the average of Word2vec, TF-IDF,
TF-IDFt. As shown in Table 9, using the TF-IDF algorithm
compared with the Word2vec algorithm, the accuracy rate
increased, and using the TF-IDFt algorithm, the accuracy
rate increased more. Similarly, the false positive rate has
dropped even more. This shows that the Word2vec mean
model weighted by the TF-IDFt algorithm can effectively
improve the detection ability.

VOLUME 8, 2020

D. EVALUATION RESULTS AND COMPARISONS

The above mentioned analysis shows that even though many
differences exist between the three datasets, both boosting
algorithm achieve higher accuracy, higher TPR, and lower
FAR when choosing the best parameter. Moreover, in the
field of anomaly detection, the detection rate and accuracy
are close to 100%, which can well protect the entire Web
environment and ensure the safe operation of the network
environment. At the same time, because the research in this
article is based on the normal and abnormal binary classifi-
cation problem, the deformation or new-type attack detection
problem can be solved.

In the real world, traffic data are very large. To test the
robustness of our proposed approach, we use Malicious-
URLSs dataset to evaluate the detection effect of the algorithm
model. Table 10 shows the best experimental results of our
algorithm on the three datasets. For the Malicious-URLSs
dataset with the largest amount of data, the proposed method
can achieve best detection effect. In addition, our training is
fast. Therefore, our algorithm has good stability in handling
the new testing dataset and keeps the true and false positives
in a reasonable range.

The research on Web attack detection has always been
the research focus of many scholars at home and abroad,
and has achieved fruitful results. The relative comparisons of
the proposed scheme against the existing schemes has been
tabulated in Table 11-13.

141795

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

TABLE 9. TF-IDF performance evaluation.

HTTP DATASET CSIC 2010 UNSW-NB 15
Algorithm Model

ACC TPR FPR ACC TPR FPR

Word2vec 98.68% 99.48% 3.68% 98.14% 97.23% 1.36%

LigthtGBM Yg}dfge; 99.07% 99.86% 3.23% 99.40% 98.72% 0.22%

\+VT°FrdIZDV§: 99.40% 99.73% 1.57% 99.40% 98.61% 0.17%

Word2vec 98.56% 99.53% 4.25% 97.70% 96.80% 1.81%

CatBoost \i'?;d%g‘;c 98.93% 99.69% 3.27% 99.03% 98.18% 0.51%

YTOFrdIZDVE: 99.49% 99.82% 1.45% 99.14% 98.29% 0.39%

TABLE 10. Best performance of our algorithm for three public dataset.

TABLE 12. Comparison with other published methods for UNSW-NB 15.

Data Paragraph Boosting
ACC TPR FPR Vectors Algorithm
Set ..
Generate Training
Malicious 99.62% 99.82% 1.32% 358min 580sec
-URL
CSIC 99.49% 99.82% 1.45% 20min 312sec
2010
UNSW- 99.40% 98.61% 0.17% 27min 25sec
NB 15

Method ACC TPR FPR
ABC-AFS 98.90% 98.60% 0.13%
Logitboost 90.33% 89.80% 8.22%

Proposed o o o

Method 99.40% 98.61% 0.17%

TABLE 13. Comparison with original method for Malical-URLs.

TABLE 11. Comparison with other published methods for CSIC 2010. Method ACC TPR FPR
LR 98.62% 96.64% 0.37%
Test_number Method ACC TPR FPR Pl\r/fe‘iﬁf;d 99.62% 99.82% 1.32%
CLCNN 98.80% N/A N/A
10° J48 N/A 95.97% 3.54%
% Proposed
99.49% 99.82¢ 1.459 . .
Method 9% 9-82% 5% Furthermore, the Malical-URLs dataset on Github uses
0,
"y Psr](?g\s% 96.49% 93.35% 1.37% Logistic Regression (LR) to detect malicious URLs.
0 . .
Moethod 99.16% 99.72% 2.43% As shown in Table 13, although the false alarm rate is not

Table 11 shows that compared with the methods of
CLCNN [32], J48 [43], and SDCNN [31], the proposed
method achieves the highest accuracy and highest TPR on
HTTP DATASET CSIC 2010 dataset. Similar findings were
observed on the other two benchmark datasets. The reported
result comparisons are not necessarily very accurate due to
the fact that comprehensive resemblance is not an easy task,
as different researchers have used different proportions of
traffic types, sampling methods, computational time, and
pre-processing methods. However, we try to keep the known
parameters the same.

