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ABSTRACT LSB (Least Significant Bit) sequences are widely used as the initial inputs in some modern
stream ciphers, such as the ZUC algorithm-the core of the 3GPP LTE International Encryption Standard.
Therefore, analyzing the statistical properties (for example, autocorrelation, linear complexity and 2-adic
complexity) of these sequences becomes an important research topic. In this article, we first reduce the
autocorrelation distribution of the LSB sequence of a p-ary m-sequence with period pn − 1 for any order
n ≥ 2 to the autocorrelation distribution of a corresponding Costas sequence with period p−1, and from the
computing of which by computer, we obtain the explicit autocorrelation distribution of the LSB sequence
for each prime p < 100. In addition, we give a lower bound on the 2-adic complexity of each of these LSB
sequences for all primes p < 20, which proves to be large enough to resist the analysis of RAA (Rational
Approximation Algorithm) for FCSRs (Feedback with Carry Shift Registers). In particular, for a Mersenne
prime p = 2k − 1 (i.e., k is a prime such that p is also a prime), our results hold for all its bit-component
sequences since they are shift equivalent to the LSB sequence.

INDEX TERMS p-ary m-sequence, LSB sequence, autocorrelation, 2-adic complexity.

I. INTRODUCTION
As important components of cipher systems, pseudo-random
sequences have widely applications in cryptography. In order
to prevent some malicious attacks, sequences as the key
stream in a cipher system should have low similarity at differ-
ent times and can not be regenerated by some simple registers,
for example short Linear Feedback Shift Register (LFSR) and
short Feedback with Carry Shift Register (FCSR), etc. Thus,
autocorrelation distributions, linear complexity and 2-adic
complexity of sequences become three important indexes to
measure a cipher system, i.e., sequences used as a key stream
should have low autocorrelation, high linear complexity and
large 2-adic complexity.

Due to their ideal correlation property and other good per-
formance measures such as highly efficient implementation,
maximal length LFSR sequences (i.e., m-sequences) have
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beenwidely used in designing stream ciphers. However, since
the linear complexity of these sequences is relatively low
under the analysis of Berlekamp-Massey Algorithm (BMA),
they can not be used by themselves. Therefore constructing
nonlinear sequence generators with desirable good properties
becomes a very important topic. As one class of promising
nonlinear sequence generators, feedback with carry shift reg-
isters (FCSRs), were originally presented by Klapper and
Goresky in 1997 [15]. At the same time, they introduced
the notion of 2-adic complexity 82(s) for a binary periodic
sequence s, i.e., the length of the shortest FCSR which gen-
erates s. One direct result of this notion is that an m-sequence
with period N = 2n − 1 has maximal 2-adic complexity
if 2N − 1 is a prime. Similar to BMA of LFSRs, Klapper
and Goresky also proposed an algorithm, called Rational
Approximation Algorithm (RAA), to determine the 2-adic
complexity of s. They showed that, from the perspective of
cryptography security, a desirable sequence should has both
high linear complexity and high 2-adic complexity, namely,
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greater than or equal to one half of the period. Although the
linear complexity of many classes of sequences have been
obtained (see [1], [2], [5], [8], [10], [13], [14], [16], [17],
[22], [23], [25]), there are only a handful of papers on their
2-adic complexity. After Tian and Qi made a breakthrough,
i.e., they proved that all binary m-sequences have maximal
2-adic complexity in [21], Xiong et al. presented a method to
compute the 2-adic complexity of binary sequences by cir-
culant matrixes in [26], [27]. They showed that all the known
sequences with ideal 2-level autocorrelation and several other
classes of sequences with optimal autocorrelation have maxi-
mum 2-adic complexity. ThenHu presented a simpler method
in [12] to obtain the results of Xiong et al. by using exact
autocorrelation distributions. Recently, Zhang et al. intro-
duced a new method to determine the 2-adic complexity of
a binary sequence by ‘‘Gauss periods’’ and ‘‘Gauss sum’’
over a ring ZN of residue classes modulo an integer N [29].
More applications of these three methods can be found
in [11], [18]–[20], [24], [28], in which the 2-adic complexity
of Legendre sequences, Jacobi sequences, modified Jacobi
sequences and a class of binary sequences with optimal auto-
correlation was analyzed.

Since LSB sequences of p-ary m-sequences (see Defini-
tions 1) can be easily implemented and have been tested to
possess many good pseudo-random properties, some mod-
ern stream ciphers, such as the ZUC algorithm-the core
of the 3GPP LTE International Encryption Standard, are
designed by using them as the inputs [6], [7]. Earlier,
Chan and Games [1] proved that these sequences have high
linear complexity. However, the autocorrelation and the
2-adic complexity of them have still not been studied as far as
we know. In this article, some analyses of these two properties
of these sequences are given.

The rest of this article is organized as follows. We intro-
duce notations and some well-known results in Section II.
Some autocorrelation properties of LSB sequences of p-ary
m-sequences, as well as the explicit autocorrelation distribu-
tions of Costas sequences with period p − 1 for p < 100,
are given in Section III. In Section IV, the lower bound on
the 2-adic complexity of each of the LSB sequences of p-ary
m-sequences for p < 20 and an open problem on the 2-adic
complexity of the LSB sequence of a p-ary m-sequence for
any prime p are presented. Finally, we give a conclusion in
Section V.

II. PRELIMINARIES
Let N be a positive integer and s = (s0, s1, · · · , sN−1, · · · )
be a binary sequence of period N . The autocorrelation of s is
given by

ACs(τ ) =
N−1∑
t=0

(−1)st+st+τ , τ = 0, 1, 2, · · · ,N − 1.

The notion of the 2-adic complexity has been well defined
by Klapper and Goresky [15] and they also presented a gen-
eral formula of computing the 2-adic complexity of binary

sequences. For simplicity, here we take this formula as its
definition directly. Readers can refer to [15] or [26] for the
formal definition.

Denote S(x) =
N−1∑
i=0

six i ∈ Z[x] and take the polynomial

function value S(2) of S(x) at the point 2. Let gcd(?1, ?2) be
the greatest common divisor of two integers ?1 and ?2. If we
write

S(2)
2N − 1

=

S(2)

gcd
(
S(2),2N−1

)
2N−1

gcd
(
S(2),2N−1

) ,
then the 2-adic complexity 82(s) of the sequence s is deter-
mined by the following integer,

82(s) =

⌊
log2

2N − 1

gcd
(
S(2), 2N − 1

)⌋ , (1)

where the symbol b?c denote the floor function, i.e., b?c is
the greatest integer that is less than or equal to the number ?.

