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ABSTRACT Boosting has been shown to be a very effective approach to training ensemble classification
models. Although they perform very well, boosting algorithms are sensitive to class-label noise (where
training data instances are mislabelled). As the level of class-label noise in the training dataset increases,
the generalisation performance of ensembles trained using boosting decreases. This paper introduces
KalmanTune, a tuning process that can be applied to ensemble models after they have been trained using
a boosting algorithm that reduces the impact of class-label noise. KalmanTune frames the tuning of a
trained ensemble model as a static state estimation problem that can be addressed using a Kalman filter.
This approach exploits the sensor fusion capability of the Kalman filter to reduce the impact of class-label
noise on the trained ensemble. This paper describes KalmanTune and an evaluation experiment performed
using 34 multi-class datasets with 5 levels of synthetically induced class-label noise that demonstrates
that applying KalmanTune after training can improve the performance of ensemble models trained using
boosting, especially when training data contains noisy class-labels.

INDEX TERMS Multi-class, classification, ensemble, Kalman filter.

I. INTRODUCTION
Boosting is an ensemble method that has been shown to
perform very well for multi-class classification problems.
A boosting algorithm (AdaBoost [1] is the most well-known)
iteratively trains an ensemble of component classifiers, where
at each iteration of the training process, t , the component
classifier, ht , is trained in such a way that it pays particular
attention to the datapoints that were misclassified by the clas-
sifiers trained in the previous iterations. In this way classifiers
in a boosted ensemble are trained to specialise in particu-
lar areas of the input feature space. After they have been
trained the outputs of the component classifiers for a query
instance can be combined to give the overall output of the
ensemble. It is known, however, that boosting algorithms are
sensitive to class-label noise [2], in other words, incorrectly
labelled datapoints in the training dataset. As the amount
of class-label noise increases, the performance of boosting
decreases [3]. Although several modifications and extensions
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to the original AdaBoost algorithm have been proposed to
be more robust to class-label noise, for example modified
AdaBoost (or MAdaBoost) [4], sensitivity to class-label noise
remains a problem for boosting approaches in general.

This paper introduces KalmanTune, a tuning procedure
that can be applied to ensemble classifiers after they have
been trained using a boosting algorithm to make them more
robust to noisy class labels. KalmanTune uses a Kalman
filter [5], [6] to reweight the contributions of component
classifiers in an ensemble so that the influence of component
classifiers that have been impacted by noisy class labels is
reduced. KalmanTune can be applied as a tuning step to
classifier ensembles trained using any boosting algorithm.
This paper describes KalmanTune in detail and demonstrates,
through a large evaluation experiment, how it can improve
the performance of classifier ensembles trained using the
AdaBoost and MAdaBoost boosting algorithms.

The paper is structured as follows. Section II describes
popular boosting methods and the Kalman filter. Section III
introduces the KalmanTune method. The design of the evalu-
ation experiment performed is described in Section IV and the
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results of this experiment are discussed in Section V. Finally,
Section VI concludes the paper and suggests directions for
future work.

II. RELATED WORK
This section first introduces boosting and variants of
AdaBoost designed to be more robust to class-label noise.
Focus then turns to an introduction to the nessessary aspects
of Kalman filters, which are the basis of KalmanTune, and a
description of how Kalman filters can be used for static state
estimation.

A. BOOSTING
Boosting is an ensemble learning method which combines
multiple weak learners to make a combined strong learner.
Boosting trains multiple component classifiers, ht , in a
sequence and then combines their outputs to make classifica-
tions. At each training iteration, t , the component classier, ht ,
pays more attention to the training datapoints incorrectly
classified by models trained at the previous iterations. The
specific details of how component classifiers are combined
and how the training datapoints weighted at each iteration dif-
ferentiate the variety of boosting algorithms in the literature.