Table 12 shows the results of comparison with the
advanced method of Artificial Bee Colony and Artificial
Fish Swarm (ABC-AFS) [49] and Logitboost [18] for the
UNSW-NB 15 dataset. Compared with the existing scheme,
the accuracy is improved by up to 9%. The reported result
comparisons are for reference only, because this article only
extracted the HTTP traffic in this dataset.

141796

lower than the original method, the ACC and TPR have
improved.

Hence, it can be concluded from the obtained results that
the proposed scheme is effective in anomaly detection in
HTTP traffic, against the current state-of-the-art schemes.

VI. CONCLUSION

In this article, we proposed an efficient machine learning
approach for detecting anomalous HTTP traffic and the NLP
technique was employed for building the effective feature
vectorizations, which can be used to reduce training com-
plexity of the boosting algorithms. The main advantages of
this method are as follows: it uses the Word2vec algorithm
to solve the semantic gap of each entry in HTTP traffic,
and employs the TF-IDF algorithm weighting technology
that highlights the distinguishing ability of keywords in the
entire request. Moreover, the average idea is used to convert
the complete request into paragraph units to achieve detec-
tion. The size of the vector is set to avoid the redundant
expression of the vector by other algorithms while control-
ling the complexity of the entire model training. We have

VOLUME 8, 2020

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

IEEE Access

evaluated the proposed method using three public dataset
namely HTTP DATASET CSIC 2010, UNSW-NBI15, and
Malicious-URLSs. The experiments have shown that the pro-
posed method achieves satisfactory results. Compared with
the current state-of-the-art schemes, the ACC and TPR is
improved by 1% to 9%, and the FPR is kept within a rea-
sonable range.

When detection is performed on the same type of data,
the larger training set is, the higher expected detection accu-
racy and the lower training speed will be. Therefore, under the
condition of ensuring a certain detection accuracy, speeding
up the training of the detector is an important future direction
for the research on anomaly traffic detection. In addition,
the network information is updated very quickly, and it needs
to retrain the model quickly for a long time, so we will study
the incremental model of Word2vec in the future.

REFERENCES

[1]

[2]
[3]
[4]

[51

[6]
[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

OWASP Foundation. OWASP Top 10-2017. Accessed: Nov. 29, 2017.
[Online]. Available: http://www.owasp.org.cn/owasp-project/ OWASP
Top102017v1.1.pdf

D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, pp. 222-232, Feb. 1987.

S. E. Smaha, “Haystack: An intrusion detection system,” in Proc. 4th
Aerosp. Comput. Secur. Appl., Dec. 1988, pp. 37-38.

N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical
analysis of audit trails for host-based intrusion detection,” IEEE Trans.
Comput., vol. 51, no. 7, pp. 810-820, Jul. 2002.

H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep. 2018.

P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833-852, May 2019.
M. Mimura and H. Tanaka, “Leaving all proxy server logs to paragraph
vector,” J. Inf. Process., vol. 26, pp. 804-812, Dec. 2018.

M. Li, H. Wang, L. Yang, Y. Liang, Z. Shang, and H. Wan, “Fast hybrid
dimensionality reduction method for classification based on feature selec-
tion and grouped feature extraction,” Expert Syst. Appl., vol. 150, Jul. 2020,
Art. no. 113277.

M.-H. Chen, P.-C. Chang, and J.-L. Wu, ““‘A population-based incremental
learning approach with artificial immune system for network intrusion
detection,” Eng. Appl. Artif. Intell., vol. 51, pp. 171-181, May 2016.

C. Torrano-Gimenez, H. T. Nguyen, G. Alvarez, S. Petrovic, and K. Franke,
“Applying feature selection to payload-based Web application firewalls,”
in Proc. 3rd Int. Workshop Secur. Commun. Netw. (IWSCN), May 2011,
pp. 75-81.

H. T. Nguyen, C. Torrano-Gimenez, G. Alvarez, S. Petrovi¢, and K. Franke,
“Application of the generic feature selection measure in detection of
Web attacks,” in Computational Intelligence in Security for Information
Systems. Cham, Switzerland: Springer, 2011, pp. 25-32.

V. Bolon-Canedo, N. Sanchez-Marono, and A. Alonso-Betanzos, “A com-
bination of discretization and filter methods for improving classification
performance in KDD cup 99 dataset,” in Proc. Int. Joint Conf. Neural
Netw., Jun. 2009, pp. 359-366.

P. Singh and A. Tiwari, “An efficient approach for intrusion detection in
reduced features of KDD99 using ID3 and classification with KNNGA,” in
Proc. 2nd Int. Conf. Adv. Comput. Commun. Eng., May 2015, pp. 445-452.
M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for DDoS detection,” Appl. Intell., vol. 48, no. 10,
pp. 3193-3208, 2018.

