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ABSTRACT The application of virtual reality technology in science experiment education is a research
with practical significance and value in human-computer interaction. However, in some existing education
tools based on virtual reality, due to the single interaction mode, the complexity of user intention and
the non-physical interaction characteristics brought by virtualization, their experimental teaching ability is
limited, resulting in the lack of practical value and popularity. In order to solve these problems, a multimodal
interaction model is constructed by fusing gesture, speech and pressure information. Specifically, our tasks
include: 1) collecting user input information and time series information to construct basic data input
tuples. 2) The basic interaction information is used to identify the user’s basic intention, and the correlation
degree between the user’s intentions is considered to determine the correctness of the current identification
intention. 3) It allows users to alternate between multi-channel and single channel interaction. Based on
this model, we build a multi-modal intelligent interactive virtual experiment platform (MIIVEP), and design
and implement a kind of dropper with strong perception ability, which has been verified, tested, evaluated
and applied in the intelligent virtual experiment system. In addition, in order to evaluate this work more
effectively, we developed a fair scoring criterion for the virtual experimental system (Evaluation scale of
virtual experiment system, ESVES), and invited middle school teachers and students to participate in the
verification of the results of this work. Through the user’s actual use effect verification and result research,
we prove the effectiveness of the proposed model and the corresponding implementation.

INDEX TERMS Virtual experiment, intelligent dropper, multimodal fusion, pressure sensors,
human-computer interaction.

I. INTRODUCTION
The development and innovation of science and technology
have changed people’s way of life and influenced how
people think and learn. These changes have led to constant
adjustments and improvements to educational methods, from
words to images, and reality to virtual reality. In traditional
education, for subjects centered on scientific education,
frequent experiments require educators to spend consider-
able energy preparing experimental equipment and tutoring
students. The one-to-many model can deteriorate the energy
levels of teachers and lead to unsatisfactory experimental

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaogang Jin .

results. Additionally, the huge demand for experimental
materials can result in a large economic burden. As a result,
the educational tools based on virtual reality technology
began to receive attention. Virtual reality technology has
strong simulation ability. Researchers hope to develop more
intelligent and effective experimental teaching tools with this
advantage, which is virtual teaching experiment system.

The early auxiliary experimental systems were designed
based on two-dimensional graphics [1]. Although experi-
ments could be performed, the results could be verified,
and large quantities of materials were not needed, these
methods lacked authenticity related to teacher supervision
and experience. Three-dimensional virtual experimental
systems have significantly improved the presentation quality.
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Scene simulation enhancements have improved the visual
rendering and immersion effects of virtual experiments [2].
However, the dependence on traditional input devices, such
as mouse and keyboard, weakens the effective interaction
experience in the experimental process. Thanks to the
development of science and technology, the advent of
virtual reality equipment provides a more natural interactive
way for many interactive projects, such as sensing the
three-dimensional space position of human and human hands
through depth camera. This article [3] uses this kind of
equipment to improve the interactionmode of the experiment,
and applies it to the visual teaching interaction experiment,
so that the sense of operation experience and immersion of
the virtual teaching experiment is significantly improved.
But in the current virtual teaching system, there are the
following problems: first, based on the visual or single-mode
interaction mode, users need to memorize complex operation
commands, which will increase the workload of users.
Secondly, these single-mode commands cannot accurately
convey the user’s real operation intention, resulting in the
inconsistency between the user’s intention and the actual
behavior results, thus reducing the actual teaching effect of
the virtual experimental system. Finally, the fully virtualized
experimental equipment hinders the user’s cognition of the
experimental equipment to a certain extent, which makes
the user’s cognition of the use value and function of
the experimental equipment fuzzy, resulting in the user’s
cognition deviation of the experimental content in principle.
In response to the aforementioned limitations, we propose a
reliable and effective interaction framework: on the one hand,
using the characteristics of multi-modal information such
as redundancy and complementarity, and the characteristics
of single-modal information such as modal characteristics,
we use more diversified user information as the basis
for inferring user interaction intention, to achieve accurate
judgment of user intention. On the other hand, using the
characteristics of different modes to simplify the user’s
intention expression and reduce the user’s interaction load
will help the user focus on the exploration and understanding
of the experimental content. At the same time, based on
the concept of virtual reality integration, we designed and
implemented an intelligent dropper, which can simulate a
more real interaction experience through intelligent devices,
which is helpful for users to understand the experimental
principle and the experimental process, and master the actual
related experimental skills.

II. RELATED WORK
Virtual reality technology is a research field that has attracted
considerable attention in recent years. This technology can
provide users with realistic visual, auditory and other sensory
feelings through interactive devices such as virtual helmets
and data gloves, giving people a real experience in the scene.
Its unique virtual characteristics and intelligent interaction
mode make virtual reality technology widely used in military,
medical, training, education and other fields [4].