AdaBoost [1] is the most well-known boosting algo-
rithm. AdaBoost.SAMME is a multi-class extension of
AdaBoost [7], and is the specific version of AdaBoost used
throughout this paper (AdaBoost and AdaBoost.SAMME
will be used synonymously). AdaBoost trains individual
learners, ht , at each iteration t and performs a weighted com-
bination of them to find an ensemble modelHT (x), as defined
in the following equation:

HT (x) =
T∑
t=1

αt1(ht (x) = c) (1)

where T is the total number component learners in the ensem-
ble, and the αt values are computed to minimise an expo-
nential loss function. Each ht = L(D,wt ) is trained using a
learnerL, using the training datasetD under a distributionwt ,
where each wt (x) indicates the weight associated with the
training datapoint x ∈ D at iteration t . The weights are
computed as follows:

Bt (x) =
t∏
i=1

exp(−αi(class(hi(x)) 6= class(x))) (2)

wt+1(x) =
1
Zt

{
w1(x)Bt (x) AdaBoost
w1(x) min{1,Bt (x)} MAdaBoost

(3)

where class indicates the class membership of the prediction
scores and Zt is a normalisation term.

In the case of AdaBoost, if a specific datapoint is misclas-
sified, then the subsequent iteration will weight those data-
points more following Eq. (2) and (3). For those datapoints
which are very difficult to fit, in the subsequent iterations of
AdaBoost the weights of the datapoints would continually
increase. If there are outliers, or the training data contains

mislabelled datapoints (class-label noise), then in an attempt
to classify the noisy datapoints correctly as mentioned before,
AdaBoost will continually increase their weights without
any bounds. This results in poor generalisation performance.
To accomodate the mislabelled datapoints and the outliers,
the decision boundary becomes complicated, compomising
generalisation performance of the model. The main contribu-
tor of this phenomenon is due to the exponential loss function,
which AdaBoost optimises. An interesting analysis and study
on class-label noise robustness of AdaBoost can be found
in [8].

To overcome this noise sensitivity, MAdaBoost [4] was
proposed. The main change is simple, MAdaBoost simply
places an upper bound on the weights that can be assigned
to any datapoint (Eq. (3)). MAdaBoost has been shown to
be very robust to noise and to perform very well, when
compared to other methods, in the presence of class-label
noise [9]. A detailed theoretical analysis of the class-label
noise robustness of MAdaBoost is given by Domingo and
Watanabe [4].

There are other approaches similar to MAdaBoost that
make boosting more robust to class-label noise. For example,
FilterBoost [10] optimises the log loss function, leading to
a weight update rule which caps the weight upper bound of
a datapoint to 1 using a smooth function. BrownBoost [2],
developed for binary classification, is an improvement on
AdaBoost that optimises a non-convex loss functionmaking it
robust to class-label noise. Also, BrownBoost ‘‘gives-up on’’
specific hard to learn datapoints thus overcoming the noise
sensitivity of AdaBoost. Instead of the exponential loss func-
tion used inAdaBoost, LogitBoost [11]minimises the logistic
loss function, and is less sensitive to noise than AdaBoost.
AdaBoostreg [12] introduces soft-margin classification by
regularising AdaBoost. SavageBoost [13] proposes a new
loss function which does not let the penalty increase as fast
as in AdaBoost.

B. KALMAN FILTERS
The discrete Kalman filter is a mathematical framework to
estimate an unobservable state of a linear stochastic discrete
time controlled process through noisy measurements [14].
Let there be a state, x, of a linear stochastic system to be
estimated, where x cannot be observed directly. The state of
the system is estimated in two ways. Firstly, given an estimate
of the state at time step (t − 1), x̂t−1, a linear model can be
used to make an a priori state estimate x̂−t . This is known as
the time update step, and the uncertainty associated with this
estimate is known as the process error. Secondly, an external
sensor can be used to get an estimate of the state through
a measurement, zt , of the system, which would similarly
involve a related uncertainty, the measurement error.