S. Garg, K. Kaur, S. Batra, G. S. Aujla, G. Morgan, N. Kumar,
A.Y.Zomaya, and R. Ranjan, “En-ABC: An ensemble artificial bee
colony based anomaly detection scheme for cloud environment,” J. Par-
allel Distrib. Comput., vol. 135, pp. 219-233, Jan. 2020.

S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues, ‘“Hybrid deep-
learning-based anomaly detection scheme for suspicious flow detection in
SDN: A social multimedia perspective,” IEEE Trans. Multimedia, vol. 21,
no. 3, pp. 566578, Mar. 2019.

VOLUME 8, 2020

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan,
“A hybrid deep learning-based model for anomaly detection in cloud
datacenter networks,” IEEE Trans. Netw. Service Manage., vol. 16, no. 3,
pp. 924-935, Sep. 2019.

M. H. Kamarudin, C. Maple, T. Watson, and N. S. Safa, “A LogitBoost-
based algorithm for detecting known and unknown Web attacks,” IEEE
Access, vol. 5, pp. 26190-26200, 2017.

H.Li, W. Guo, G. Wu, and Y. Li, ““A RF-PSO based hybrid feature selection
model in intrusion detection system,” in Proc. IEEE 3rd Int. Conf. Data
Sci. Cyberspace (DSC), Jun. 2018, pp. 795-802.

D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey
of deep learning-based network anomaly detection,” Cluster Comput.,
vol. 22, pp. 949-961, Sep. 2017.

J. Gupta and J. Singh, “Detecting anomaly based network intrusion using
feature extraction and classification techniques,” Int. J. Adv. Res. Comput.
Sci., vol. 8, no. 5, pp. 1453-1456, 2017.

A. A. Aburomman and M. Bin Ibne Reaz, “Ensemble of binary SVM clas-
sifiers based on PCA and LDA feature extraction for intrusion detection,”
in Proc. IEEE Adv. Inf. Manage., Communicates, Electron. Autom. Control
Conf. (IMCEC), Oct. 2016, pp. 636-640.

K. Keerthi Vasan and B. Surendiran, ‘“Dimensionality reduction using
principal component analysis for network intrusion detection,” Perspect.
Sci., vol. 8, pp. 510-512, Sep. 2016.

R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid,
“Features dimensionality reduction approaches for machine learning based
network intrusion detection,” Electronics, vol. §, no. 3, p. 322, Mar. 2019.
C.Liu,J. Yang, and J. Wu, “Web intrusion detection system combined with
feature analysis and SVM optimization,” EURASIP J. Wireless Commun.
Netw., vol. 2020, no. 1, p. 33, Dec. 2020.

M. Mimura, “Adjusting lexical features of actual proxy logs for intrusion
detection,” J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102408.

F. Zhao, H. Zhang, J. Peng, X. Zhuang, and S.-G. Na, “A semi-self-taught
network intrusion detection system,” Neural Comput. Appl., pp. 1-11,
Apr. 2020.

X. Gong, J. Lu, Y. Zhou, H. Qiu, and R. He, “Model uncertainty based
annotation error fixing for Web attack detection,” J. Signal Process. Syst.,
pp. 1-13, Feb. 2020.

P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, Long Short Term Memory
Networks for Anomaly Detection in Time Series. vol. 89. Louvain-la-
Neuve, Ottignies-Louvain-la-Neuve, Belgium: Presses universitaires de
Louvain, 2015.

A. Bochem, H. Zhang, and D. Hogrefe, ““Streamlined anomaly detec-
tion in Web requests using recurrent neural networks,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2017,
pp. 1016-1017.

M. Zhang, B. Xu, S. Bai, S. Lu, and Z. Lin, “A deep learning method to
detect Web attacks using a specially designed CNN,” in Proc. Int. Conf.
Neural Inf. Process. Cham, Switzerland: Springer, 2017, pp. 828-836.

M. Ito and H. Iyatomi, “Web application firewall using character-level
convolutional neural network,” in Proc. IEEE 14th Int. Collog. Signal
Process. Appl. (CSPA), Mar. 2018, pp. 103-106.

N. Chouhan, A. Khan, and H.-U.-R. Khan, “Network anomaly detec-
tion using channel boosted and residual learning based deep con-
volutional neural network,” Appl. Soft Comput., vol. 83, Oct. 2019,
Art. no. 105612.