Let p be any odd prime, n be a positive integer, and α be a
primitive element of Fpn . Then

at = Tr(αt ), t = 0, 1, 2, · · · , pn − 2,

is a p-arym-sequence, where Tr(x) = x+xp+xp
2
+· · ·+xp

n−1

is the trace function from Fpn to Fp.
For each term at of the m-sequence {at }

pn−2
t=0 , we have the

following 2-adic expansion

at = at,0 + at,1 × 2+ at,2 × 22 + · · · + at,k−1 × 2k−1,

where at,i ∈ {0, 1}, i = 0, 1, · · · , k − 1, k = dlog2pe and
dxe is the least integer that is larger than or equal to x. Here,
we identify the bit string (at,0, at,1, · · · , at,k−1) of length k
with the element at and the i-th element at,i−1 is called as the
i-th bit-component of at . But the element 0 ∈ Fp is written
as p, i.e., 0 is identified with (p0, p1, · · · , pk−1), where the
2-adic expansion of p is p0+p1×2+· · ·+pk−1×2k−1 (this
is in accordance with the ZUC algorithm).
Definition 1: For a fixed i ∈ {1, 2, · · · , k}, the sequence
{at,i−1}

pn−2
t=0 is called the i-th bit-component sequence of

{at }
pn−2
t=0 . In particular, when i = 0, the bit-component

sequence {at,0}
pn−2
t=0 is called the Least Significant Bit

sequence (the LSB sequence) of them-sequence {at }
pn−2
t=0 and

we denote {st }
pn−2
t=0 = {at,0}

pn−2
t=0 for convenience. In fact,

it can also be expressed as

st =

{
Tr(αt ) (mod 2), if Tr(αt ) ∈ F∗p,
1, if Tr(αt ) = 0.

(2)

Definition 2: Denote β = α
pn−1
p−1 , a primitive element

of Fp. The Costas sequence is defined as the sequence {bj}
p−2
j=0

of period p− 1 which is given by bj ≡ β j (mod 2).
The Costas sequence {bj}

p−2
j=0 is actually the LSB sequence

of the permutation {β0, β1, . . . , βp−2} corresponding to a
Welch Costas array determined by the primitive element β.
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This sequence was first considered by J. P Costas in 1984 as
permutation matrices with ambiguity functions taking only
the values 0 and (possibly) 1, applied to the processing
of radar and sonar signals. The basic algebraic construc-
tion of this sequence can be found in [9]. The sequence
is closely related to APN functions and S-Box of block
ciphers [4].
Definition 3: A function from Fpn to Fp is said to be

balanced if the element 0 appears one less time than each
nonzero element in Fp in the list f (α0), f (α1), · · · , f (αp

n
−2).

Definition 4: Let f (x) be a function on Fpn over Fp. Then
the function f (x) is called difference-balanced if f (xz)− f (x)
is balanced for any z ∈ Fpn but z 6= 1.
Remark 1: It is well known that the trace function Tr(x)

from Fpn to Fp is difference-balanced, which is in fact a linear
function over Fp.

III. AUTOCORRELATION PROPERTIES OF LSB
SEQUENCES OF p-ARY m-SEQUENCES
Denote N = pn − 1,M = N

p−1 , and ZN = {0, 1, 2, · · · ,N −
1}. For the rest of the paper, we always use them and other
notations given in Section II unless otherwise specified.
Lemma 1: Let n ≥ 2. Then, for 0 < τ < N and τ /∈

{Mτ ′ | τ ′ = 1, 2, · · · , p − 2}, the autocorrelation value
ACs(τ ) of {st }

N−1
t=0 is given by ACs(τ ) = pn−2 − 1.

Proof: For a fixed τ , denote

Dτ = {t | st 6= st+τ , t ∈ ZN }.

s Then

ACs(τ ) = |ZN \ Dτ | − |Dτ | = N − 2|Dτ |, (3)

where |Dτ | is the size of the collection Dτ . By (2), we get∣∣Dτ ∣∣ = ∣∣∣{t | st 6= st+τ , t ∈ ZN }
∣∣∣ (4)

=

∣∣∣{t ∈ ZN | Tr(αt ),Tr(αt+τ ) ∈ F∗p,

Tr(αt ) ≡ 1 (mod 2),Tr(αt+τ ) ≡ 0 (mod 2)}
∣∣∣

+

∣∣∣{t ∈ ZN | Tr(αt ),Tr(αt+τ ) ∈ F∗p,

Tr(αt ) ≡ 0 (mod 2),Tr(αt+τ ) ≡ 1 (mod 2)}
∣∣∣

+

∣∣∣{t | Tr(αt ) = 0, Tr(αt+τ ) ∈ F∗p

and Tr(αt+τ ) = 0 (mod 2), t ∈ ZN }
∣∣∣

+

∣∣∣{t | Tr(αt+τ ) = 0, Tr(αt ) ∈ F∗p

and Tr(αt ) = 0 (mod 2), t ∈ ZN }
∣∣∣

=

∣∣∣{x ∈ F∗pn | Tr(x),Tr(α
τ x) ∈ F∗p,

Tr(x) ≡ 1 (mod 2),Tr(ατ x) ≡ 0 (mod 2)}
∣∣∣ (5)

+

∣∣∣{x ∈ F∗pn | Tr(x),Tr(α
τ x) ∈ F∗p,

Tr(x) ≡ 0 (mod 2),Tr(ατ x) ≡ 1 (mod 2)}
∣∣∣ (6)

+

∣∣∣{x ∈ F∗pn | Tr(x) = 0, Tr(ατ x) ∈ F∗p,

and Tr(ατ x) = 0 (mod 2)}
∣∣∣ (7)

+

∣∣∣{x ∈ F∗pn | Tr(α
τ x) = 0, Tr(x) ∈ F∗p,

and Tr(x) = 0 (mod 2)}
∣∣∣. (8)

Next, we determine the values of (5)-(8) respectively. From
Definition 1, it is obvious that

st 6= st+τ ⇒ Tr(αt )− Tr(αt+τ ) 6= 0

⇒ Tr(x)− Tr(ατ x) 6= 0,where x = αt .