The Kalman filter combines these two noisy state esti-
mates, the a priori estimate, x̂−t , and the measurement, zt ,
optimally to generate an a posteriori state estimate, x̂t , which
potentially has a lower uncertainty than the previous two. This
is known as the measurement update step.
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The equations for the time update steps are as follows1

x̂−t = At x̂t−1 (4)

P−t = AtP t−1ATt + Qt (5)

were x̂−t is the a priori state estimate; P−t is the related
covariance matrix representing the uncertainty; x̂t−1 is the a
posteriori state estimate; P t is the posterior covariance matrix
representing the related uncertainty; At is the state transition
matrix establishing the linear relationship between time steps;
and Qt denotes the process noise covariance matrix, from
which the process noise is assumed to generate from.

The equations for the measurement update steps are as
follows1

x̂t = x̂−t + K t (zt − x̂
−

t ) (6)

K t = P−t (P
−
t + Rt )

−1 (7)

P t = (I − K t )P−t (8)

where zt is the measurement; Rt is the related measurement
noise covariance matrix indicating the uncertainty; K t is
called the Kalman gain, which optimally combines the a pri-
ori estimate and themeasurement; and I is the identitymatrix.

The Kalman filter iterates through the time update and the
measurement update steps. At iteration t , the a priori estimate
is used in the measurement update step to get an a posteriori
estimate, which is fed back to the time update in the next
iteration. Detailed descriptions of the Kalman filter can be
found in [5], [6], [14].

C. STATIC STATE ESTIMATION WITH KALMAN FILTERS
Depending on the specific state estimation problem, the time
update step, measurement, and other parameters of the
Kalman filter are specifically designed. Static state estimation
problems do not require a time update step as the state is
considered static. For example, consider that the altitude of
a steadily flying aircraft has to be estimated via an altimeter.
In this case in Eq. (5) At is an identity matrix, as the state
being estimated—the altitude of the aircraft—is constant (but
unknown). This makes the altitude estimate x̂t−1 directly
propagate to x̂−t . Also, it is assumed that the measurement
from the altimeter and the related error is known. In this case
the measurement update step continually combines the noisy
measurements. Therefore, at any iteration t the a posteriori
estimate of the altitude can be thought as a combination of
the noisy altimeter outputs, in other words, an ensemble of
the noisy altimeter outputs.

A very few works in the literature have utilised the sensor
fusion properties of the Kalman filter to combine classifier
models or apply it on a similar domain, which is not a
direct application of time-series problems. In such domains,
Kalman filters have been previously used in data clustering
[15] and in non-convex metaheuristic optimisation [16], [17].
The idea of training a classifier ensemble using a Kalman
filter was first presented by Pakrashi and Mac Namee [18].

1Not considering control input and space transformation matrix.

This approach considers the ensemble model being trained
as a state to be estimated and each component classifier as a
measurement of this state, with the related misclassification
error as the measurement noise. The convergence properties
of [18] was shown in [19] and an improvement was also
proposed. KalmanTune, however, is a much simpler approach
that is applied as a tuning step after an ensemble model
has been trained using a boosting algorithm. The following
section will describe how tuning an ensemble model can be
framed as a static state estimation problem that can be solved
using a Kalman filter.

III. THE KalmanTune METHOD
Boosting algorithms, such as AdaBoost, train multiple com-
ponent classifiers, h0, h1, . . . , hT , using datasets sampled
from an overall training dataset. The samples are governed
by weights in a sampling distribution which is adjusted so
that datapoints mislabelled by classifiers trained in the earlier
iterations of the process are more likely to be included in
training datasets for classifiers trained in the later iterations.
When class-label noise exists in a training dataset the mis-
labelled datapoints are likely to receive large weights in the
sampling distribution as they are likely to be misclassified at
multiple iterations in the boosting process. This can result in
component classifiers fixated on the mislabelled examples in
the training set at the expense of low generalisation error. The
KalmanTune method exploits the sensor fusion property of
the Kalman filter to enhance the generalisation performance
of ensemble classifiers trained using boosting, especially
when these ensembles are trained using datasets containing
noisy class-labels.