The intrinsic and immersive interactions provided by
virtual reality technology allow such technology to be applied
in cognitive rehabilitation training [5], and related research
has made substantial progress. Rizzo et al. successfully
applied virtual reality technology in PTSD assessment
and the treatment of soldiers [6]. In the field of higher
education, virtual teaching laboratory is a new teaching tool
based on the development of virtual experiment technology.
It has many significant advantages: first, the traditional
experimental teaching method has notable environmental and
material requirements, especially for chemistry and physics
experiments. The cost of experimental material consumption
and laboratory maintenance is high, and virtual experi-
mental systems provide a cheaper choice than traditional
laboratories [7]. Second, some experiments have potential
dangers, which virtual experiment teaching has closed in the
virtual environment, and solved the problem that traditional
teaching is difficult to repeat experiments. Third, this kind
of teaching method helps to improve the focus of their
opponents’ tasks [8], which is the problem that teachers
pay attention to [9]. Fourth, in the science teaching course,
the dynamic visualization of virtual experiment can make
students get better results in acquiring knowledge [10].
In addition, the teaching objects of virtual experiment system
are diverse, which not only helps normal students, but
also helps students with physiological disorders to learn.
Balado et al. designed and developed an electronic circuit
laboratory (VLEC) based on a remote Internet mode and
provided electronic circuit course assistance for hearing-
impaired students [11], and effectively improve the scores of
the hearing impaired students in the electronic circuit related
courses. Additionally, a practical study showed that students
prefer computer-aided tools to textbooks [12].

The current virtual teaching laboratories are all aimed at
a specific population or limited to a certain institution. For
example, Shin et al. designed and implemented a web-based
interactive virtual laboratory system for unit operation and
process system engineering education to reduce the cost
of experimental operation and improve the efficiency of
education [13]. Naranjo et al. designed a photon virtual
laboratory for LED research and provided a verification
mechanism to evaluate the contribution of new materials to
traditional teaching methods and identify student learning
outcomes [14]. Duarte et al. designed a general virtual
laboratory for electrical engineering [15]. The laboratory
provided a real and enhanced learning experience for students
with poor upper body mobility and was equipped with
an intelligent laboratory assistant. Kim et al. designed a
virtual laboratory system for electronic and digital circuit
experiments [16]. Through this system, virtual experimental
data similar to real experimental data can be obtained,
thereby improving the efficiency of learners and educators.
Gustavsson [17] built a remote virtual laboratory that
provides students with remote experimental opportunities
and teaches them to effectively use experimental equipment.
These virtual laboratories generally serve higher education
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and ignore the experimental requirements of chemistry and
physics in secondary education. Additionally, experimental
control still relies on mouse and keyboard devices, which
are obviously not sufficiently intelligent in the current era
of human-computer intelligent interaction. Based on Kinect
device, Liao et al. Implemented a virtual experiment system
for electrical training, which enables people and virtual
objects to interact directly through gestures [18], rather
than through mouse and keyboard, which is obviously more
suitable for users’ natural interaction than mouse interaction.
However, considering the current situation of scientific
experiments in secondary schools, chemistry and physics
experiments are the main body of middle school experiments,
which should pay more attention to the authenticity and
experience of the operation process. Therefore, single modal
interaction is obviously unable to satisfy this situation.
Multimodal interaction can enhance the performance of
virtual teaching experiment system more effectively.

Multimodal information interaction is based on voice,
vision, touch and other multimodal information sharing.
The key to solve the problem is to build multimodal
fusion model. Multimodal fusion is generally the integration
of related features or intermediate decisions of multiple
media [19], which can provide complementary information,
so as to improve the accuracy of decision-making process.
Among them, fusion level and fusion method are the
main research directions. From the fusion level, the most
extensive strategy is to fuse information in the feature layer,
also known as early fusion. Another method is decision
level fusion or post fusion [20], [21]. Among the fusion
methods, there are rule-based fusion method [22], [23],
classification based fusion method [24], [25] and estimation
based fusion method [26], [27]. The most widely used
method is classification based fusion method, which includes
a series of classification techniques, which is used to classify
the observed multimodal information into a predefined
class. These classification techniques include Bayesian infer-
ence [20], [28], support vector machine (SVM) [29], [30],
dynamic Bayesian network (DBN) [31], and maximum
entropy model. In addition, neural network (NN) is also
a method to integrate multimodal data, which is similar
to a nonlinear black box, and can be trained to solve the
problem of unclear definition and complex calculation [32].
These methods provide researchers with models to solve
practical problems, such as SVM based identification [33],
Bayesian based speech recognition [28] and speech digital
recognition [34], dynamic Bayesian based shot classification
of moving video [35]. Information fusion can also effectively
enhance the anti-interference ability and robustness of
algorithms or systems. For example, Du et al., for robot
control, combined Kalman filter and particle filter, combined
with leap motion and Kinect [36], improved the stability
and reliability of robot control, and proposed a marker free
human-machine interface [37].

To sum up, this article takes the actual teaching needs as the
motivation, and analyzes the general defects and weaknesses

of the current virtual teaching experiment system from the
perspective of intelligent interaction based on multimodal
information fusion. This article constructs a multi-modal
information interaction framework for virtual teaching, which
can deduce the real intention of users according to the
subtasks contained in the subtasks by analyzing the different
modal information in the process of user interaction, and
realize the intelligent and natural human-computer interac-
tion. On this basis, this article designs and implements an
intelligent experimental device based on virtual reality fusion
technology, which simulates the interactive operation of real
devices and enhances the user’s understanding and memory
of the experimental principle and content. In order to evaluate
our work, we developed an effective grading rule (ESVES)
based on the characteristics of virtual experimental system,
which will be used by 40 volunteers to make objective use
evaluation of our system.

III. DESIGN AND IMPLEMENTATION OF INTELLIGENT
EXPERIMENT
In this part, we introduce the implementation algorithm
and details of the interactive framework of the intelligent
experimental system. At the same time, a kind of virtual
experimental equipment is designed and implemented: intel-
ligent dropper.

