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ABSTRACT Bearing failure often occurs in rotating machinery. The fault diagnosis method based on
the vibration signals has been studied for many years. This paper proposed an improved probability box
(ip-box) modeling method for diagnosing bearing faults. The major theoretical principles involved with
the probability box (p-box) modeling methods and a projection method. Since a larger aggregated width
results in the p-box not being conducive to a fault identification and diagnosis, the mean of the focal element
interval and the amount of data fluctuation between the adjacent focal elements were used as additional
information. Then, the additional information was added to the ip-boxmodel by the cooperative optimization
method. Finally, the experimental results showed that the classification performance of a support vector
machine (SVM) trained with eight measured values from the ip-box was significantly improved.

INDEX TERMS Probability box, cooperative optimization, projection method, fault diagnosis, SVM.

I. INTRODUCTION
The fault diagnosis technology of bearings has become an
important means and key technology to ensure the safety
and stability of production systems in the development of a
modern industry [1]. Data obtained in practical engineering
contains uncertainty because of restrictions on the working
environment or test cost [2]. The existence of the uncertainty
limits an application of the traditional probability model for
the fault diagnosis technology of bearings [3], [4]. An interval
model is one of the common methods to describe the uncer-
tainty of bearing signals, but it can obtain only the range of the
bearing data, not its probability distribution, and the statistical
information of the bearing data cannot be perfectly used.

Tang et al. [5] introduced the theory of the p-box into
mechanical fault diagnosis to solve the above problems. The
idea of p-boxes was originally put forward to express pure
‘epistemic uncertainty’ with ‘interval’ and has experienced
cross research with fuzzy theory [6], evidence theory of
Dempster structure [7], Boolean logic reasoning based on
traditional probability theory [8], Kolmogorov method with
sparse samples [9], etc. The p-box theory not only integrates
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random algorithms such as Bayesian reasoning and evidence
theory, but also artificial intelligence algorithms such as neu-
ral network [10], expert system and fuzzy set theory [11]. For
the p-box in an application of the bearing diagnosis, vibration
signal is considered as a random variable, and its random
distribution type is analyzed to establish the p-box model;
then features of the p-box are obtained by measuring the
aggregated uncertainty of the p-box to input into SVMmodel.
However, the focal element interval of the p-box may not be
the optimal width for each p-box model, which may increase
the data crossover between p-boxes, thereby reducing the
independence of input data in the SVM model.

Because the interval model is the basis of the p-box the-
ory, the width of the p-box can be significantly reduced by
reducing the confidence, but the estimation of parameters
will be seriously distorted. In the bearing fault diagnosis, the
p-box must be discrete into focal elements. Therefore, there
may be data redundancy in the focal elements from the same
p-box. However, through nonlinear programming, the phe-
nomenon of partial repetition between focal elements can
be reduced. Based on a convolution quadrature method,
Fahmy developed a novel numerical modeling optimiza-
tion technique [12]. The interval evaluation of parametrized
functions was defined by Marendet et al. [13] adapting
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numerical constraint programming techniques to quantified
inequalities. A piecewise linear approximation method, a
derivative algorithm, and a duality-based algorithm are pro-
posed by Zhang and Li [14] for solving interval quadratic
programming. Based on nonlinear interval programming and
the nested optimization solving strategy, Wang et al. [15]
proposed an interval uncertain optimization method for
artillery structural dynamic responses considering robust-
ness and interval economy. An improved spatial branch-
and-bound algorithm was proposed by Zhao et al. [16] to
efficiently solve the reformulated bilinear programming
problem. Besides, Zeng et al. [17] proposed a new mul-
tiple attribute decision-making method based on the non-
linear programming methodology. Based on the normal
fluctuation range of each cyber-physical energy system state,
a bilevel nonlinear programming model was proposed by
Wang et al. [18]. More the nonlinear programming models
in [19]–[22]. However, the treatment of the focus element
interval is rarely found. With the deepening of research,
the nonlinear programming process of the projection method
is relatively simple in the interval values and satisfies the
accuracy of programming for the p-box focus element.

For the focal element interval correction of the p-box,
this paper discretizes the p-box into several focal element
intervals and constructs the whole envelope interval of focal
element interval sets. Then, the maxima and minima are
searched in the focal element interval by an optimization
method, and the complete search path is saved. By evaluating
the relationship between the subinterval of the focal element
and the search path, the crossover point along the negative
gradient direction and the bound of the focal element inter-
val is obtained as the initial point of the subinterval search
path. Then, the extremum of the focal element interval is
solved by the projection method. The method optimizes all
the focal element interval sets in a collaborative way, avoiding
the repeated calculation of an internal search, reducing the
aggregated width of the p-box, and improving the overall
calculation efficiency. Themean value of the interval and data
fluctuation of the adjacent focal element interval is added
as additional information to the p-box, which can further
reduce the aggregated width to avoid the overlap between
p-box models. Then, the area difference and bound difference
between the p-box and ip-box are defined, and the improve-
ment degree of the p-box is analyzed quantitatively. Finally,
the validity of the proposed method is demonstrated based
on the experiment data. It should be noted that the current
method is used to optimize the width of the focal element
interval for the p-box model, i.e., ip-box model, using the
nonlinear programming process of the projection method.