Framing a problem as one of static state estimation per-
formed using a Kalman filter requires (1) the definition of
the state being estimated, (2) a sequence of measurements
that will be used to estimate the state, and (3) an uncertainty
associated with each of these measurements. In KalmanTune
these components are defined as follows:

1) the state to be estimated is the final ensemble classifier;
2) the sequence of measurements is the sequence of mod-

els created during the boosting process, where the mea-
surement at iteration t is zt =

∑t
i=1 αtht (x);

3) the misclassification error recorded by the ensemble
model at iteration t on the training dataset is taken as
the uncertainty of the measurement at iteration t .

The application of the Kalman filter results in a set of Kalman
gain values which are used to re-weighting the outputs of
the component classifiers in an ensemble model. Eq. (6)
decides how much of the difference between the present
a priori estimate and themeasurement should be incorporated
to get the a posteriori estimate, through the Kalman gain.
The Kalman gain essentially performs a weighted average,
but this weight is decided based on the uncertainties of the
time update step and the measurement process as in Eq. (7).
If the uncertainty related to the a priori stage is less than
the measurement uncertainty, then Kalman gain is lower,
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therefore weighing the measurement less. If the measurement
has a lower uncertainty, then it is weighted more.

In KalmanTune the state to be estimated is the ensemble
model itself. The state of a typical Kalman filter is represented
as a numerical scalar or vector and so a state representation
to capture an ensemble model is required. In KalmanTune a
state estimates an ensemble model which is represented as the
set of prediction scores given by that model to each datapoint
in the training dataset. This is illustrated in Table 1.

TABLE 1. Intermediate representation of a state for KalmanTune.
A trained model is represented using the prediction scores of a given set
of datapoints. This representation is used in y(a)

t and y(k)
t in Eq. (9) and

Eq. (12).

Following the outline of the Kalman filter given in
Section II-B the update steps for KalmanTune are:2

ŷ(a)t =
t∑
j=1

αjhj(x) (9)

rt =
1
|D|

∑
x∈D

1(class(x) 6= class(ŷ(a)t )) (10)

kt =
pt

(pt + rt )
(11)

ŷ(k)t+1 = ŷ(k)t + kt (ŷ
(a)
t − ŷ

(k)
t ) (12)

pt+1 = (1− kt )pt (13)

pt+1 = max{0,min{1, pt+1 + µ}} (14)

Eq. (12) corresponds to Eq. (6), where ŷ(k)t is the inter-
mediate representation of the estimated state by the Kalman
filter, and ŷ(a)t is the intermediate representation of the tth
boosting ensemble step output, the measurement, as shown
in Eq. (9). Eq. (11) corresponds to Eq (7). rt in Eq. (10) is set
as the misclassification rate of Ht . A fixed amount of process
noise µ is included in Eq. (14) to stop the Kalman filter
from converging too fast. In Eq. (14) µ is a very small real
value sampled from a uniform distribution. The combination
of min and max operation is included such that after adding
the value µ, the expression pt+1 + µ does not drop below 0
or exceed 1.

Note that, as the KalmanTune is applied to an already
learned boosting classifier model, threfore its performance
will depend on how those models perform. The target
of KalmanTune is to stop sudden changes in adjustments
in boosting methods. Therefore as the iterations proceed,
the effects of the measurements becomes much lesser if

2The lower case symbols in the equations indicate scalars which corre-
spond to the uppercase symbols used in the more generic outline given in
Section II-B.

the underlying booster starts converging. Therefore as more
components are added, in this case KalmanTune does not
change much. But in the noisy class-label cases, if at a later
iteration the underlying booster algorithm makes a sudden
change because of class label noise, then KalmanTune will
stop this big (and unwanted) changed to be incorporated into
the final model.