A. INTERACTION FRAMEWORK
The virtual experiment system can provide 3-D virtual scien-
tific experiment environment, and can realize the experiment
phenomenon and operation experience with strong sense of
reality. In order to meet the needs of users for low load, high
efficiency and high experience, this article takes multimodal
information interaction as the core to improve the interactive
experience and learning efficiency of users, and reduce the
interaction load. The specific interaction scheme is shown
in Fig. 1.

The whole process of virtual experiment platform can
be divided into multi-modal information input, multi-modal
information processing and identification, and interactive
application with processing results. In the process of multi-
modal information input, the microphone obtains the user’s
voice information, and the tactile sensor and depth camera
capture the user’s operation behavior. Visual information
mainly includes image information and depth information,
which is used to detect the user’s gesture and the spatial
position of virtual hand, and further analyze the user’s
operation intention. The acquisition of tactile information
is mainly used to analyze the user’s operation behavior on
intelligent devices, such as determining the time, frequency
and measurement of the user’s using the dropper. The
processing and identification of multimodal information is
the key to infer the user’s intention. In this part, multimodal
information is classified and sorted into different subtasks,
and the way to integrate these subtasks is decided to infer the
user’s real intention, so as to realize the intelligent interaction
between the system and the user. In the whole multi-modal
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FIGURE 1. Overall framework.

information processing, we use the modal information as
much as possible to analyze the context of user operation
behavior, and realize the understanding and feedback of user
operation reasonably and effectively. The significance of
multimodal information processing lies in: on the one hand,
it is more complete to obtain the user’s operation information
to avoid the error of understanding the user’s intention caused
by the lack of information; on the other hand, it provides
more diversified ways for the expression of user’s intention,
which can minimize the user’s operation load and meet the
interaction needs of users with different expression habits
Intelligent interaction effect.

In the interactive application, voice and vision are the main
ways of information transmission. The system will show the
experimental content to the user in a visual way, and give the
user effective guidance and prompt through voice. In general,
the multimodal information processing framework considers
the behavior of the system and the user in the interactive
application.

B. DESIGN OF INTELLIGENT EXPERIMENTAL EQUIPMENT
The dropper is responsible for the quantitative control of
reaction reagents and the connection of the experimental
process in scientific experiments. In the general virtual
experiment, the full virtual setting mode deprives the
responsibility of the dropper. In the experiment, users can
only choose to use the ‘‘add’’ and ‘‘do not add’’ functions
of the dropper. They can’t control the size of the drop and
the amount of reagent added. In order to achieve more
real operation experience and intelligent interaction, it is
necessary to construct a kind of dropper with virtual and real
integration and perception ability.

In order to ensure that the real meaning of virtual devices
is not weakened, the original value in the experiment is lost.

It is very important to endow the virtual device with the same
ability and experience as the real device. This article takes the
intelligent dropper as an example to verify the importance of
this work.

1) STRUCTURAL DESIGN
We use the micro sensor and glove to realize the intelligent
dropper. There is a micro pressure sensor at the index finger
of the glove. When the user uses the dropper, the sensor
receives the user behavior information. This design can
provide interactive simulation with minimal user operation
burden (Fig. 2).

FIGURE 2. Intelligent dropper hardware.

2) PRESS DYNAMIC SIMULATION
In practice, there is a deformation process of the drop at
the mouth of the dropper. When the drop is large enough,
the liquid will fall. We designed and implemented this
process.With the change of force, the drop size and drop trend
will also change. If the user finds that the reagent added is
incorrect in the process of adding reagent, he can immediately
cancel the dripping operation. For the convenience of
description, the definition of droplet morphology is given as
Df = {sl, sv}, where sl represents the spatial position vector
of the droplet, and sv represents the deformation vector of the
droplet on each direction axis.We use S_push to represent the
sequence of user pressed values over a period of time S_pt .
D(S_push) = d(S_push)/d(S_pt) represents the pressure
change at the current moment, corresponding to the actual
droplet morphology change, as shown in TABLE 1.

Combined with formula (1), the dynamic presentation of
droplet changes can be realized and more real interaction
effect can be provided.

Df ′ = Df +
smax−D(S_push)

smax
∗ TraT (1)

Tra is a transfer vector. When the shape of the droplet
changes, the relative position of the droplet will shift to
a certain extent. Tra is used to correct the position of the
droplet, smax represent max(S_push).

3) ENHANCED FUNCTIONALITY
In fact, there are different models of droppers. According to
different experimental requirements, users often use different
types of droppers.
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TABLE 1. Success rate of user intent of T1.

If more reagents are used in an experiment, more than
one dropper or only one dropper will be used, but frequent
cleaning is required. In the virtual experiment, using multiple
droppers is obviously not suitable, which will increase the
user’s operation burden. It is a good choice to use only one
dropper, but frequent cleaning operation will also increase the
user’s burden. Therefore, we use voice recognition to assist
users. Users can clean the dropper through voice instructions.
Of course, this is an optional user operation, and the cleaning
operation is more in line with the actual use criteria of
the dropper. In addition, in general, we also consider other
situations. For example, the user presses on the dropper,
which causes the droplet to spray out. The simulation of this
process is helpful to help users understand the use of dropper.
We do this with the following formula

Dfsp = Dv ∗
smax− smin

smax
(2)

Dfsp is the drop velocity, and its maximum velocity isDv, smin
represent min(S_push).

C. MULTIMODAL INTENTION UNDERSTANDING
In this article, a multi-modal intelligent interactive virtual
experiment platform is constructed based on the integration
of vision, touch and voice. The basic processing framework
is shown in Fig. 3.