II. RELATED WORK
A. BASIC NOTIONS OF P-BOX
A signal collected by an accelerometer varies with the time
because of the measurement error of the sensor, the different
position of the measurement, and the different of the working
condition, then the signal can be considered as a random

variable X . A cumulative probability distribution func-
tion (CDF) of the random variable X does not be expressed
by a single curve, as the estimated value x̂ of X is not a
single scalar value [23]. Considering ith estimated value x̂i ∈[̂
x i, x̂ i

]
, the upper and lower bounds of the CDF are given by:

F̄ (x) = 1− P(X > x) (1a)

F (x) = P(X ≤ x) (1b)

where F (x) and F (x) are the upper and lower bounds of the
CDF, respectively; P denotes a lower probability measure.[
F (x) ,F (x)

]
is called as the p-box, then the random variable

X with the uncertainty is limited in it. For a single scalar
value, Eqs. (1a) and (1b) are equivalent, and the CDF can be
expressed by a single curve; for an interval, the schematic
diagram of CDF can be plotted in Fig. 1.

FIGURE 1. Schematic diagram of the p-box definition.

In Fig. 1, the area of¬ corresponds to the lower probability
measure P(X > x) of Eq. (1a); the area of ¯ corresponds to
F (x) = P(X ≤ x); the area of 1-¬ corresponds to F̄ (x) =
1− P(X > x), i.e., the sum of the areas of , ® and ¯. The
difference between Eqs. (1a) and (1b) is the area of  and ®,
which is not equivalent.

B. P-BOX MODELING METHOD OF BEARING
TIME-DOMAIN SIGNAL
The bearing signal has strong nonstationary randomness,
which includes not only the irreducible uncertainty which
cannot be reduced by further empirical study brought by the
accuracy of the equipment (although the equipment may be
better machined) but also the epistemic uncertainty brought
by the operator during the collection of bearing data, it can
generally be reduced by an additional empirical effort [23].
The p-box model can well achieve the fusion of the irre-
ducible and epistemic uncertainty. According to the different
forms of bearing signals, three p-box modeling methods were
proposed in the previous work [5].

The probability and statistics toolbox of MATLAB is used
to analyze whether the bearing data samples satisfy com-
monly used random distributions. If random distribution type
is met, a distribution-type p-boxmodelingmethod (DTPMM)
can be used. Normal distribution for the bearing data is
considered. Then, the p-box can be determined by limiting
the random distribution parameter in an interval mean µ ∈
[µleft, µright] and standard deviation σ ∈ [σ lower, σ upper] with
a mass m, which is given by{[

µleft
i , σ lower

i

]
,mi

}
,
(
1 ≤ i ≤

n
2

)
(2a)
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{[
µleft
i , σ

upper
i

]
,mi

}
,
(n
2
≤ i ≤ n

)
(2b){[

µ
right
i , σ lower

i

]
,mi

}
,
(
1 ≤ i ≤

n
2

)
(2c){[

µ
right
i , σ

upper
i

]
,mi

}
,
(n
2
≤ i ≤ n

)
(2d)

And ‘‘the averaging discretization method and the outer dis-
cretization method can be used to discretize a parameter of
the p-box model in any case’’ [5].

The strong nonstationary randomness of the bearing signal
may cause the bearing data samples to not satisfy a random
distribution type, so the DTPMM is inapplicable. A dimen-
sionless p-box modeling method (DPMM) can obtain the
dimensionless values from the raw bearing data, which avoids
the data clutter and improves the regularity. The dimension-
less values may satisfy the random distribution type. The
skewness features and the kurtosis features are the third and
fourth moments of the bearing signals, respectively, which
can be expressed as:

SKi =

1
n

n∑
j=1

[
αij − αi

]k
1
n

n∑
j=1
αkij

, (i = 1, . . . ,m) , (k = 3, 4) (3)

where SKi(i = 1, . . . ,m)(k = 3) and SKi(i = 1, . . . ,m)(k =
4) are the skewness feature and kurtosis features of the ith
row vector of bearing signals, respectively, and αi is the mean
of the ith row vector. Then, a vector of skewness features
and a vector of kurtosis features can be obtained. If these
vectors satisfy a random distribution type, the DTPMM can
be applied.

The DPMM needs to extract the features from the raw
bearing data, which results in information loss in the prob-
ability and statistics of the raw bearing data. To preserve
the characteristic (i.e., the information of the probability and
statistics), a raw-data p-box modeling method (RDPMM)
is proposed. The RDPMM can directly establish the p-box
model for the raw bearing data based on the definition of
the p-box. First, the maxima and minima from each column
vector of bearing signals can be obtained by the RDPMM.
Then, a Dempster-Shafer structure is obtained based on the
maxima and minima vectors and discretized according to the
same basic probability assignment. Finally, the upper and
lower bounds of the p-box can be approximated by discrete
sampling.

III. IMPROVEMENT AND COMPARISON OF P-BOX
MODELING METHODS
In this section, we mainly improve the influence of the over-
lapped interior region of the intervals on the p-box, and then
the area difference and bound difference between the p-box
and ip-box models are analyzed quantitatively.

A. IP-BOX MODELING METHOD
The aggregated width of the p-box model has a great influ-
ence on the result of pattern recognition. In some cases,

a calculated p-box will also be the best possible result in the
sense that the bounds can be no tighter without excluding
some of the overlapped interior regions of the intervals.