Algorithm 1 formally defines the KalmanTune process.
The ensemble model at step t (Eq. (9)) is used as the mea-
surement and no feedback goes to the boosting algorithm.
Therefore, the proposedmethod can be used as a post-training
tuning step applied after an ensemble model has been trained
using a boosting algorithm. An illustration of KalmanTune
training is provided in Figure 1, which shows the interaction
of the Kalman filter and the boosting algorithm.

Algorithm 1 KalmanTune Training
1: procedure train(D, {ht , αt |∀1≤t≤T }, µ, T )
2: p1 = 1, t = 1
3: for t ≤ T do
4: ŷ(a)t =

∑t
j=1 αjhj(x)∀x∈D FMeasurement

5: rt =
1
|D|

∑
x∈D

1(class(x) 6= class(ŷ(a)t ))

6: kt =
pt

(pt+rt )
F Kalman gain

7: pt+1 = (1− kt )pt
8: pt+1 = max{0,min{1, pt+1 + µ}}
9: end for
10: return ({ht , αt , kt |∀1≤t≤T })
11: end procedure

The objective of the training process is to compute the
Kalman gains which can used (following Eq. (12)) to make
predictions using the ensemble applied to query datapoints.
Algorithm 2 shows the prediction algorithm, which is much
simpler than the training algorithm. KalmanTune makes pre-
dictions based on the trained boosting model as well as the
Kalman gains from the training step. At every iteration it
first gets the measurement in line 4, and then it uses kt ,
the Kalman gain computed during training, to combine the
measurement. Finally, it returns the class prediction of the
given dataset. In this case in line 5 is the KalmanTune esti-
mate. The KalmanTune estimate ŷ(k)T is expected to be more
noise robust than ŷ(a)T .

As previously mentioned, KalmanTune can be used with
any boosting algorithm. KalmanTune should improve the on
the performance of the bare boosting algorithm, especially
when the base algorithm is sensitive to class-label noise. The
next section describes an experiment that evaluates the impact
of post-training tuning using KalmanTune on ensemble mod-
els trained using the AdaBoost and MAdaBoost boosting
algorithms.

IV. EXPERIMENT
To asses the effectiveness of KalmanTune at improving the
performance of boosted ensemble models, an evaluation
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FIGURE 1. An illustration of KalmanTune, showing the interaction of the Kalman filter and
boosting.

Algorithm 2 KalmanTune Prediction
1: procedure predict(x, {ht , αt , kt |∀1≤t≤T },T )
2: ŷ(k)1 = [0], t = 1
3: for t ≤ T do
4: ŷ(a)t =

∑t
j=1 αjhj(x) FMeasurement

5: ŷ(k)t+1 = ŷ(k)t + kt (ŷ
(a)
t − ŷ

(k)
t ) F KF Update

6: end for
7: return (ŷ(k)T )
8: end procedure

experiment was performed using 34 well-known multi-class
datasets from the UCI machine learning repository [20].
The main objective of the experiment to understand if the
KalmanTune stage can improve the noise robustness of the
given trained ensemble models. The used datasets are listed
in Table 2. For each dataset, 4 new modified versions of the
original (0% noise) were induced synthetically containing
different levels of class-label noise: 5%, 10%, 15% and 20%.
To generate noisy class-labels, a fraction of the datapoints
were randomly selected and their labels were switched to a
randomly selected classes (both from a uniform distribution).
This helps control the fraction of class-labels which are incor-
rectly assigned. The reason for simulating the random noise
in the class assignment was to simulate real life mislabelling
of dataset. For example, during data collection and manual
labelling many datapoints can be mislabelled. Note that the
noise is induced only in the class assignments and not the
input space.