By Remark 1 we know that the trace function Tr(x) is
difference-balanced, namely, for each fixed a ∈ F∗p, the total
number of x’s in F∗pn satisfying

Tr(x)− Tr(ατ x) = a

is pn−1. And the number of x’s to the equation

Tr(x)− Tr(ατ x) = a

is actually the sum of the numbers of solutions x’s to the
following system of equations{

Tr(x) = c+ a,
Tr(ατ x) = c,

(9)

where c runs through Fp. Notice that Fpn is an n-dimensional
vector space over Fp. Let {α1, α2, · · · , αn} be a basis of Fpn
over Fp. For any element x ∈ Fpn , there exist n elements xi ∈

Fp, i = 1, 2, · · · , n, such that x =
n∑
i=1

xiαi. Then, for fixed

c+ a ∈ Fp, c ∈ Fp and ατ ∈ Fpn , Eq. (9) can be transformed
into 

n∑
i=1

Tr(αi)xi = c+ a,

n∑
i=1

Tr(αταi)xi = c,

(10)

which is a linear equation system over Fp with n unknowns
xi ∈ Fp, i = 1, 2, · · · , n, and its coefficient matrix is

A =
(

Tr(α1) Tr(α2) · · · Tr(αn)
Tr(ατα1) Tr(ατα2) · · · Tr(αταn)

)
. (11)

In fact, for ατ /∈ F∗p, i.e., τ /∈ {Mτ ′ | τ ′ = 1, 2, · · · , p − 1},
the two rows in the above matrix A are linearly independent.
Otherwise, there is an element δ ∈ Fp such that Tr(αταi) =
δTr(αi) for each i ∈ {1, 2, · · · , n}, i.e., Tr((ατ −δ)αi) = 0 for
each i ∈ {1, 2, · · · , n}, which results in Tr((ατ−δ)γ ) for each
element γ ∈ Fpn since {α1, α2, · · · , αn} is a basis of Fpn over
Fp. This is impossible since ατ − δ 6= 0. Therefore, the rank
of the above matrix A in (11) is 2, which implies that there
are pn−2 solutions in Fpn to (9) for each a ∈ F∗p and c ∈ Fp.

If we take each element of F∗p = {1, 2, · · · , p − 1} as an
integer, then there are p−1

2 even integers, which implies there
are p−1

2 c’s in F∗p such that c ≡ 0 (mod 2). Furthermore,
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for each fixed c ≡ 0 (mod 2) in F∗p, if a runs through every
element ofF∗p, then c+a runs through every element ofFp\{c}
and there are p−1

2 odd integers in (Fp\{c}) ∩ F∗p, which tells
us that there are p−1

2 a’s such that c+ a ≡ 1 (mod 2) for each
fixed c ≡ 0 (mod 2) in F∗p. Then the value of (5) is equal to∣∣∣{x ∈ F∗pn | Tr(x),Tr(α

τ x) ∈ F∗p,

Tr(x) ≡ 1 (mod 2),Tr(ατ x) ≡ 0 (mod 2)}
∣∣∣

= pn−2 ×
(p− 1)2

4
.

Similarly, the values of (6)-(8) are pn−2× (p−1)2

4 , pn−2× p−1
2 ,

pn−2 × p−1
2 respectively. The value of

∣∣Dτ ∣∣ is the sum of the
values of (5)-(8) by (4), i.e.,∣∣Dτ ∣∣ = pn−2

(
(p− 1)2

4
+

(p− 1)2

4
+
p− 1
2
+
p− 1
2

)
=

pn − pn−2

2
.

Therefore, by (3),

ACs(τ ) = N − 2×
pn − pn−2

2
= pn − 1− (pn − pn−2) = pn−2 − 1. �

Lemma 2: For τ ∈ {Mτ ′ | τ ′ = 1, 2, · · · , p − 2},
the relation between the autocorrelation ACs(τ ) of the LSB
sequence {st }

pn−1
t=0 and the autocorrelation ACb(τ ′) of the

Costas sequence {bj}
p−2
j=0 is given by

ACs(τ ) =
(
ACb(τ ′)+ 1

)
pn−1 − 1. (12)

Proof: Recall that ατ = βτ
′

∈ F∗p for τ ∈ {Mτ ′ | τ ′ =
1, 2, · · · , p− 2} since β = αM . Then Tr(ατ x) = Tr(βτ

′

x) =
βτ
′

Tr(x) for x ∈ F∗pn , i.e.,

Tr(ατ x) ∈ F∗p ⇔ Tr(x) ∈ F∗p. (13)

It is similar to the proof of Lemma 1 that

ACs(τ ) = |ZN \ Dτ | − |Dτ | = N − 2|Dτ |,

where Dτ = {t | st 6= st+τ , t ∈ ZN }, and

st 6= st+τ ⇒ Tr(x)− Tr(ατ x) 6= 0

⇒ Tr(x) ∈ F∗p and Tr(α
τ x) ∈ F∗p, (14)

where x = αt . Therefore,∣∣∣Dτ ∣∣∣ = ∣∣∣{x | Tr(x) ∈ F∗p, Tr(x) 6≡ β
τ ′Tr(x) (mod 2),

x ∈ F∗pn}
∣∣∣

= pn−1 ×
∣∣∣{(c, βτ ′c) | c ∈ F∗p,

c 6≡ βτ
′

c (mod 2)}
∣∣∣ (15)

= pn−1 ×
∣∣∣{j | β j 6≡ β j+τ ′ (mod 2),

j = 0, 1, · · · , p− 2}
∣∣∣

= pn−1 × |D′τ ′ |, (16)

where D′
τ ′
= {j | β j 6≡ β j+τ

′

(mod 2), j = 0, 1, · · · , p − 2}
and Eq. (15) holds because the equation Tr(x) = c has exact
pn−1 solutions in F∗pn for each fixed c ∈ F∗p. Hence, we have

ACs(τ ) = N − 2|Dτ | = (pn − 1)− 2pn−1|D′τ ′ |

= (p− 2|D′τ ′ |)p
n−1
− 1. (17)

Furthermore, since the autocorrelation of the Costas sequence
{bj}

p−2
j=0 is equal to

ACb(τ ′) =
p−2∑
j=0

(−1)bj−bj+τ ′ = |Zp−1 \ D′τ ′ | − |D
′

τ ′ |

= p− 1− 2|D′τ ′ |, (18)

the result follows. �
Combining Lemmas 1 and 2, we have simplified the prob-

lem of computing the autocorrelation of the LSB sequence
{st }

N−1
t=0 of period pn − 1 for any positive integer n ≥ 2 to

the problem of computing the autocorrelation of the Costas
sequence {bj}

p−2
j=0 of period p− 1.

Lemma 3: Let the symbols be the same as above. We have
the following results.

(1) For 1 ≤ τ ′ ≤ p−3
2 , ACb(p− 1− τ ′) = ACb(τ ′).

(2) For p ≡ 1 (mod 4) and 1 ≤ τ ′ ≤
p−1
4 or for p ≡ 3

(mod 4) and 1 ≤ τ ′ ≤ p−3
4 , ACb(

p−1
2 −τ

′) = −ACb(τ ′).
Particularly, when p ≡ 1 (mod 4), ACb(

p−1
4 ) = 0.