When the wider p-box model is discretized into a large
number of focal elements, there are overlap regions between
the focal elements, which not only is detrimental to the
correct classification rates but also reduces the calculation
efficiency [24]. However, although these focal elements over-
lap each other, they are all included in a Dempster-Shafer
structure. Using the gradient project method based on the
characteristics, a collaborative optimization method can be
proposed to improve the width of the p-box. According to the
sampling frequency n, the p-boxmodel can be discretized into
a Dempster-Shafer structure with the following expression:{

[xi, xi],mi
}
, (i = 1, 2, . . . , n)

where [xi, xi] is the ith focal element interval and mi(i =
1, . . . , n) is the ith mass value. Here, [xi, xi] can be expressed
as Ai. Although there are overlapping regions between Ai−1,
Ai, and Ai+1, they are within the definition domain of a
random variable X . Consider a union A∪ is related to the focal
element interval A by the following expression:

A∪ = A1 ∪ A2 ∪ . . .Ai . . . ∪ An (4)

where Ai (1, 2, . . . , n) denotes the ith focal element interval.
Define the set of enveloping all Ai as an interval envelope
Aenvelop. Then, the A∪ must be included in the interval enve-
lope Aenvelop:

A∪ ⊂ Aenvelop (5)

where the minimum interval envelope Aenvelop of A∪ can be
expressed as:

Aenvelop =
(
[min(x1),max(x1)], . . . , [min(xi),max(xi)]

, . . . , [min(xn),max(xn)]
)

(6)

The interval envelopeAenvelop is obtained by the discretized
p-boxmodel, where a large number of overlap regions exist in
the intervals [25]. By evaluating the overlap regions between
Ai and Aenvelop, the initial gradient value and gradient direc-
tion of the subregions can be determined to reduce the overlap
regions and repeated calculation of the interval, as shown
in Fig. 2.

Consider Fig. 2(a). Search the feasible direction in the
bound x ≤ x ≤ x along the negative gradient direction of
the distribution functions of p-box −∇F((x1, x2)k ) based on
min FX (x;9), where 9 is a random distribution parameter
and x satisfiesx ≤ x ≤ x [26]. When the bound x2 = x

2
,

−∇F((x1, x2)k ) is projected on the bound to generate a new
search direction dk . The modeling steps of the method can be
expressed as follows:

Step One: Consider x1 as the initial feasible point, and set
k = 1.
Step Two: Transform the bound x ≤ x ≤ x into the form of

inequality Ax ≤ b, then A and b are respectively decomposed
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FIGURE 2. The cooperative optimization mothed. (a) The negative
gradient direction of FX (x, 9); (b) the cooperative optimization path.

into
[
A1 A2

]T and
[
b1 b2

]T at the point xk , where

A1xk = b1,A2xk > b2 (7)

Step Three: Define M = A1. If M is an empty set, let P =
I , where I is the unit matrix; otherwise, P must satisfy the
following expression:

P = I −MT(MMT)−1M (8)

Step Four: Let dk = −P∇F(xk ). If dk 6= 0, go to step six; if
dk = 0, go to step five.

Step Five: If M is an empty set, then stop the calcula-
tion, and obtain xk ; otherwise, obtain u by the following
expression:

u = (MMT )−1M∇F(xk ) (9)

where if u ≥ 0, then stop the calculation, and obtain a global
best point xk ; if u contains a negative component, then selects
a negative component. For example, A1 is corrected by uj.
Remove the row corresponding to uj in A1, and return to step
three.

Step Six: Solve min F(xk + λdk ), s.t: 0 ≤ λ ≤ λmax,
where λmax can be obtained by the following expression:

λmax =

{
∞, d ′ ≥ 0

min
{
b′i
d ′i

∣∣d ′i < 0
〉}
d ′ < 0

(10)

where b′ and d ′ can be expressed as follows:

b′ = b2 − A2xk (11a)

d ′ = A2dk (11b)

and FX1 (x1;91) can be obtained by a search. Then, calculate
xk+1 by the following expression:

xk+1 = xk + λkdk (12)

Set k = k + 1, and return step two.
To understand the above modeling method, consider

Fig. 2(b). A1, A2 and An are obtained from the discretized
p-box model. In addition, x(1) is the initial feasible point.
Here, x(1) ∼ x(n) is the search path, where the direction is
the negative gradient direction; x(1) ∼ x(n−1) is the search
path inside bound, and x(n−1) ∼ x(n) is the search path after
gradient projection. For A1, A2 and An, the partial search path
of x(1) ∼ x(n) is also their internal search path because of
the overlapped interior region of the intervals. For example,
x(2) ∼ x(4) is the internal search path of A1, and x(2) ∼
x(6) is the internal search path of A2. When A1, A2 and An
are searched, filtering the repeated internal search paths and
searching directly from different search points will avoid
many repeated search calculations. The extreme point of A1
can be calculated by the gradient project method. Point PA1
is the initial point to search directly, which avoids searching
interior regions; for the same reason, search A2 with the
point PA2.