In the experiment ensemble models were first trained using
AdaBoost [1] and MAdaBoost [4]. The KalmanTune tun-
ing process was then applied to each ensemble model and
a new set of predictions using the tuned ensemble were

TABLE 2. The datasets used in this paper.

generated and evaluated. Note that as KalmanTune tuning is
applied after training a model there was no need to retrain the
ensembles before applying KalmanTune tuning. AdaBoost
was selected because it is sensitive to class-label noise and
MAdaBoost was selected because it was designed specifi-
cally to be robust to class-label noise. This selection would
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allow evaluation of the ability of KalmanTune to improve
both a noise-sensitive and noise-robust boosting method.
In the results that follow KalmanTune-A refers to an ensem-
ble trained usingAdaBoost and tuned usingKalmanTune, and
KalmanTune-M refers to a model trained using MAdaBoost
and tuned using KalmanTune. For all datasets ensemble mod-
els are also trained using Bagging [21] so that the perfor-
mance of these models, which are known to be robust to
class-label noise [3], can be used as a baseline against which
to compare the performance of the base boosted ensembles
and their tuned versions.

For all experiments a 20 times 4-folds cross validation was
performed using each algorithm, on each datatset, for each
level of class-label noise. The performance measure used
throughout is macro-averaged F-Score [22] as some datasets
have very heavily imbalanced class label distributions. For
KalmanTune the hyperparameter µ = u/10−4, where u
is sampled from standard normal distribution. All the algo-
rithms used 100 ensemble components where each compo-
nent classifier was a CART [22] model.

V. RESULTS
The objective of the experiment is to demonstrate the effec-
tiveness of the KalmanTune step after it is applied on boost-
ing models. In Secton V-A, AdaBoost, which is sensitive to
class label noise, will be compared with the performance
of KalmanTune-A which improves the model learned by
AdaBoost. Next in Section V-B, MAdaBoost, which is robust
to class label noise, will be compared with KalmanTune-M
which improves the model learned by MAdaBoost. Finally,
an overall view will be given in Section V-C.

TABLE 3. Each row indicates the average rank of KalmanTune-A and
AdaBoost, the p-values of two-tailed Wilcoxon’s signed rank sum tests,
and the win/lose/tie ratio of KalmanTune-A against AdaBoost for a
specific noise level. Different significance thresholds are indicated as
*:α = 0.1, **:α = 0.05, ***:α = 0.01.

A. AdaBoost & KalmanTune-A
To understand performance of the KalmanTune step when
applied on a trained AdaBoost model, KalmanTune-A and
AdaBoost model performances are compared. A summary
of the results of all the 5 levels of class-label noise over 34
datasets is shown in Table 3. This table is derived fromTable 5
to 9 in the Appendix. The higher average rank achieved
by KalmanTune-A and the win/lose/tie count shows that
KalmanTune tuning has improved the generalisation error of
the base AdaBoost ensemble.

As the noise level increases, KalmanTune-A achieves
higher average ranks. Note that the number of ties at 0% noise

level is very high. This is because when no class-label noise is
present in the dataset KalmanTune tuning performminimal or
no modifications to the existing base ensemble model. As the
noise level increases, the number of ties decreases drastically
and the number of wins for KalmanTune-A increases as the
aggregation of the base ensemble model is reweighted to take
account of perceived class-label noise.

FIGURE 2. F-Score change (crossvalidated) with respect to class-label
noise for car_eval, yeast, german and zoo datasets. The y-axis is scaled to
highlight the differences of the compared algorithms KalmanTune-A and
AdaBoost.

To illustrate the impact of adding class-label noise
to the test datasets, and to demonstrate the ability of
KalmanTune tuning to alleviate this, Figure 2 shows the
change in macro-averaged F-Score for the AdaBoost and
KalmanTune-A models as the level of induced class-label
noise increases for the car_eval, yeast, german and zoo
datasets (similar patterns are observed in the 30 other
datasets). It is clear that, although class-label noise always
impacts on model performance, KalmanTune tuning reduces
this impact in most cases and rarely leads to a more poorly
performing model.