After the experiment starts, the user operation information
is acquired and processed in the input layer. The pre-
processing results of each modal information are matched
with the sub intention database in the perceptual layer,
and the fuzzy sub intention set is obtained by combining
the interactive target information transmitted by the virtual
hand. In the fusion layer, the multi-modal intention fusion
algorithm uses the sub intention set to input each modal time
series transmitted by the layer to obtain the temporary user
intention. When the previous operation intention exists and is
valid, the temporary user intention combines the information
of previous user intention to get the final user intention of
this operation. The final intention obtained is directly applied
to MIIVEP, and then the current final intention will replace
the position of the previous operation intention as one of the
conditions for the next intention fusion.

FIGURE 3. Fusion model framework.

1) USER INTENTION AND BEHAVIOR DATABASE
Firstly, the sub intention database and experimental behavior
database of different modes are established (TABLE 2).
According to the number of modes, three sub intention
databases Db_Ta, Db_Vi, Db_Ge and behavior database
Db_Ac are established. At the same time, a target database
Db_Tg is established according to the experimental content.
Among them, Db_Vi is a speech sub intention database

based on speech, which contains intention numbers n2
determined by the actual experimental content, other ni is
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FIGURE 4. Initial interface of experiment.

TABLE 2. Database.

determined in the same way. In addition, according to the
analysis, the order of each mode instruction has a great
influence on the accurate understanding of users, so the time
series Time_sq is considered, tactile, speech and visual are
respectively time tagged.

For example, Time_sq = [2,1,3] indicates that the user
sends out the voice instruction first and then the visual
instruction. If Time_sq = [3,0,0], which means that the user
only issued visual instructions.

2) MULTIMODAL INFORMATION PERCEPTION AND
RECOGNITION
In the interaction, the user information is processed by the
perception layer to get the initial single-mode user intention.

Among them, Kinect depth sensing device is used for
gesture perception. Tactile sensing uses a thin-film pressure
sensor, which presses the pressure sensor on the intelligent
dropper to transmit the touch information to the system. Voice
information is obtained by microphone. After preprocessing,
the obtained modal information is matched with the existing
database to get the sub intention contained in the current user
information.

In addition, the user intention in virtual experiment usually
contains an operation object Tag. For example, in the
intention of ‘‘grabbing a test tube’’, the operation object
Tag = testtube. Therefore, in the recognition process, the
operation object should be one of the factors to understand
the intention. In the virtual experiment, the collision between
the virtual hand and the target is regarded as the selected
target Tag.

Tag = {tgi|Min
(
D
(
Vrhand , tgi

))
, Tou = 1} (3)

where Tou = 1 indicates that the virtual hand has collided
with a target, and the Euclidean distance between the virtual
hand and the potential target is calculated by function D

We define a 5-tuple to describe the user operation
information Uinfo = (Voi,Tac,Ges,Tag,Tim), where Voi
is the user’s and voice information, Tac is the tactile
information, Ges is the visual information, Tag is the target
information, and Tim is the time series of three modal
information input.

When the user sends a command, the system receives
the user information Uinfo = (Voi,Tac,Ges,Tag). After
matching with the sub intention database, a user sub intention
tripleUinten = (A1,A2,A3) is obtained, and then input Uinten
into the intention fusion model.

Where A1 = (Db_Vi ∩ Voi|Tag),A2 = (Db_Ta ∩ Tac|
Tag),A3 = (Db_Ge ∩ Ges|Tag), the information of different
modes is intersected with the corresponding database respec-
tively. If it is not empty, it indicates that the sub intention
of the current information expression exists. In addition,
the operation target Tagmay be empty. If it is empty, it means
that the currently executed user command does not involve
the experimental equipment in the virtual experiment.

3) MULTIMODAL INTENTION FUSION ALGORITHM
In the actual virtual chemical experiment system, the way that
users send out an instruction is multimodal. During the period
of instruction sending, the information of different modes
is input into the system in different order, which indicates
that users have different priority on mode selection, and also
contains some potential information. For example, the mode
that users choose first contains more real intention of users.
Therefore, we take the time series Time_sq was included in
the scope of identification.

The user intention triple Uinten and time series imesq are
combined to form a quad InputData =

(
A1,A2,A3,Timesq

)
,

and then input it into the intention understanding model
F1
(
A1,A2,A3,Timesq

)
,

F (A1,A2,A3,Time_sq)

=


(Tim [A1] ∗ A1) ∩ (Tim [A2] ∗ A2) ∩ (Tim [A3] ∗ A3) ,
A1 6= ∅orA2 6= ∅orA3 6= ∅
A1 + A2 ∩ A3, A1 6= ∅, Time_sq[1] = 2

(4)

where Time_sq[1]=2 means that the first mode of input is
speech, and the expression intention of speech is more direct
than gesture and touch. In the system test of this article, the
intention expressed by user voice is the closest to the real
intention. Therefore, when the first input mode is voice, the
user’s intention is specified as speech sub intention. Tim [Ai]
indicates whether sub intention Ai exists or not.

Tim [Ai] =

{
0, i /∈ Time_sq
1, i ∈ Time_sq

(5)

Cur_i = F1 (A1,A2,A3,Time_sq) to get the user’s current
intention is still not the final intention. In the virtual chemistry
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experiment, the user carries out the experiment according to
certain steps, and there is a certain correlation between these
steps.

Even if the degree of these associations is different,
we think it is still necessary to consider the impact of the
previous user’s intention on the current user.