The crossover point can be obtained between Ai and the
search path (xmin

1 , xmin
2 , . . . , xmin

k ) by calculating the mini-
mum value of F(x) in the domain of definition of Aenvelop
and saving (xmin

1 , xmin
2 , . . . , xmin

k ) and gradient information.
The last crossover point Pmin

Ai along the search direction is
selected as the initial point. Calculate the optimal solution of
min FX (x;9), s.t: x ≤ x ≤ x, and assign it to the upper
bound of the p-box F i. Similarly, the optimal solution from
the negative function −F(x) of F(x) can be obtained and
assigned to the lower bound F i.
The bearing signals contain a large amount of statistical

information, such as themean, mode, and variance, which can
be used [27]. Adding this information to the p-box model is
conducive to the improvement of the area of the p-box model.
The mean xaverage of the bearing data can express the amount
of data fluctuation between the adjacent focal elements [28].
The additional information is related to the mean xaverage by
the following expressions:

u =
{
x2 − x1
xaverage

,
x3 − x2
xaverage

, . . . ,
x i − x i−1
xaverage

, . . . ,
xn − xn−1
xaverage

}
(13a)

u =

{
x2 − x1
xaverage

,
x3 − x2
xaverage

, . . . ,
x i − x i−1
xaverage

, . . . ,
xn − xn−1
xaverage

}
(13b)

where u and u are the supremum and infimum of the focal
element interval. Then, a Dempster-Shafer structure is related
to the additional information by the following expression:{

([u1, u1],m1), ([u2, u2],m2), . . . ,

([ui, ui],mi), . . . , ([un, un],mn)
}
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where ui ≤ ui and where ui 6= ui−1 whenever ui = ui−1.
Therefore, the upper bound and lower bound can be approx-
imated by F and F , respectively.

B. ANALYZING P-BOX AND IP-BOX
The area difference between the p-box and ip-box can
be calculated by defining the distance between the area
and bound of the p-box and ip-box. Consider two random
distribution parameters ψ1 and ψ2, one from the p-box
model [Fψ1(x),Fψ1(x)] and the other from ip-box model
[Fψ2(x),Fψ2(x)] [29]. The area between the p-box upper
bound Fψ1(x) and the ip-box upper bound Fψ2(x) can be
calculated by the integral:

S =
∞∑
−∞

∣∣Fψ1(x)− Fψ2(x)∣∣1x (14)

where S is the area between the p-box upper bound Fψ1(x)
and the ip-box upper bound Fψ2(x). Similarly, the area
between the p-box lower bound Fψ1(x) and the ip-box lower
bound Fψ2 (x) can be calculated by the integral:

S =
∞∑
−∞

∣∣∣Fψ1(x)− Fψ2 (x)∣∣∣1x (15)

where S is the area between the p-box lower bound Fψ1(x)
and the ip-box upper bound Fψ2(x). The absolute area differ-
ence S is related to S and S by the following expression:

S = S + S (16)

The absolute area difference S can express the area differ-
ence between the p-box model and ip-box model as a whole,
but the distance of the bounds cannot be expressed. Consider
one point β in the cumulative probability range of 0 to 1.
Draw a horizontal line parallel to the horizontal axis through
β [30]. The horizontal line and p-box (or ip-box) will pro-
duce multiple crossover points, where the crossover points of
[Fψ1(x),Fψ1(x)] are Fψ1

−1
(β) and Fψ1−1(β), respectively,

and the crossover points of [Fψ2(x),Fψ2(x)] are Fψ2
−1

(β)
and Fψ2−1(β), respectively. Then, the absolute bound differ-
ence 1L(β) can be defined as

1L(β) = 1L1(β)+1L2(β) (17)

where 1L1(β) and1L2(β) can be calculated by the following
expressions:

1L1(β) =
∣∣∣Fψ1−1(β)− Fψ2−1(β)∣∣∣ (18a)

1L2(β) =
∣∣∣Fψ1−1(β)− Fψ2−1(β)∣∣∣ (18b)

S and 1L(β) can quantify the difference between the p-box
and the ip-box, and they are used to compare and analyze the
results of the two modeling methods. For the same reason,
a relative area difference D between [Fψ1(x),Fψ1(x)] and

[Fψ2(x),Fψ2(x)] can be defined as:

D=100×
S

∞∑
−∞

∣∣∣Fψ1(x)− Fψ1(x)∣∣∣1x% (19)

A relative bound differenceDL between [Fψ1(x),Fψ1(x)] and
[Fψ2(x),Fψ2(x)] can be defined as:

DL=100×
1L(β)

∞∑
−∞

∣∣∣Fψ2(x)− Fψ2(x)∣∣∣1x% (20)

IV. MODELING AND DISCUSSION
A. DATA COLLECTION
The vibration signals in Ref. [5] were used to verify the
effectiveness of the improved method. The drive end bearing
type is a 30305 SKF tapered roller bearing. The eignal acqui-
sition system is NI PXI-1042Q high-performance acoustic
vibration testing system. The sensor is a PCB M603C01 ICP
acceleration transducer; the sampling frequency is 10240,
and the motor speed is 800r/min; the sample numbers is
then set to 60 [5]. The experiment platform, accelerometers
arrangement and photograph of fault bearings are shown
in Fig. 3, where the grooves with 0.5mm deep and 0.5mm
wide were processed in the bearing inner raceway, outer
raceway, and rolling element by using wire-cut electrical
discharge machining technology.

The vibration data and bearing fault cases can be expressed
as follows: ‘‘The power spectra of the bearing signals under
eight conditions are shown in Fig. 4, where H stands for
healthy bearing, IR stands for inner race fault, OR stands
for outer race fault, RE stands for rolling element fault, IOR
stands for inner and outer race faults, IRRE stands for the
inner race and rolling element faults, ORRE stands for the
outer race and rolling element faults, and IORRE stands for
the inner race, outer race, and rolling element faults’’; the
power spectra were calculated by the MATLAB 2017b in
which the Hanning window was used to record the data, then
data of the power spectra were extracted for plotting power
spectra using the OriginPro 2018.