(3) ACb(
p−1
2 ) = −(p− 1).

Proof: (1) By the discussion in Lemma 2, for a fixed
1 ≤ τ ′ ≤ p − 2, the autocorrelation value ACb(τ ′) depends
on |Dτ ′ | which is in fact the number of c’s in F∗p such that
the pair (c, βτ

′

c) has different least significant bit (See (15)-
(16)). Let c′ = βτ

′

c for 1 ≤ τ ′ ≤
p−3
2 . Then (c, βτ

′

c) =
(β−τ

′

c′, c′) = (βp−1−τ
′

c′, c′). Since c′ runs exactly through
F∗p when c runs through F∗p, we have |D′

τ ′
| = |D′p−1−τ ′ |,

which implies ACb(p− 1− τ ′) = ACb(τ ′) by (18).
(2) Since −c is odd if c is even for c ∈ F∗p and vice

versa (Notice that p is odd and −c = p − c), we can
derive

∣∣∣{(−c, βτ ′c) | c ∈ F∗p, −c 6≡ βτ
′

c (mod 2)}
∣∣∣ =

(p − 1) −
∣∣∣{(c, βτ ′c) | c ∈ F∗p, c 6≡ βτ

′

c (mod 2)}
∣∣∣,

which results in −ACb(τ ′) = (p − 1) −
∣∣∣{(−c, βτ ′c) |

c ∈ F∗p, −c 6≡ βτ
′

c (mod 2)}
∣∣∣. Let c′ = βτ

′

c. Then

(−c, βτ
′

c) = (β
p−1
2 −τ

′

c′, c′) from β
p−1
2 = −1. By (18),

we get ACb(
p−1
2 − τ

′) = −ACb(τ ′). Particularly, for p ≡ 1
(mod 4) and τ ′ = p−1

4 , we get ACb(
p−1
4 ) = −ACb(

p−1
4 ),

which implies ACb(
p−1
4 ) = 0.

(3) Since the pair (c,−c) always gives different LSBs for
c ∈ F∗p, the result follows. �
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In convenience, we always use ACb(I ) = (ACb(i))i∈I ,
where

I =


{1, 2, · · · ,

p− 5
4
}, for p ≡ 1 (mod 4);

{1, 2, · · · ,
p− 3
4
}, for p ≡ 3 (mod 4).

(19)

We note that I = ∅ for p = 3, 5. Based on all the lemmas
above, we obtain the following result.
Theorem 1: Let the symbols be defined as before. For 0 <

τ < N , the autocorrelation of the LSB sequence {st }
N−1
t=0 of a

p-ary m-sequence {at }
N−1
t=0 is expressed as

ACs(τ )=



(
1+ACb(τ ′)

)
pn−1 − 1, if τ ∈ S1;(

1−ACb(τ ′)
)
pn−1 − 1, if τ ∈ S2;

pn−1 − 1, if p ≡ 1 (mod 4)

and τ =
pn − 1

4
;

−(p− 2)pn−1 − 1, if τ =
pn − 1

2
;

pn−2−1, otherwise,
(20)

where

S1 =
{
Mτ ′, M (p− 1− τ ′) | τ ′ ∈ I

}
,

S2 =
{
M (

p− 1
2
− τ ′), M (

p− 1
2
+ τ ′) | τ ′ ∈ I

}
.

In particular, the corresponding autocorrelations ACs(τ ) for
p = 3 and p = 5 can be given directly by

ACs(τ ) =

{
−3n−1 − 1, if τ = M ,
3n−2 − 1, otherwise,

(21)

ACs(τ ) =


5n−1 − 1, if τ = M or 3M ,
−3× 5n−1 − 1, if τ = 2M ,
5n−2 − 1, otherwise

(22)

respectively. �
Example 1: By Matlab and Mathematica programs, let

n = 3, we give the LSB sequence of period pn − 1 for each
prime p < 20 and have verified the results in Theorem 1.
All these codes and the corresponding results have been
organized into PDF files as data files.
Remark 2: For the autocorrelation function ACb(τ ′) of the

Costas sequence {bj}
p−2
j=0 of period p − 1, we have reduced

its values from a set {ACb(τ )}
p−2
τ=1 to a set {ACb(τ )|τ ∈ I }.

Hence the size of the problem is simplified to a quarter of
the original size and it can be determined relatively more
efficiently by computer. Indeed, we present the correspond-
ing ordered array ACb(I ) for all odd primes smaller than
100 in Table 1. Moreover, by plugging the values of ACb(I )
in Table 1 for each prime 3 ≤ p < 100 into the formula in
Theorem 1, we can get the exact autocorrelation distribution
of the LSB sequence of the corresponding p-ary m-sequence.
Additionally, it can be observed from these examples that all
the autocorrelation values satisfy− p−1

3 ≤ ACb(τ
′) ≤ p−1

3 for

TABLE 1. Examples of ACb(I) for primes less than 100.

τ ′ ∈ {1, 2, · · · , p−2} but τ ′ 6= p−1
2 . Finding out the complete

and theoretical result of the autocorrelation distribution of
the Costas sequence {bj}

p−2
j=0 will be an interesting research

problem, but due to our limited ability we can not resolve it
in this article. So we sincerely invite those readers who are
interested in this problem to participate in it.
Remark 3: Also, from Theorem 1, it seems that the auto-

correlation values of the LSB sequences are high, comparing
to the periods of these sequences, which is bad for the security
of a key stream sequence. However, since the period of the
bit-component sequence used in the ZUC algorithm-the core
of the 3GPP LTE International Encryption Standard is huge
(here p = 231 − 1 and the period N = p16 − 1) and only a
little part of the sequence is chosen to be as a key stream in
the encryption process, then the high autocorrelation of the
sequence has almost no negative impact on the security of
the whole cipher system.
Theorem 2: Let p = 2k − 1 be a Mersenne prime,

and {at,i−1}
N−1
t=0 the i-th bit-component sequence of {at }

N−1
t=0 .

Then, for 2 ≤ i ≤ k , the i-th bit-component sequence
{at,i−1}

N−1
t=0 is a cyclic shift of the LSB sequence {st }

N−1
t=0 .

Proof:Because 2 ∈ Fp, there exists some 1 ≤ j0 ≤ p−2
and τ0 =

pn−1
p−1 j0 such that 2 = ατ0 . Then

2at = 2Tr(αt ) = Tr(αt+τ0 ) = at+τ0 ,

which shows that {2at } is the left cyclic shift of {at } by τ0.
Moreover,

2at mod p = at,k−1 + at,0 × 2+ · · · + at,k−2 × 2k−1,

that is, the binary bit string of 2at is the left cyclic shift of
the binary bit string of at by 1. Therefore, for 1 ≤ i ≤ k ,
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the ((imod k)+1)-th bit-component sequence is the left cyclic
shift of the i-th bit-component sequence by τ0, which results
in the conclusion. �

IV. LOWER BOUND ON THE 2-ADIC COMPLEXITY OF
EACH OF THESE LSB SEQUENCES FOR p < 20
First we describe the method of Hu [12] as the following
lemma.