Therefore, we need to further fuse the previous user
intention to infer the authenticity of the current intention.

According to the experience and the actual experimental
steps, we set up the correlation matrix ε =

{
εi,j
}
, i, j ∈

N , εi,j between the two intentions. εi,j represents the cor-
relation degree between the two intentions i and j, and N
represents the total number of user intentions in the virtual
experiment. The ultimate intention can be expressed as
Final_i,

Final_i =

{
Curi, εCur_i,La_i ≥ σ

0, εCur_i,La_i < σ
(6)

where σ is a threshold. When the correlation degree
εCur_i,La_i between the current intention and the current
intention is greater than the threshold, the final intention is the
current intention, otherwise the current intention is invalid.
In order to accurately determine whether the processing
result of current user intention is accurate, when Final_i = 0,
the system will ask the user again whether the current
intention is feasible, and then obtain the user voice instruction
Vcmd , if Vcmd = Yes, the final intention is still the current
intention, otherwise it is empty, waiting for the user to re-enter
the instruction.

The feedback of the system to the user’s intention is
presented in the virtual scene. After the user’s final intention
Final_i is confirmed, it is matched with the behavior
database. If Final_i ∩ Db_Ac = ∅, it prompts the user that
the current intention cannot be implemented and waits for
the user to re issue the instruction. Otherwise, the system will
execute the operation and feed back to the user.

The algorithm of multimodal intention understanding is as
follows. According to the algorithm, we can infer the user’s
interaction intention in the virtual experiment.

IV. DESIGN AND IMPLEMENTATION OF INTELLIGENT
EXPERIMENT
A. BASIC SETTINGS
In order to test the performance of the algorithm in this
article, the virtual experimental platform is implemented
on the ordinary desktop computer with the configuration
of inter i5-6500, 3.20ghz main frequency, 8GB memory
and independent graphics card. The software development
environment is unity3d 5.4, and Kinect V2 is used as video
input device.

B. EXPERIMENT OF ACID AND ALKALI DETECTION
The user controls the virtual hand to grasp the dropper, and
chooses to load phenolphthalein reagent or purple litmus
reagent into the dropper. Then the user drops the liquid from

Algorithm 1Multimodal IntentionUnderstandingAlgorithm
Input: Voi,Tac,Ges,Tag,Timesq, ε,Lai,Vrhand
Output: Final_i
1. According to the results of Vrhand collision detection,

the operation target Tag of current user intention is
determined;

2. Determine the multimodal operation information
tuple Uinfo = (Voi,Tac,Ges,Tag,Tim) of the current
user;

3. while(U info = (Voi,Tac,Ges,Tag,Tim) 6= ∅)
4. do
5. By matching with the current single-mode intention

databases, a new user intent triplet Uinten =

(A1,A2,A3) is obtained. Combined with the time
series Timesq, the input information Quad InputData
=
(
A1,A2,A3,Timesq

)
is formed;

6. Input the Input_Data into the multimodal fusion
model F (A1,A2,A3,Time_sq) ;

7. ifA1 6= ∅,Timesq[1] = 2then
8. Curi = A1 + A2 ∩ A3
9. ElseCuri = (Tim [A1] ∗ A1) ∩ (Tim [A2] ∗ A2) ∩
(Tim [A3] ∗ A3)

10. Endif
11. The former user intention is combined with the

current intention to determine the credibility of the
current intention;

12. if εCur_i,La_i ≥ σ then
13. Determine the current intention as the final exe-

cutable intention Final_i = Cur_i;
14. Else
15. The current intention is judged to be unenforce-

able, and the voice asks the user whether to still carry
out the current intention;

16. ifVcmd = Yesthen
17. Final_i = Cur_i
18. Else The current intention is not executable, waiting

for the user to re-enter the instruction;
19. Endif
20. Endif
21. Matching final intention Final_i and behavior

database DbAc;
22. ifFinal_i ∩ Db_Ac = ∅then
23. The system does not perform the user operation

and prompts the user to re-enter the command;
24. Else Execute the final intention and feedback user

results;
25. Endif
26. Endwhile

the dropper into two beakers and observes the color change
of the liquid in the beaker. In order to reduce the influence
of irrelevant variables and increase the credibility of the
experiment, we have verified that it is most appropriate for
each participant to conduct six experiments.
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1) EXPERIMENTAL PROCESS
The user sends out the voice command to ‘‘start the
experiment’’. According to the experimental navigation,
the user grabs the dropper through the combination of gesture
and voice.

FIGURE 5. Selecting reagents.

According to the steps, the user selects the reagent
in the dropper by voice, as shown in Fig. 5, the user
selects phenolphthalein reagent. It can be seen that the
user’s intention result ‘‘dropper: phenolphthalein reagent’’ is
displayed in the yellow box of the virtual blackboard. Then,
the user continues to select the solution to be verified. When
the user expresses his choice of alkaline solution, the yellow
box position of the virtual blackboard displays the current
user intention result ‘‘beaker: NaOH solution’’.

FIGURE 6. Intention feedback.

Next, the user drops the reagent into the beaker according
to the prompt (Fig. 6). At this time, the system will obtain
the user’s voice information, gesture information and touch
information, and infer the user’s intention according to the
multimodal fusion algorithm. The user sends out the intention
of ‘‘increasing the amount of single drop added’’ according to
the needs. It can be seen that the volume of the drop increases,
and the amount of single addition increases correspondingly.
In order to speed up the experiment, the user adjusts the drop
speed. After the instruction is given, the system recognizes
the user’s intention and gives a voice feedback to the user
that ‘‘the dropping speed of the drop is accelerated’’.