H, IR, OR and RE correspond to single fault signals of the
rolling element bearing, and IOR, IRRE, ORRE, and IORRE
correspond to compound fault signals in Fig. 4. Based on the
vibration spectrum, we found that ‘‘the basic power spectra
are not generally informative in Fig. 4, partly because they are
in the presence of strong masking signals from other machine
components but also because the angle of the load from the
radial plane varies with the position of each rolling element
in the bearing as the ratio of the local radial to the axial load
changes’’ [1], [31]. It should be noted that the uncertainty
of the bearing signals is the main characterization to bearing
signals, because it always exists and changes from the begin-
ning of health signals to the formation of fault signals. Hence,
collecting uncertainty of the bearing time-domain signals
provides a new way for rolling element bearing diagnostics.
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FIGURE 3. The experiment platform [5]; (a) The overall layout of the
experiment platform; (b) accelerometer arrangement; (c) photograph of
fault bearings.

FIGURE 4. The power spectra of the experimental bearing acceleration
signals.

In a previous study, we showed that the p-box modeling
method can suitably avoid the decoupling process for bearing
signals [5].

FIGURE 5. The p-boxes based on the DPMM; (a) kurtosis p-box of IORRE;
(b) skewness p-box of IORRE.

B. COMPARISON BETWEEN P-BOX AND IP-BOX BASED
ON DPMM
The random distribution of these features from the IORRE
data can be verified to establish a p-box based on the DPMM,
as shown in Fig. 5, where the results for the random distri-
butions of the kurtosis and skewness features satisfy normal
distributions, and their number of focal elements is 1000. The
remaining bearing signals (i.e., H, IR, OR, RE, IOR, IRRE
and ORRE) can also be verified to establish corresponding
p-boxes based on the DPMM.

Kurtosis and skewness p-boxes of IORRE are the set of
all nondecreasing functions from the reals within 0 to 1,
as shown in Fig. 5, where the initial feasible points for the
kurtosis and skewness of p-boxes is on the boundary. The
initial feasible point (x1=1.3,x2=0.8) and (x1=-1.2,x2=-0.4)
used in this paper are selected for the kurtosis and skewness
of p-boxes, respectively. Consider the optimization problem
min FX (x;9), s.t: x ≤ x ≤ x; and set k = 1. To analyze
the influence of different focal element numbers on area dif-
ferences, some values of focal elements are set, and they are
represented in the array N=[20, 30,..., 1000]. The additional
information is calculated with Eq. (13) and added into the
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FIGURE 6. The p-boxes and ip-boxes of IORRE based on the kurtosis and
skewness; (a) the p-box vs. the ip-box for the kurtosis; (b) the p-box vs.
the ip-box for the skewness.

kurtosis and skewness p-boxes of IORRE.When N=1000, the
p-boxes and ip-boxes are compared as shown in Fig. 6.

The distance of bounds for the ip-box is smaller than that
of the p-box, as shown in Fig. 6. This may be because the
overlapped region of the focal element intervals is reduced by
filtering the repeated internal search paths to obtain the opti-
malmodeling path based on the ip-boxmodelingmethod. The
iterations of the ip-boxes and p-boxes are listed in Table 1.

TABLE 1. The ip-boxes vs. the p-box in terms of iterations.

From Table 1, we infer that the iterations of the skewness
p-box are lower than the iterations of the kurtosis p-box
because more time is required to calculate a greater-order
moment. The iterations of the kurtosis ip-box account for
48.14% of the iterations of the kurtosis p-box; the iterations
of the skewness ip-box account for 60.16% of the iterations of
the skewness p-box. The difference in the relative efficiency
is affected by the search regions of the optimized path, and
the overlapping of search regions increases the relative effi-
ciency of the iterations. From Fig. 5, we infer that there are
many overlapping parts in search regions when solving the

maximum and minimum kurtosis p-box and skewness p-box,
but the overlapping regions of the kurtosis p-box are smaller
than the overlapping regions of the skewness p-box, which
reduces the relative efficiency of the kurtosis (ip-box vs.
p-box). Similarly, the p-boxes of H, IR, OR, RE, IOR, IRRE,
and ORRE based on the DPMM are analyzed, and they are
similar to the p-box of IORRE.

C. EFFECT OF FOCUS ELEMENTS
The focal element intervals of the ip-box model are smaller
than those of the p-box model; that is, the data of the ip-box
model are closer to the mean value, as shown in Fig. 6.
When the cumulative probability density of S is 0.6, the area
S of the upper part is smaller than that of the lower part
(Fig. 5(a)). When the cumulative probability density of S is
0.4, the area S of the upper part is larger than that of the
lower part. When the cumulative probability density is 0.5,
S is approximately antisymmetric to S (Fig. 5(a)). When the
cumulative probability density of S is 0.6, the area S of the
upper part is smaller than that of the lower part (Fig. 5(b)).
When the cumulative probability density of S is 0.3, the area
S of the upper part is larger than that of the lower part.
Similarly, S is approximately antisymmetric to S (Fig. 5(b)).
Using S + S, the curve of area difference between the ip-box
and p-box based on the kurtosis and skewness of IORRE
is obtained under the array N=[20, 30, ..., 1000], as shown
in Fig. 7.

FIGURE 7. The area difference varies with the number of focal elements.