Y. Yuan, L. Huo, Y. Yuan, and Z. Wang, ““Semi-supervised tri-AdaBoost
algorithm for network intrusion detection,” Int. J. Distrib. Sensor Netw.,
vol. 15, no. 6, Jun. 2019, Art. no. 155014771984605.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Y. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3146-3154.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“CatBoost: Unbiased boosting with categorical features,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 6638-6648.

A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: Gradient boosting
with categorical features support,” 2018, arXiv:1810.11363. [Online].
Available: https://arxiv.org/abs/1810.11363

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111-3119.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. Workshop ICLR, Jan. 2013,
pp. 1-12.

141797

IEEE Access

J. Li et al.: Weighted Word2vec Paragraph Vectors for Anomaly Detection Over HTTP Traffic

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Ju, G. Sun, Q. Chen, M. Zhang, H. Zhu, and M. U. Rehman,
“A model combining convolutional neural network and LightGBM algo-
rithm for ultra-short-term wind power forecasting,” IEEE Access, vol. 7,
pp. 28309-28318, 2019.

C. Dong, G. He, X. Liu, Y. Yang, and W. Guo, “A multi-layer hard-
ware trojan protection framework for 10T chips,” IEEE Access, vol. 7,
pp. 23628-23639, 2019.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, ‘“FastText.zip: Compressing text classification models,”
2016, arXiv:1612.03651. [Online]. Available: https://arxiv.org/abs/
1612.03651

R. Kozik, M. Choras, R. Renk, and W. Hotlubowicz, “A proposal of
algorithm for Web applications cyber attack detection,” in Proc. IFIP Int.
Conf. Comput. Inf. Syst. Ind. Manage. Cham, Switzerland: Springer, 2015,
pp. 680-687.

(2010). HTTP DATASET CSIC. [Online]. Available: http://www.isi.csic.
es/dataset

N. Moustafa and J. Slay, “UNSW-NBI5: A comprehensive data set
for network intrusion detection systems (UNSW-NB15 network data
set),” in Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015,
pp. 1-6.

Faizan Ahmad. Using-Machine-Learning-to-Detect-Maclicious-URLs.
Accessed: Feb. 18, 2017. [Online]. Available: https://github.com/
faizann24/Using-machine-learning-to-detect-malicious-URLs

N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the compari-
son with the KDD99 data set,” Inf. Secur. J., A Global Perspective, vol. 25,
nos. 1-3, pp. 18-31, Apr. 2016.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532-1543.

V. Hajisalem and S. Babaie, ‘A hybrid intrusion detection system based on
ABC-AFS algorithm for misuse and anomaly detection,” Comput. Netw.,
vol. 136, pp. 37-50, May 2018.

141798

JIELING LI was born in Fujian, China, in 1995.
He is currently pursuing the master’s degree in
computer with Fuzhou University. His research
interests include machine learning and cyberspace
security.

HAO ZHANG was born in Anhui, China, in 1981.
He received the B.S. and M.S. degrees in computer
science from the University of Electronic Sci-
ence and Technology of China, in 2002 and 2006,
respectively, and the Ph.D. degree in applied math-
ematics from Fuzhou University, China, in 2015.
He is currently an Associate Professor with
the College of Mathematics and Computer Sci-
ence, Fuzhou University. His research interests
include artificial intelligence, machine learning,
and cyberspace security.

ZHIQIANG WEI was born in Fujian, China,
in 1994. He received the M.S. degree from
Fuzhou University, in 2020. His research interests
include artificial intelligence, machine learning,
and cyberspace security.

VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	FEATURE ENGINEERING
	DETECTION ALGORITHMS

	KNOWLEDGE BACKGROUND
	NLP TECHNIQUE
	LIGHTGBM AND CATBOOST

	OUR ALGORITHM
	DATA PREPROCESSING
	FEATURE EXTRACTION
	BOOSTING CLASSIFICATION ALGORITHMHI

	EXPERIMENTAL RESULTS AND ANALYSIS
	DATA DESCRIPTION
	EVALUATION METHOD
	EFFECTS OF OUR ALGORITHM STRATEGIES
	WORD SEGMENTATION CONTRAST
	WORS2VEC'S ITERATION COUNT
	CBOW AND SKIP-GRAM
	DIMENSION OF THE PARAGRAPH VECTOR
	DIFFERENT WORD VECTOR TRAINING MODELS
	TF-IDF PERFORMANCE EVALUATION

	EVALUATION RESULTS AND COMPARISONS

	CONCLUSION
	REFERENCES
	Biographies
	JIELING LI
	HAO ZHANG
	ZHIQIANG WEI