Lemma 4 [12]: Let T (x) =
N−1∑
t=0

(−1)st x t ∈ Z[x]. Then

−2S(x)T (x−1) ≡ N +
N−1∑
τ=1

ACs(τ )xτ

−T (x−1)

(
N−1∑
t=0

x t
)
mod

(
xN−1

)
. (23)

�
Lemma 5: Suppose that n ≥ 2 is a positive integer and I

is defined as in (19). Then we have

S(2)T (2−1) ≡ −
2
N
2 − 1

2M − 1

(
p− 1

)
pn−2

mod
(
2
N
2 − 1

)
, (24)

S(2)T (2−1) ≡
(∑
τ ′∈I

ACb(τ ′)
(
2M ( p−12 −τ

′)
− 2Mτ

′
)

− (p− 1)
)
pn−1 mod

(
2
N
2 + 1

)
. (25)

Proof: We only present the proof for the case of p ≡
3 (mod 4) and the other case is similar. Substituting (20) in
Theorem 1 into (23) in Lemma 4, we have

−2S(x)T (x−1)

≡ N +
∑

τ 6=Mτ ′,τ ′=1,2,··· ,p−2

(
pn−2 − 1

)
xτ

+

p−3
4∑

τ ′=1

[(
1+ ACb(τ ′)

)
pn−1 − 1

]
xMτ

′

+

p−3
4∑

τ ′=1

[(
1− ACb(τ ′)

)
pn−1 − 1

]
xM ( p−12 −τ

′)

+

[
− (p− 2)pn−1 − 1

]
x
N
2

+

p−3
4∑

τ ′=1

[(
1− ACb(τ ′)

)
pn−1 − 1

]
xM ( p−12 +τ

′)

+

p−3
4∑

τ ′=1

[(
1+ ACb(τ ′)

)
pn−1 − 1

]
xM (p−1−τ ′)

−T
(
x−1

)(N−1∑
t=0

x t
)
mod

(
xN − 1

)

≡ N −
(
pn−2 − 1

)
+

N−1∑
τ=0

(
pn−2 − 1

)
xτ

+

p−3
4∑

τ ′=1

[(
1+ ACb(τ ′)

)
pn−1 − pn−2

]
xMτ

′

+

p−3
4∑

τ ′=1

[(
1− ACb(τ ′)

)
pn−1 − pn−2

]
xM ( p−12 −τ

′)

+

[
−

(
p− 2

)
pn−1 − pn−2

]
x
N
2

+

p−3
4∑

τ ′=1

[(
1− ACb(τ ′)

)
pn−1 − pn−2

]
xM ( p−12 +τ

′)

+

p−3
4∑

τ ′=1

[(
1+ ACb(τ ′)

)
pn−1 − pn−2

]
xM (p−1−τ ′)

−T
(
x−1

)(N−1∑
t=0

x t
)
mod

(
xN − 1

)

≡

{ p−3
4∑

τ ′=1

[((
1+ ACb(τ ′)

)
p− 1

)
xMτ

′

+

((
1− ACb(τ ′)

)
p− 1

)
xM ( p−12 +τ

′)
]

+

p−3
4∑

τ ′=1

[((
1− ACb(τ ′)

)
p− 1

)
xM ( p−12 −τ

′)

+

((
1+ ACb(τ ′)

)
p− 1

)
xM (p−1−τ ′)

]}
pn−2

+

(
p2 − 1

)
pn−2 −

(
p− 1

)2
pn−2x

N
2

−

(
pn−2 − 1+ T (x−1)

)( N−1∑
t=0

x t
)
mod

(
xN − 1

)
.

(26)

Furthermore, we note that xM×
p−1
2 = x

N
2 ≡ 1 mod (x

N
2 − 1)

and x
N
2 ≡ −1 mod (x

N
2 + 1). Substituting x for 2, the desir-

able results can be derived. �
In the sequel, we also need the following result from the

elementary number theory.
Lemma 6: (1) Let p be an odd prime and n be a positive

integer. Then p | (2p
n
−1
− 1). Further, pe | (2p

n
−1
− 1) if and

only if pe | (2p−1 − 1) for e ≥ 2 (An odd prime p satisfying
p2 | (2p−1 − 1) is called a Wieferich prime. It is shown in [3]
that there are only two Wieferich primes 1093 and 3511 up
to 6.7 × 1015. Additionally, by direct computation, we get
p3 - (2p−1 − 1) for p = 1093, 3511).
(2) AMersenne prime p = 2k−1 is not a Wieferich prime.

Furthermore, for an odd prime k , we have p | (2
pn−1
2 − 1),

p2 - (2
pn−1
2 − 1), p - (2

pn−1
2 + 1).

Proof: (1) Due to (p − 1) | (pn − 1), we have (2p−1 −
1) | (2p

n
−1
− 1). By Fermat’s little Theorem we know that
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p | (2p−1 − 1) ⇒ p | (2p
n
−1
− 1). Further, by Euler’s

theorem, we have pe | (2p
e−1(p−1)

− 1) since Euler’s phi
Function value φ(pe) = pe−1(p − 1). And pn − 1 = (p −
1)(pn−1+ pn−2+· · ·+ p+ 1) ≡ (pe−2+ pe−3+· · ·+ 1)(p−
1) mod (pe−1(p−1)), which implies that pe | (2p

n
−1)⇒ pe |

(2(p
e−2
+pe−3+···+1)(p−1)

− 1). Therefore, pe | gcd(2p
e−1(p−1)

−

1, 2(p
e−2
+pe−3+···+1)(p−1)

− 1) if pe | (2p
n
−1
− 1), i.e.,

pe | (2gcd(p
e−1(p−1),(pe−2+pe−3+···+1)(p−1))

− 1).

Note that

gcd(pe−1(p− 1), (pe−2 + pe−3 + · · · + 1)(p− 1)) = p− 1.