As the number of focal elements increases, the area differ-
ence increases (Fig. 7). This is because Pli and Beli can be
approximated by F and F in a stepwise, respectively. When
the number of focal elements is less than 400, the growth
rates of area differences for the kurtosis and the skewness
are similar; when the number of focal elements is more than
400, the growth rates of area differences of the kurtosis are
larger than that of the skewness. This is because the skewness
is a smaller-order moment of a probability function than the
kurtosis. From Fig. 5, we infer that ∇FKurtosis > ∇FSkewness.
Then, for min FX (x;9), s.t: x ≤ x ≤ x, as the number of
focal elements increases, the kurtosis is more advantageous
than the skewness. The number of focal elements is 1000, and
the area difference between the p-box and the ip-box based on
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TABLE 2. The relative area differences and the relative bound differences
for IORRE.

the kurtosis of IORRE is 0.22925; the area difference of the
skewness is 0.19621 (Fig. 7). However, the distance of the
bounds cannot be expressed by the area difference. To express
the bound difference 1L(β), the p-box and the ip-box are
truncated with β = [0.05, 0.5, 0.95], as shown in Fig. 6.
The bound differences between the ip-box and p-box are
larger on both sides and smaller in the middle. A relative
area difference and a relative bound difference are calculated
by Eqs. (19) and (20), as listed in Table 2, respectively,
because the relative difference can better reflect the reliability
of measurement than the absolute difference.

From the relative area differences in Table 2, we infer
that the improvement degree of the kurtosis is better than
that of the skewness. The relative boundary differences of
kurtosis and skewness are close to 0 under β = 0.5, which
is less than the values for β = 0.05 and β = 0.95. For
β = 0.05 and β = 0.95, the relative boundary differ-
ence of kurtosis and skewness is approximately equal, which
proves that S is approximately antisymmetric to S (Fig. 6(b)).
This may be because the modeling data satisfy a normal
distribution, where (µleft, σlower) must be antisymmetric to
(µright, σupper) under β = 0.5 and (µleft, σupper) must be
antisymmetric to (µright, σlower) under β = 0.5. However,
the numerical calculation will produce errors, so there is
only approximate antisymmetry for S and S. From Table 2,
we infer that this small error can be ignored. For H, IR,
OR, RE, IOR, IRRE, and ORRE, the relative area difference
and relative bound difference based on the DPMM are listed
in Table 3.

Comparing Tables 2 and 3, the improvement degree of the
p-boxes for single fault signals of the rolling element bearing
(i.e., the p-boxes of H, IR, OR and RE) is smaller than that
of the p-boxes for compound fault signals (i.e., the p-boxes
of IOR, IRRE, ORRE, and IORRE). This may be because the

overlapping interior region of the Dempster-Shafer structure
for the p-box of compound fault signals is larger than that of
single fault signals. From Table 3, we infer that the improve-
ment degrees of the kurtosis and skewness p-boxes for H are
the smallest because the healthy bearing signals envelop a
minimal amount of uncertainty, and the p-box of H could be
tighter at the beginning.

D. COMPARISON BETWEEN P-BOX AND IP-BOX BASED
ON RDPMM
It is worth emphasizing that the cooperative optimization
method is inapplicable for the RDPMM because the p-boxes
can be established by the RDPMM based on raw bearing
data, which avoids the need to verify the suitability of a
random distribution. Then, the additional information can be
added directly into the p-box of the RDPMM (calculated
with Eq. (13)), which reduces the amount of IORRE data
fluctuation between the adjacent focal elements. The p-box
of the RDPMM and the ip-box of the RDPMM based on the
IORRE were established as shown in Fig. 8.

The interval range of each focal element interval is not
equal (|xi − xi

∣∣ 6= |xi+k − xi+k
∣∣∣), which results in a different

improvement degree for each focal element (Fig. 8). The
larger the raw focal element interval

[
xi, xi

]
is, the larger the

improvement degree is. The aggregated width of the ip-box
is smaller than that of the p-box, as shown in Fig. 8. The
ip-box and the p-box need 714301 iterations, respectively,
indicating that the number of iterations for the ip-box has not
decreased. This is because the modeling data of the p-box and
the ip-box for the RDPMM are from the raw bearing data.
In a comparison with the number of iterations 32670 for the
kurtosis p-box of IORRE, the relative efficiency (the kurtosis
p-box vs. the RDPMM p-box) is 4.57%. In a comparison
with the number of iterations 25580 for the skewness p-box
of IORRE, the relative efficiency (the skewness p-box vs.
the RDPMM p-box) is 3.58%. Similarly, in a comparison
with the number of iterations 15730 for the kurtosis ip-box
of IORRE, the relative efficiency (the kurtosis ip-box vs. the
RDPMM ip-box) is 2.20%; in a comparison with the number
of iterations 15390 for the skewness ip-box of IORRE, the rel-
ative efficiency (the skewness ip-box vs. the RDPMM ip-box)

TABLE 3. The relative area differences and the relative bound differences for H, IR, OR, RE, IOR, IRRE and ORRE.
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FIGURE 8. The p-box vs. the ip-box for the RDPMM.

is 2.15%. The results for other bearing signals were similar to
IORRE. Thus, although the aggregatedwidth of the ip-box for
the RDPMM is small, the number of iterations is not reduced.

V. INTELLIGENT DETECTION FOR ROLLING BEARING
A. OVERLAPPED REGIONS BETWEEN DIFFERENT
BEARING CONDITIONS
For the different bearing conditions, the p-boxes and the
ip-boxes are established based on the skewness as shown
in Fig. 9.

FIGURE 9. The p-boxes and the ip-boxes based on the skewness; (a) the
p-boxes of the different bearing conditions; (b) the ip-boxes of the
different bearing conditions.