During the operation, the user mistakenly drops the drops
onto the desktop. You can see that ‘‘you dropped the drops
outside the beaker’’ at the prompt position. At the same time,

FIGURE 7. Fig. 7. Error operation feedback.

the voice will further remind the user of the operation error
(Fig. 7).

In the process of experiment, users interact with exper-
imental equipment with virtual hand, and need to grasp
different devices. In order to achievemore realistic interaction
effect, different grabbing objects have different grasping
effects, which makes the virtual experiment closer to the real
interaction (Fig. 8).

FIGURE 8. Grasping experimental equipment.

When the user drops phenolphthalein reagent into the
beaker, it can be observed that the color in the beaker is
a dynamic change process (Fig. 9). This is to enhance the
experimental effect and experience, and enhance the user’s
impression of the experiment, so as to facilitate the user to
understand the experiment.

FIGURE 9. Experimental phenomena.

After the final experimental results are generated, the vir-
tual blackboard shows the relevant knowledge points
(Fig. 10), and prompts the user to conduct the experiment
again by instructing ‘‘clean the desktop’’ and ‘‘start the
experiment’’.

2) EXPERIMENTAL TASK
In order to evaluate the effectiveness of the model and the
designed intelligent dropper in improving the teaching ability
of virtual experiment, and to compare the performance of
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FIGURE 10. Experimental result.

other virtual experimental systems under different exper-
imental tasks. We invited 40 volunteers to participate in
the experiment, including 10 middle school teachers and
30 middle school students, with a male to female ratio of 1:1.
The students were between 8 and 16 years old, and none of
them had ever used the virtual experimental system.

The experiment can be divided into two parts: 1. Exper-
iment on MIIVEP; 2. Experimental verification on SIVE,
OpenGL [2], NOBOOK [38] and real experiment.

3) RESULT ANALYSIS
a: VERIFICATION OF MIIVEP
In the experiment, all participants used at least two modes
of interaction, and most participants chose three modes of
interaction. Especially in the interaction related to the depth
of virtual space, users prefer to express their intention by
voice rather than visual gesture. Participants indicated that
visual based interactionwas too laborious to control objects in
the virtual space, and the voice expression intention was more
direct, which indicated that providing alternative interaction
modes could effectively reduce the interaction load of users.
The increase of the types of interaction modes will lead to the
diversification of the expression of the same user’s intention.
Although it can meet the needs of the diversity of intention
expression and reduce the interaction load, it may cause the
user’s intention difficult to express correctly and increase the
user’s use difficulty.

We asked 20 participants to carry out six acid-base
detection experiments on MIIVEP, and counted the success
rate of each user’s intention execution.

These intentions are as follows: I-T11: holding the dropper,
I-T12: selecting the reagent in the dropper, I-T13: adjusting
the dropping speed of the drop, I-T14: dropping reagent into
the beaker, I-T15: changing the acidity and alkalinity of the
solution in the beaker, and I-T16: adjusting the single dosage
of the drop.

As shown in TABLE 3, the success rate of intention
expression in the first experiment was not high. It is not
difficult to infer that this is due to the inadaptability and
diversity of intention expression caused by the first use
of virtual experimental system. After many experiments,
the participants gradually adapted to the use of the system and
the expression of intention, and the success rate of intention
expression began to increase rapidly (from the first to the third

TABLE 3. Intention execution success rate.

experiment, the average increase was 47.69%). In the fourth
experiment, the rising speed of the participants’ intention
expression success rate began to slow down. In the fifth and
sixth experiments, participants had basically mastered the use
of virtual experimental system, and the average success rate
of each intention expression reached 99.2%.

Then, we asked the experimenters to carry out six acid-
base detection experiments on the virtual experiment sys-
tem (SIVE) based on single-mode interaction (only gesture),
and counted the sixth intention success rate. The results are
shown in TABLE 4.

TABLE 4. Comparison results.

As shown in the table, the success rate of user intention
expression in MIIVEP (99.2%) is better than that in SIVE
(81.24%). Through the analysis of the two tables, we can see:
on the one hand, the integration of multimodal information
helps to solve the incompleteness of user’s expression
information and enhance the expression of intention. On the
other hand, multimodal interaction will increase the user’s
previous use difficulty and reduce the success rate of
operation. However, the results also show that users can
eliminate this effect with less use times. In a word, the
multi-modal understanding algorithm proposed in this article
can effectively enhance the ability of the system to understand
the user’s intention, thus improving the experimental effi-
ciency and interactive experience. Fig. 11 shows the students
who are experimenting on MIIVEP.

FIGURE 11. Middle school teachers and students participate in
experimental verification.

b: VERIFICATION OF SMART DEVICES
We mainly verify the design cost (DC), display effect (DE),
functional integrity (FP), operational authenticity (OA) and
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low load (LL) of the intelligent dropper. Therefore, it is
more reasonable to evaluate these items by means of user
experience survey. First, we invited 10middle school students
to carry out real acid-base detection experiments. According
to the use of droppers in real experiments, we scored each
item of intelligent dropper. The higher the score is, the closer
the performance is to the real dropper.