The result follows.
(2) Notice that k = 2 or k is an odd prime for a Mersenne

prime p = 2k − 1. If k = 2, i.e., p = 3, then p is not a
Wieferich prime from the conclusion in [3]. If k is an odd
prime for p = 2k − 1, we get k | (p − 1) by p | (2p−1 − 1).
Suppose p2 | (2p−1 − 1), i.e.,(

2k − 1
)2
|

[ (
2k − 1

) (
2(

p−1
k −1)k + · · · + 2k + 1

) ]
,

which implies

(2k − 1) | (2(
p−1
k −1)k + 2(

p−1
k −2)k + · · · + 2k + 1). (27)

But we know

2(
p−1
k −1)k + 2(

p−1
k −2)k + · · · + 2k + 1 ≡

p− 1
k

≡
2(2k−1 − 1)

k
mod (2k − 1) (28)

and gcd
(
2(2k−1 − 1), 2k − 1

)
= 1, i.e.,

gcd(2k − 1, 2(
p−1
k −1)k + 2(

p−1
k −2)k + · · · + 2k + 1) = 1,

a contradiction to (27). Hence p is not a Wieferich prime.
Furthermore, since k | (2k−1 − 1), 2k−1 − 1 = p−1

2 and
p−1
2 |

pn−1
2 , we get k | pn−1

2 and (2k − 1) | (2
pn−1
2 − 1),

i.e., p | (2
pn−1
2 − 1). Moreover, p2 - (2N − 1) implies

p2 - (2
N
2 − 1) and p | (2

pn−1
2 − 1) results in p - (2

pn−1
2 + 1).�

In convenience, we denote

g(p, 2M )=
∑
τ ′∈I

ACb(τ ′)
(
2M ( p−12 −τ

′)
−2Mτ

′
)
−(p−1). (29)

Lemma 7: Let the notations be the same as above and let
δ := Ordp(2) be the multiplicative order of 2 modular p.
Suppose that n ≥ 2 is a positive integer. Then we have the
following two results:

(1)

gcd
(
S(2)T (2−1), 2

N
2 − 1

)

=



gcd
(
(p− 1)pn−2, 2M − 1

)2N
2 − 1

2M − 1
,

if n ≡ 0 (mod δ), n 6= 2,

gcd
(
p− 1, 2M − 1

)2N
2 − 1

2M − 1
,

if n 6≡ 0 (mod δ) or n = 2,

(30)

gcd
(
S(2)T (2−1), 2

N
2 + 1

)
=


gcd

(
g(p, 2M )pn−1, 2

N
2 +1

)
, δ -

p− 1
2

and n is odd,

gcd
(
g(p, 2M ), 2

N
2 +1

)
, δ |

p− 1
2

or n is even.

(31)

(2) If p = 2k − 1 > 5 is a Mersenne prime, then

gcd
(
S(2)T (2−1), 2

N
2 − 1

)

=



gcd
(
p− 1, 2M − 1

)2N
2 − 1

2M − 1
p,

if n ≡ 0 (mod δ) but n 6= 2,

gcd
(
p− 1, 2M − 1

)2N
2 − 1

2M − 1
,

if n 6≡ 0 (mod δ) or n = 2,

(32)

gcd
(
S(2)T (2−1), 2

N
2 + 1

)

=


gcd

(
g(p, 2M )p, 2

N
2 + 1

)
, δ -

p− 1
2

and n is odd,

gcd
(
g(p, 2M ), 2

N
2 + 1

)
, δ |

p− 1
2

or n is even.

(33)

Proof: (1) From (24), we get

gcd
(
S(2)T (2−1), 2

N
2 − 1

)
=

2
N
2 − 1

2M − 1
gcd

(
(p− 1)pn−2, 2M − 1

)
.

Note that 2p
i
≡ 2 (mod p) for any nonnegative integer i by

Fermat’s Little Theorem. Since

M =
N

p− 1
= pn−1 + pn−2 + · · · + p+ 1,

we get

2M = 2p
n−1
+pn−2+···+p+1

≡ 2n (mod p).

By the definition of δ, we know that 2M − 1 ≡ 0 (mod p)
if n ≡ 0 (mod δ), otherwise, 2M − 1 6≡ 0 (mod p), Eq. (30)
holds.

Similarly, since 2
N
2 = (2M )

p−1
2 ≡ 2

n(p−1)
2 (mod p) and

2p−1 ≡ 1 (mod p) by Fermat Little Theorem, we can get
2
p−1
2 ≡ −1 (mod p) if δ - p−1

2 . Combining (25), we know
that the Eq. (31) holds.

(2) The proof is similar to the above. �
Corollary 1: Let ind(p) be the largest integer e satisfying

pe | (2p−1 − 1) for a prime p. Suppose n ≥ 2. Then we
have

gcd
(
S(2), 2N − 1

)
≤ gcd

(
S(2)T (2−1), 2N − 1

)
≤

2
N
2 − 1

2M − 1
×pind(p)×gcd(p−1, 2M−1)

× gcd
(
g(p, 2M ), 2

N
2 + 1

)
. (34)
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Proof: It is obvious that

gcd
(
S(2), 2N − 1

)
≤ gcd

(
S(2)T (2−1), 2N − 1

)
.

Since gcd
(
2
N
2 − 1, 2

N
2 + 1

)
= 1, then gcd

(
S(2)T (2−1), 2N −

1
)
= gcd

(
S(2)T (2−1), 2

N
2 − 1

)
× gcd

(
S(2)T (2−1), 2

N
2 + 1

)
.

Observing (30)-(33), the reason why each of them is divided
into two cases is because of the uncertainty of gcd

(
pn−2, 2M−

1
)
or gcd

(
pn−1, 2

N
2 + 1

)
which is essentially the uncertainty

of gcd
(
pn−1, 2N − 1

)
. By Lemma 6, this problem can be

converted to the value of ind(p). The result follows. �
Remark 4: Firstly, it is obvious that the integer ind(p) in

the above Corollary 1 only depends on the property of the
prime p. By Fermat’s little Theorem, we know ind(p) ≥ 1.
On the other hand, from Lemma 6, up to now, for all primes
p ≤ 6.7 × 1015 we have ind(p) ≤ 2 and there are only two
Wieferich primes 1093 and 3511 with ind(p) = 2 among
them. Therefore, the probability of ind(p) = 2 is very small
and the probability of ind(p) ≥ 3 is almost 0. Secondly, 2M−1
is far greater than p − 1 for n ≥ 2, the size of the value
gcd(p − 1, 2M − 1) depends on the factorization of p − 1
which in fact depends on the property of the prime p. Thus,
combining the discussion here and the result of the above
Corollary 1, the upper bound of the value gcd

(
S(2), 2N − 1

)
depends on some properties of the prime p and the value
of (34).

For p = 3, 5, we can easily get the following Theorem 3.
Theorem 3: Let {st }

N−1
t=0 be the LSB sequence of a p-arym-

sequence of order n ≥ 2. Then the 2-adic complexity 82(s)
is bounded by82(s) ≥ N − 3 for p = 3 and82(s) ≥ 3N

4 − 4
for p = 5.