Fig. 9 gives the upper and lower CDFs of the differ-
ent bearing conditions. The p-boxes based on the skewness

values of the different bearing conditions are not easy to be
distinguished in Fig. 9(a) because of the overlapped regions
between the different p-boxes; the overlapped regions are not
conducive to the intelligent detection of machine learning.
Based on the ip-boxmodelingmethod, the overlapped regions
are reduced by filtering the repeated internal search paths
to obtain the optimal modeling path as shown in Fig. 9(b).
Based on the kurtosis and the RDPMM, the p-boxes and the
ip-boxes were established to contrast the overlapped regions;
the experimental results showed that the overlapped regions
of the ip-boxes were smaller than that of the p-boxes. Reduc-
ing the overlapped regions can increase the discrimination of
each ip-box, then improve the recognition rate of the ip-box.
The effectiveness of the ip-box is demonstrated as follows.

B. FEATURE-BASED DEMPSTER-SHAFER STRUCTURE
In the pattern recognition system, the ip-box must be discrete
into a Dempster-Shafer structure which is composed of the
improved focal element intervals and mass function. The
width of different focal element intervals can be obtained
through the uncertainty measurement method. The weight of
a single focal element interval can be obtained by multiplying
the corresponding mass value because different focal element
interval is independent of each other. A basic feature of ip-box
can be obtained by accumulating every uncertainty probabil-
ity of the Dempster-Shafer structure. The basic feature called
the aggregated width can be expressed as:

ω1 =

n∑
i=1

(mi ×
∣∣∣αxi − αxi ∣∣∣) (21)

where αxi and αxi are the upper and lower bounds of the
focal element interval respectively;mi is the mass value of the
corresponding focal element interval. The aggregated widths
can be obtained by measuring the aggregated uncertainty of
different ip-boxes, as shown in Fig. 10.

FIGURE 10. The aggregated width for different ip-boxes.

From Fig. 10, the improved aggregated width is smaller
than that in Ref. [5], which proves that this paper method is
effective. For the improved method, the aggregated width of
the RDPMM ip-boxes is the smallest, and that of the skew-
ness ip-boxes is the largest. It may mean that the RDPMM
ip-boxes are more conducive to pattern recognition because
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TABLE 4. The interval value of the aggregated uncertainty measurement.

TABLE 5. Confusion matrix of the kurtosis ip-boxes.

the improvement of the aggregated width can reduce the
degree of overlap between ip-boxes. Similarly, in order to
measure more ip-box information, more features can be
expressed as:

ω2 =

n∑
i=1

(mi × log2
∣∣∣αxi − αxi ∣∣∣) (22a)

ω3 =

n∑
i=1

(mi × log2(1+
∣∣∣αxi − αxi ∣∣∣)) (22b)

ω4 = −

n∑
i=1

mi × log2(ε2 − ε1) (22c)

ω5 =

[
n∑
i=1

miαxi ,
n∑
i=1

miαxi

]
(22d)

ω6 =

[
n∑
i=1

2αxi ,

n∑
i=1

2αxi

]
(22e)

where ε1 and ε2 are the means of the probability statistics
associated with the lower and upper bounds of the cp-box,
respectively; ωi(i = 2, 3, 4) and ω1 are similar, and are
scalar values.2 is a conditional value similar to the degree of

confidence, which satisfies
n−1∑
i=1

mi ≤ 2 ≤
n∑
i=1

mi. The value

0.95 was used for 2 in the study [30]. ωj(j = 5, 6) is the
interval value of uncertainty measurement information of the
ip-boxes, as listed in Table 4.

C. PATTERN RECOGNITION WITH DIFFERENT METHODS
‘‘In the present approach, the influence of various loads
and speeds on the ip-box leads to shifting lower and upper
bounds of the ip-box to the negative or positive values on
the abscissa axis, but the aggregated width of the ip-box
is unaffected because the signal patterns remain unchanged.
This is also one of the advantages that the ip-box can include
the uncertainties of the bearing signals. Hence, the ip-box
still has the advantages of improvement under different loads
and speeds and has the robustness of anti-interference. Addi-
tionally, the diagnostic results are unaffected as long as the
aggregated width remains unchanged. For simplicity reasons,
we can ignore the influence of different loads and speeds on
the ip-box to study the classification performance of different
ip-box modeling methods.’’

A total of 1600 p-boxes were used in this study, where 60%
were training set, 20% were verification set and 20% were
test set. The Python environment-based SVM classifier was
configured as described in Ref. 5.

Based on the SVM, the results of the kurtosis ip-boxes
were displayed in a two-dimensional confusion matrix [32],
as listed in Table 5.

From Table 5, we infer that the SVM classified 195, 188,
187, 179, 180, 189, 187, and 188 cases correctly for H, IR,
OR, RE, IOR, IRRE, ORRE, and IORRE, respectively. Simi-
larly, the confusion matrix of the skewness and the RDPMM
ip-boxes can be obtained

The SVM for the skewness classified 193, 190, 186, 176,
177, 180, 186, and 181 cases correctly for H, IR, OR,

VOLUME 8, 2020 151461



H. Tang et al.: Tapered Roller Bearing Failure Diagnosis Based on ip-box Model

TABLE 6. Detailed accuracy by class of the ip-boxes.