As shown in TABLE 5, in the aspect of effect display,
participants thought that the intelligent dropper has achieved
good results, but there is still a certain gap between the
effect and the real experiment. For the function of the
dropper, the intelligent dropper not only has the ability of
the real dropper, but also adds additional functions with
strong practicability. Therefore, most participants gave a high
score. A few participants thought that the additional functions
were not provided by the real dropper, and they did not
agree with such addition. In terms of operation authenticity,
the operation experience of the intelligent dropper is very
close to that of the real dropper, with a score of 8.48.

In terms of low load, the glove wearing mode of intelligent
dropper is almost the same as the interactive load of
real operation. Obviously, the participants have a high
acceptance of this method. It is worth mentioning that the
design cost is low. Even if a complete set of ordinary
experimental equipment is purchased, it only costs about
29rmb, while the design cost of intelligent dropper is about
79.65 RMB, which is far higher than the price of a set
of real experimental equipment. However, the value of
virtual experiment lies in saving experimental materials and
infinite repeated experiments. Compared with the cumulative
cost of real experiment, the cost of designing intelligent
dropper is obviously worthwhile, so participants still give an
average score of 8.0. Finally, the participants generally agreed
that the intelligent dropper designed by us was practical
and interesting, and strongly supported us to continue to
improve the equipment and continue to design new intelligent
equipment (TABLE 5).

TABLE 5. Comparison results.

C. COMPARATIVE EXPERIMENT
1) TIME EFFICIENCY ANALYSIS
In order to better verify the effectiveness of the pro-
posed framework, we compared the experimental time with
NOBOOK [38] andOpenGL [2]. At the same time, in order to
avoid the influence of different systems, we also implemented
single-mode (gesture) interaction (SIVE) on the virtual
experimental system established in this article.

As shown in Fig. 12, a is the experimental platform
and demonstration of MIIVEP designed in this article,
and b represents the NOBOOK experimental platform.
b uses the mouse interaction mode, through the mouse can

FIGURE 12. Experimental platform.

quickly select reagents, and get the results. The multimodal
interaction in this article provides rich interaction modes,
and users can issue instructions in different ways. Compared
with the two methods, it is not difficult to see that mouse
interaction is simple and fast, but it lacks interaction and
can’t exercise the user’s experimental ability and provide real
operation experience. The purpose of multimodal interaction
is to improve the practical ability of users, increase the
interest of experiments, stimulate the learning enthusiasm of
users, and ultimately achieve the purpose of improving the
learning efficiency of users and the popularization ability of
virtual teaching.

FIGURE 13. Comparison of experimental time spent.

A total of 20 participants were invited to carry out
acid-base verification experiments on different experimental
platforms. In Fig. 13, the total experimental time spent
in completing the acid-base detection experiment under
different methods was recorded in Fig. 13, including the
system time, trial and error time, exploration time and
understanding time spent by users in the experiment process.

The results showed that with the increase of the number of
experiments, the experimental time gradually decreased, and
in the last three experiments, the experimental time gradually
stabilized. Analysis of the data shows that mouse interaction
has a greater advantage in reducing time cost. However,
with the increase of the number of experiments, the time
cost of MIIVEP is gradually approaching that of NOBOOK
and OpenGL based on mouse interaction, which shows that
MIIVEP can also approachmouse interaction in terms of time
consumption while providing more natural interactive means.
In addition, the analysis of the time cost of SIVE andMIIVEP
shows that MIIVEP takes much less time to complete the
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experiment than SIVE. According to the feedback from the
experimenters, this is because multimodal interaction can
better meet the interaction habits of different users. Each
user can interact smoothly according to his own habits, while
SIVE only provides a unified interaction mode, and users
need to spend time to get used to and memorize.

In order to verify the effect of MIIVEP on different
experiments, we continued to invite 20 participants to carry
out silicic acid preparation experiment (see section 4.5.1 for
the experimental process), and counted the time spent in the
last three experiments (TABLE 6). We only count the time
spent in the last three experiments and the final average time
spent. All the data only keep the integer part.

TABLE 6. Time spent in preparation of silicic acid.

2) ANALYSIS OF LEARNING EFFECT
We divided 40 participants into two groups and completed
three acid-base tests under MIIVEP and NOBOOK. And the
two groups were tested in class, and the score distribution
of each group was counted. In order to facilitate statistical
analysis, we divide students’ scores into four grades: a (score
>= 90), level B (score >= 80), level C (score >= 60), and
level D (score< 60). The score statistics are shown in Fig. 14.

FIGURE 14. Distribution of test scores.

The results showed that among the 20 participants using
MIIVEP, the A-level rate was 35%, the (A+B) rate was 80%,
and the failure rate was only 5%. Among the 20 participants
who used NOBOOK, the A-grade rate was only 5%,
the (A+B) rate was 60%, and the unqualified rate was
15%. This verifies the ability of MIIVEP in enhancing
students’ learning effect. According to the feedback from
participants, the interaction mode provided by MIIVEP is
more realistic and intuitive, focusing on the experimental
effect and interactive experience, while NOBOOK ignores
these aspects. In addition, members of the MIIVEP team said

that the intelligent dropper made the experimental process
more interesting and gave them a clearer understanding of
the intelligent dropper.

3) EVALUATION SCALE OF VIRTUAL EXPERIMENT SYSTEM
It is found that the performance of virtual experiment itself
is the key to affect teachers’ acceptance of this teaching
method. According to the teachers’ requirements for the
performance of virtual experiment, we have developed a
virtual experiment system evaluation standard ESVES. It
includes authenticity (A): whether the interaction process is
realistic or not, and whether the effect is realistic. Safety (S):
whether the experimental process is safe. Explorability (E):
whether the experiment can support the operation beyond
the preset, like the actual experiment, there can be inquiry
operation. Repeatability (R): whether the experiment can be
repeated many times. Device cognition (DA): enhance users’
cognition of experimental equipment.