Proof: Note 2
N
2 −1

2M−1 = 1 for p = 3 and 2
N
2 −1

2M−1 = 2
N
4 + 1

for p = 5. Further, ind(p) = 1, gcd(p− 1, 2M − 1) = 1, and
I = ∅ for both p = 3 and p = 5. Therefore, from Corollary 1,
gcd

(
S(2), 2N − 1

)
≤ 3 for p = 3 and gcd

(
S(2), 2N − 1

)
≤

5(2
N
4 + 1) for p = 5. From (1), the results follow. �

In fact, we can also derive an upper bound on the
value gcd

(
S(2), 2N − 1

)
and the corresponding lower bound

on the 2-adic complexity of the LSB sequence for p =
7, 11, 13, 17, 19 respectively. In order to avoid repetition,
here we only give the whole proof for p = 19 and we list the
results for p = 7, 11, 13, 17. We also skip and present them
in Table 2. In convenience, we give the following notation.

Suppose p−1
2 = 2l(2k1 + 1) for some two integers l ≥ 0

and k1 ≥ 0. Then we have

2
N
2 + 1 = 2

p−1
2 M
+ 1

= (22
lM
+ 1)(2(2k1)2

lM
− 2(2k1−1)2

lM
+ · · · − 22

lM
+ 1).

Now, denote

h(p, 2M ) = 2(2k1)2
lM
− 2(2k1−1)2

lM
+ · · · − 22

lM
+ 1.

Theorem 4: Let p = 7, n ≥ 2 be a positive integer, and
{st }

N−1
t=0 be the LSB sequence of any 7-ary m-sequence of

order n. Then we have

2
N
2 − 1

2M − 1
= 2

N
3 + 2

N
6 + 1,

ind(p) = 1,

gcd(p− 1, 2M − 1) ≤ 3,

gcd
(
g(p, 2M ), 2

N
2 + 1

)
= 1. (35)

Thus the 2-adic complexity 82(s) of {st }
N−1
t=0 satisfies

82(s) ≥ 2N
3 − 6. �

Theorem 5: Let p = 11, n ≥ 2 be a positive integer, and
{st }

N−1
t=0 be the LSB sequence of any 11-ary m-sequence of

order n. Then we have

2
N
2 − 1

2M − 1
= 2

2N
5 + 2

3N
10 + 2

N
5 + 2

N
10 + 1,

ind(p) = 1,

gcd(p− 1, 2M − 1) ≤ 5,

gcd
(
g(p, 2M ), 2

N
2 + 1

)
= 1 for even n.

And for odd n, we have gcd
(
g(p, 2M ), 2M + 1

)
= 3

and gcd
(
g(p, 2M ), h(p, 2M )

)
= 1, i.e., gcd

(
g(p, 2M ), 2

N
2 +

1
)
= 3. Thus, by (1) and corollary 1, the lower bound

on the 2-adic complexity 82(s) of {st }
N−1
t=0 is given by

82(s) ≥ 3N
5 − 9. �

Theorem 6: Let p = 13, n ≥ 2 be a positive integer, and
α be a primitive element of F13n such that β = αM = 2, 6, 7
or 11. Let {st }

N−1
t=0 be the LSB sequence of the 13-ary m-

sequence defined by α. Then we have

2
N
2 − 1

2M − 1
= 2

5N
12 + 2

N
3 + 2

N
4 + 2

N
6 + 2

N
12 + 1,

ind(p) = 1,

gcd(p− 1, 2M − 1) ≤ 3,

gcd
(
g(p, 2M ), 2

N
2 + 1

)
= 1 for even n.

And for odd n, we have gcd
(
g(p, 2M ), 22M + 1

)
= 5

and gcd
(
g(p, 2M ), h(p, 2M )

)
= 1, i.e., gcd

(
g(p, 2M ), 2

N
2 +

1
)
= 5. Thus, by (1) and corollary 1, the 2-adic complexity

82(s) of {st }
N−1
t=0 satisfies 82(s) ≥ 7N

12 − 9. �
Theorem 7: Let p = 17, n ≥ 2 be a positive integer, and

α be a primitive element of F17n such that β = αM = 3.
Let {st }

N−1
t=0 be the LSB sequence of the 17-ary m-sequence

defined by α. Then we have

2
N
2 − 1

2M − 1
=2

7N
16 +2

3N
8 +2

5N
16 +2

N
4 +2

3N
16 + 2

N
8 +2

N
16 + 1,

ind(p) = 1,

gcd(p− 1, 2M − 1) = 1,

gcd
(
g(p, 2M ), 2

N
2 + 1

)
= 1.

Thus, by (1) and corollary 1, the 2-adic complexity 82(s) of
{st }

N−1
t=0 satisfies 82(s) ≥ 9N

16 − 6. �
Theorem 8: Let p = 19, n ≥ 2 be a positive integer, and

α be a primitive element of F19n such that β = αM = 2.
Let {st }

N−1
t=0 be the LSB sequence of the 19-ary m-sequence

151422 VOLUME 8, 2020



Y. Sun et al.: Autocorrelation and Lower Bound on the 2-Adic Complexity of LSB Sequence of p-Ary m-Sequence

defined by α. Then the lower bound on the 2-adic complexity
82(s) of {st }

N−1
t=0 is given by 82(s) ≥ 5N

9 − 12.
Proof: Firstly, for p = 19, we have M = pn−1

p−1 =
19n−1
18

and N
2 =

p−1
2 M = 9M , then

2
N
2 − 1

2M − 1
= 2

4N
9 + 2

7N
18 + 2

N
3 + 2

5N
18 + 2

2N
9 + 2

N
6

+ 2
N
9 + 2

N
18 + 1, (36)

Secondly, by Remark 4,

ind(p) = 1. (37)

Thirdly, since 2M − 1 is odd, it is easy to see

gcd(p− 1, 2M − 1) = gcd(18, 2M − 1)

= gcd(9, 2M − 1) (38)

Finally, we determine the value of gcd
(
g(p, 2M ), 2

N
2 + 1

)
.

From Table 1 we can get

g(p, 2M ) = −2
(
28M − 27M + 26M + 3 · 25M

− 3 · 24M − 23M + 22M − 2M + 9
)
.