RE, IOR, IRRE, ORRE, and IORRE, respectively. For the
RDPMM ip-boxes, the SVM correctly predicted 200, 200,
200, 197, 196, 191, 195 and 193 cases. The ip-boxes obtained
by the RDPMM have greater accuracy in correctly predicting
the bearing condition with a combined bearing component
fault than the DPMM. It may be because that the impact
of the aggregated width. For the RDPMM and the DPMM,
the detailed accuracy of each class is shown in Table 6.

Table 6 provides information about the true positive (TP)
rate, false positive (FP) rate, precision, recall, and F-measure
values for the eight classes using the SVM. From Table 6,
we refer that the mean of the RDPMM F-measure values is
larger than the means of the kurtosis and skewness F-measure
values, and the mean of the kurtosis F-measure values is
larger than the means of the skewness F-measure values.

Teymourlouieet al. [33] and Yaddaden et al. [34] point out
‘‘the basic quality measure offered by the error rate is no
longer appropriate: errors are not simply present or absent;
they come in different sizes’’. Then, for the different ip-boxes
modeling methods, the measurement errors in classification
results are given in Table 7.

From Table 7, we infer that the RDPMM ip-box is the best
according to all five metrics: it has the smallest value for each
error measure and the largest Kappa statistic. The kurtosis
ip-box is the second-best by all five metrics. The skewness
ip-box is the third-best by all five metrics.

Employing the p-box modeling methods, the kurtosis,
skewness, and RDPMM p-boxes were established, and its
features were extracted for pattern recognition; the experi-
mental results showed that the classification performances of

TABLE 7. Evaluation of the success of the numeric prediction.

the kurtosis, skewness, and RDPMM p-boxes were 83.4%,
81.5%, and 95.2%, respectively. Compared with the p-box,
the improvement degree of the classification performance for
the kurtosis ip-boxes is 9.91%, that of the skewness ip-boxes
is 10.31%, and that of the RDPMM ip-boxes is 3.05%. It is
because the overlapped regions between the ip-boxes are
reduced.

D. COMPARISON OF DIFFERENT DATA
PROCESSING METHODS
A comparison of different data processing studies should
be undertaken to demonstrate the advantage of the method
proposed by this paper. Composite multiscale fuzzy entropy
is an effectivemethod to analyze the complexity of time series
in bearing fault diagnosis [35]. It can not only reflect the
complexity characteristics of time series from multiple scales
but also has the advantages of short data and good robust-
ness. Fig. 11 presents the results of the composite multiscale
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FIGURE 11. Composite multiscale fuzzy entropy of the different bearing
data.

fuzzy entropy for each bearing condition based on the current
data, where some values were applicated as follows: Largest
scale is 20, embedding dimension 2, a gradient of exponent
function 2, and similarity tolerance 0.15SD (SD denotes the
standard deviation of raw bearing data).

In Fig. 11, the fuzzy entropy of H is larger on the relatively
large scale, and changes gently with the increase of the scale
values; the curve of composite multiscale fuzzy entropy for
other bearing conditions shows the obvious decreasing trend.
In this contrastive study, the steps used in this method can
be described as the follows: Firstly, Total 1600 samples were
used in this study, i.e., there were 200 samples for each
bearing condition; the feature set was obtained by calculating
the values of composite multiscale fuzzy entropy for each
bearing condition. Then, 60% of features were training set,
20% were verification set and 20% were test set. Finally,
the correct classification of faults can be given by the SVM
model, as listed in Table 8.

TABLE 8. A comparison of current and composite multiscale fuzzy
entropy.

For the compositemultiscale fuzzy entropy, the experimen-
tal results showed that the total correct recognition rate is
83.5% in Table 8. However, compared to the correct recog-
nition rates 93.31%, 91.81%, and 98.25% from the proposed
methods in this paper, there is still room for improvement. It is
because the method of composite multiscale fuzzy entropy
requires additional empirical effort in the bearing fault diag-
nosis [35]. Additionally, Additionally, for the calculation time
of finding fault, the proposed method in this paper con-
sumes 55 seconds, which is 15% faster than the traditional
method.

VI. CONCLUSION
This study presents a procedure for obtaining tighter p-boxes
by reducing coincidence intervals using the cooperative opti-
mization method and adding additional information. The
machine learning method (i.e., SVM) gives the classification
accuracy based on the ip-boxes.

For the iterations of the p-box and ip-box, the relative
efficiencies of the DPMM and the RDPMM were calculated.
The results showed that the relative efficiency, which denotes
the RDPMM ip-box vs. the kurtosis ip-box, was 2.20%.
For the skewness ip-box, the relative efficiency was 2.15%.
Therefore, the computational efficiency of the skewness
ip-box is best.

To quantitatively assess the difference between the p-box
and ip-box, relative area difference and relative bound dif-
ference of the different cumulative probability density val-
ues were obtained based on the kurtosis and skewness. The
experimental results showed that the aggregated width of the
DPMM p-box was improved, and the improvement degree
of the kurtosis p-box was larger than that of the skewness
p-box. Consequently, the kurtosis ip-box is more conducive
for bearing fault diagnosis than the skewness p-box without
considering the efficiency of calculation.

To compare the modeling method of the p-box and the
ip-box for the kurtosis, skewness, and the RDPMM, an SVM
was used as the classification algorithm. The experimental
results showed that the improvement degree of the classifica-
tion performance for the kurtosis ip-boxes was 9.91%, that of
the skewness ip-boxes was 10.31%, and that of the RDPMM
ip-boxes was 3.05%. However, the total correct classification
rates of the RDPMM ip-boxes were higher than those of the
kurtosis and the skewness ip-boxes.
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