Intelligence (I): whether the experiment interaction process
can accurately analyze the user’s intention and make
reasonable response. A total of six indicators, the full score
of each index is 100. We compared the ESVES of MIIVEP,
OpenGL and NOBOOK (Fig. 15).

FIGURE 15. ESVES.

According to the score results of 40 participants, the safety
ability of each virtual experimental system was recognized.
In terms of authenticity, participants believe that the main
difference lies in the interactionmode and effect presentation,
such as the intelligent dropper in this article, which improves
the operation authenticity of experimental equipment. In gen-
eral, the scores of MIIVEP on ESVES are higher than those
of OpenGL and NOBOOK, which proves that MIIVEP is
more in line with the needs of users than other systems and is
recognized by users.

Furthermore, we analyzed the ESVES data of NOBOOK
and MIIVEP by ANOVA (TABLE 7). The results of six
indicators are as follows: SS is the sum of squares of
deviation, DF is the degree of freedom,MS is themean square
value, F is the test value, P-value is the adjoint probability, and
F CRIT is the critical value of quantile value of F distribution
at significance level of 0.05.
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TABLE 7. Time spent in preparation of silicic acid.

In Table 7, there is a lack of analysis on the safety index
(s), because the virtual teaching for users, the degree of
risk is almost no, and users also give consistent evaluation.
According to the analysis of the other five indicators, F value
is greater than F CRIT value, which indicates that the
system performance of MIIVEP based on multimodality is
significantly different from that based on mouse NOBOOK,
which verifies the effectiveness and feasibility of multimodal
intention understanding model in improving learning effi-
ciency and system performance, and reducing interaction
load.

D. SYSTEM USABILITY SCALE
Subsequently, we invited all participants to complete a sus
questionnaire [39], which was designed to investigate the
user’s evaluation of MIIVEP. The questionnaire contained 10
questions, and the evaluation of each question ranged from
very agree to very disagree, with a total of 5 grades. The users
chose different levels according to the content of the questions
to express their attitude towards MIIVEP. Referring to the
original SUS, we developed a sus questionnaire suitable for
this article, as shown in TABLE 8.

Sus is widely used in the system usability questionnaire
survey. Its question design has good objectivity, and it is easy
to quantify the score and convert it into a percentage system.
After research, Sus can get a real evaluation of the system in
no more than 15 samples. All the scales have considerable
sensitivity, and the number of samples in this article is 40,
which is more helpful to evaluate the usability of the system
using this algorithm. The SUS score of MIIVEP is 80 points.
According to Bangor’s interpretation of SUS [40], MIIVEP’s
grade is B among the seven grades. This shows that MIIVEP
has good usability and easy to learn, but there are still some
deficiencies in some aspects.

E. PREPARATION EXPERIMENT OF SILICIC ACID
In order to verify the universality and inclusiveness of the
framework and algorithm in this article, and to verify the
function of intelligent dropper. We used MIIVEP to carry out

TABLE 8. The MIIVEP of the System Usability Scale (SUS), showing the
minor modifications to the original Brookes instrument.

a relatively complex experiment on the preparation of silicic
acid

1) EXPERIMENTAL PROCESS
The process of silicic acid preparation experiment is rela-
tively complex, but its application on MIIVEP is similar to
that of acid-base test. Fig. 16 shows the process of silicic acid
preparation experiment.

V. SUMMARY
This article in view of the existing virtual experiment system
are widespread the interaction of a single, the actual teaching
effect is poor, complex user intent and so on, puts forward a
kind of information based on multimodal interaction model,
the model integration modal information, such as voice,
gestures, touch different modal analysis, the relationship
between the subset can be divided into different intentions,
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FIGURE 16. Experiment T2: preparation of silicic acid.

and will build the user intent set intentions subset fusion, and
formed a set with the matching operation behavior, has been
clear about the different user input the mapping relationship
between information and user intent, and the mapping
relationship between user intent and operation behavior.
Then, based on the model, the multi-mode intelligent sensing
system is realized. At the same time, an intelligent dropper
based on the fusion of virtual and real is proposed, which
simulates the real dropper on the basis of the user’s
understanding of intention, and finally realizes the virtual
teaching environment of natural interaction and intelligent
teaching. The main contribution of this article lies in that it
not only solves some bottleneck problems and key problems
that hinder the popularization of virtual experiment teaching
in middle schools, but also enhances the intelligence and
feasibility of virtual experiment system. On the other hand,
the design of virtual and real fusion of intelligent devices,
through virtual and real interaction, to meet the experimental
interaction experience and interaction authenticity needs,
so that users can quickly grasp the experimental content.

However, the model proposed in this article still has some
shortcomings: on the one hand, the mode type limits the
wider interaction behavior. For example, in the experiment of
producing gas, the user cannot judge the category of gas by
smell and the reaction degree of experiment, which hinders
the user’s understanding of relevant knowledge to some
extent. On the other hand, more convenient and effective
intelligent devices should be realized. The integration of
virtual and real devices is too single, which limits the
generalization ability of the virtual experimental system
to some extent. More intelligent devices can be designed,
such as intelligent beakers and intelligent liquid separation
funnels. To solve these problems is the focus of the future
research, but also to further enhance the portability of the
model, so that it can have good performance and robustness
in different types of virtual experimental systems.
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