Denote

g1(p, 2M ) = 28M − 27M + 26M + 3 · 25M

− 3 · 24M − 23M + 22M − 2M + 9. (39)

Since 2
N
2 + 1 is odd, then

gcd
(
g(p, 2M ), 2

N
2 + 1

)
= gcd

(
g1(p, 2M ), 2

N
2 + 1

)
(40)

Notice that

2
N
2 + 1 = 29M + 1 = (23M + 1)(26M − 23M + 1)

= (2M + 1)(22M − 2M + 1)(26M − 23M + 1) (41)

Now, we compute

gcd
(
g1(p, 2M ), 2M + 1

)
, (42)

gcd
(
g1(p, 2M ), 22M − 2M + 1

)
, (43)

gcd
(
g1(p, 2M ), 26M − 23M + 1

)
(44)

respectively. By (39) and direct computation, we know

g1(p, 2M ) ≡ 9 mod (2M + 1).

From Euclid algorithm, this implies

gcd
(
g1(p, 2M ), 2M + 1

)
= gcd

(
9, 2M + 1

)
. (45)

Similarly, direct computation derives

g1(p, 2M ) ≡ 12 mod (22M − 2M + 1).

Therefore,

gcd
(
g1(p, 2M ), 22M − 2M + 1

)
= gcd

(
12, 22M − 2M + 1

)
= gcd

(
3, 22M − 2M + 1

)
. (46)

Next, by Euclid algorithm and direct calculation, we can
get

g1(p, 2M ) ≡ 4(25M − 24M + 2)

mod (26M − 23M + 1).

26M − 23M + 1 ≡ 24M − 23M − 2 · 2M − 1

mod (25M − 24M + 2).

25M − 24M + 2 ≡ 2 · 22M + 2M + 2

mod (24M − 23M − 2 · 2M − 1).

4(24M − 23M − 2 · 2M − 1) ≡ 22M − 2M − 2

mod (2 · 22M + 2M + 2).

2 · 22M + 2M + 2 ≡ 3 · 2M + 6

mod (22M − 2M − 2).

3(22M − 2M − 2) ≡ 12 mod (3 · 2M + 6),

then from the above series of congruences we get

gcd
(
g1(p, 2M ), 26M − 23M + 1

)
| 12.

But 26M − 23M + 1 is odd, so we have

gcd
(
g1(p, 2M ), 26M − 23M + 1

)
≤ 3. (47)

Since gcd(2M − 1, 2M + 1) = 1, we know that the values
of (38) and (45) can not be larger than 1 at the same time.
Combining the above (36)-(47) and corollary 1, we know
that

gcd
(
S(2), 2N − 1

)
≤ 19×9×3× 3

(
2

4N
9 +2

7N
18

+ 2
N
3 +2

5N
18 +2

2N
9 +2

N
6 +2

N
9 +2

N
18+1

)
which implies 82(s) ≥ 5N

9 − 12 by (1). �
Example 2: By Matlab and Mathematica programs, let

n = 3, we give the LSB sequence of period pn − 1 for each
prime p < 20 and have verified the results in Lemma 7,
Corollary 1 and Theorems 3-8. All these codes and the corre-
sponding results have been organized into PDF files as data
files.

In the following, we present a figure to explain the sig-
nificance of the lower bound on the 2-adic complexity of
each LSB sequence in this article. From the figure, we can
see the lower bound is almost equal to the exact 2-adic
complexity of each LSB sequence obtained by direct com-
putation. Further, both the lower bound and the exact 2-adic
complexity are larger than one half of the period of each LSB
sequence.
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A comparison of the exact 2-adic complexity, the lower
bounds and one half of the periods of LSB sequences
Remark 5: In the process of computing the lower bound on

the 2-adic complexity of each LSB sequence of the above six
classes, we always suppose n ≥ 2. In fact, it can be testified
by simply calculation that all the lower bounds also hold for
n = 1.
Remark 6: The final conclusion of Remark 4 tells us that

the upper bound of the value gcd
(
S(2), 2N − 1

)
depends on

some properties of the prime p and the value of (34). Further,
in (34), both g(p, 2M ) and 2

N
2 + 1 = 2

p−1
2 M
+ 1 can be

regarded as polynomials with respect to 2M , where the coef-
ficients of the former depends on the prime p and the coeffi-
cients of the latter is certain. From the results of Theorems 4-7
and the proof of Theorem 8, the greatest common divisor of
these two polynomials with respect to 2M is a number which
has nothing to do with 2M but is different for every different
prime p. But due to our limited ability, we can not give a
unified representation for infinitely many primes. So we give
a conjecture according to those above characteristics. And
in order to observe the laws of the 2-adic complexity of the
LSB sequence in each of Theorems 3-8, we list the Table 2,
from which it is obvious that, for n ≥ 2, the main part in
the expression of the lower bound of the 2-adic complexity
of the LSB sequence (all the bit-component sequences for a
Mersenne prime) of the p-ary m-sequence for each p ≤ 19
have a unified form, i.e., N2 +

N
p−1 , which are large enough to

resist the RAA.

TABLE 2. Examples of 82(s) for p < 20.

Conjecture 1: Let the symbols be the same as those in
Corollary 1. Then there exists a fixed constant C1,p which
has nothing to do with 2M (i.e., it has nothing to do with the

size of n) for each prime p such that gcd
(
g(p, 2M ), 2

N
2 +1

)
=

C1,p. Thus, by Corollary 1, the conclusion of Remarks 4
and 6, there exists a constantCp such that the 2-adic complex-
ity82(s) of {st }

N−1
t=0 is lower bounded by p+1

2(p−1)N−Cp which
is larger than N

2 , where the constant number Cp depends only
on p. �

V. CONCLUSION
In this article, we first turned the problem of determining the
autocorrelation distribution of the LSB sequence of a p-ary
m-sequence with period pn − 1 for any order n ≥ 2 into the
problem of calculating the autocorrelation distribution of a
corresponding Costas sequence with period p− 1 directly by
computer. As examples, we list the explicit autocorrelation
distributions of costas sequences for all primes p < 100
in a table. Further, by means of these examples, the 2-adic
complexity of all Costas sequences for p < 20were analyzed,
which indicates that these sequences can resist the analysis of
RAA (Rational Approximation Algorithm) for FCSRs (Feed-
back with Carry Shift Registers). Finally, a conjecture on the
lower bound of the 2-adic complexity of the LSB sequences
of all p-ary m-sequences is proposed.
It should be pointed out that the problems discussed in

this article originate from the core of the 3GPP LTE Interna-
tional Encryption Standard, i.e., ZUC algorithm, which is in
fact being proposed as 5G mobile communication encryption
standard. The main reason why the algorithm is still safe after
so many years is that it destroys the theoretical structures of
binary and nonbinary fields themselves. Hence, it is difficult
for us within our capabilities to give a completely theoretical
proof of Conjecture 1. We sincerely invite those experts who
are interested in it to participate in this work.
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