A two tailedWilcoxon’s signed rank sum test following the
recommendations of [23] was performed to further evaluate
the difference in performance between KalmanTune-A and
AdaBoost. The p-values arising from this test are shown
in Table 3. This shows that with 10%, 15% and 20%
class-label noise, the performance of the KalmanTune-A
model was significantly better than the base AdaBoost
ensemble model, with significance level of α = 0.01, and
also at 5% class noise level with α = 0.1. Although the null
hypothesis could not be rejected in the 0% class noise case,
KalmanTune-Awas able to achieve a better average rank than
AdaBoost.
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TABLE 4. Each row indicates the average rank of KalmanTune-M and
MAdaBoost, the p-values of two-tailed Wilcoxon’s signed rank sum tests,
and the win/lose/tie ratio of KalmanTune-M against MAdaBoost for a
specific noise level. Different significance thresholds are indicated as
*:α = 0.1, **:α = 0.05, ***:α = 0.01.

B. MAdaBoost & KalmanTune-M
A similar comparison was performed between the perfor-
mance of the KalmanTune-M and MAdaBoost models to
understand the improvements made by the KalmanTune step
when applied on a trained MAdaBoost model. The summary
of the results on all the 5 levels of class-label noise over
the 34 datasets is shown in Table 4. This table is derived
from Table 10 to 14 in Appendix. The change in average
ranks for KalmanTune-M and the win/lose/tie count shows
that at lower noise level, overall, KalmanTune-M has per-
formed better thanMAdaBoost. Figure 3 shows the change in
macro-averaged F-Score with increasing induced class-label
noise for KalmanTune-M and MAdaBoost for the car_eval,
yeast, german and zoo datasets (again, similar patterns are
observed in the 30 other datasets).

FIGURE 3. F-Score change (crossvalidated) with respect to class-label
noise for car_eval, yeast, german and zoo datasets. The y-axis is scaled to
highlight the differences of the compared algorithms KalmanTune-M and
MAdaBoost.

Although KalmanTune-M has always attains a better over-
all rank, the two tailed Wilcoxon’s signed rank sum test

FIGURE 4. Overall average rank change across different noise level. The
y-axis is inverted to emphasise that lower values are better.

TABLE 5. AdaBoost and KalmanTune-A F-Scores with 0% label noise.

indicate that the significant differences have reduced as the
noise level increases. In this case, KalmanTune-M was sig-
nificantly better than MAdaBoost at 0%, 5% and 15% noise
levels with α = 0.01 and 10% noise level with α = 0.1.
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TABLE 6. AdaBoost and KalmanTune-A F-Scores with 5% label noise.

MAdaBoost is a noise robust improvement of AdaBoost,
and was previously shown to be reealtively robust to
class-label noise [9]. Despite MAdaBoost’s noise resistance,
KalmanTune-M was still able to improve the overall results.
Although in this case, unlike the previous case, the dif-
ferences between MAdaBoost and KalmanTune-M slowly
reduces as the noise level increases.

C. OVERALL PERFORMANCE
The performance of the different models (trained using
AdaBoost, KalmanTune-A, MAdaBoost, KalmanTune-B,
and Bagging) on each of the 34 datasets used and the 4 noisy
versions of each dataset was measured using macro-averaged
F-score and ranked. Average ranks were calculated for
each different level of induced class-label noise. Figure 4
shows how the average ranks changed as the level of
class-label noise increased. In this comparison it can be seen
that MAdaBoost is more robust to class-label noise than
AdaBoost. Also, it is clear that in each case using Kalman-
Tune improves performance: KalmanTune-A out-performs
AdaBoost and KalmanTune-M outperforms MAdaBoost.
Overall KalmanTune-M was able to maintain the best aver-
age ranks except at the 0% class-label noise level. Bagging,
as expected, started at the lowest rank, emphasising the use-
fulness of boosting methods, but improved in rank as the

TABLE 7. AdaBoost and KalmanTune-A F-Scores with 10% label noise.

level of class-label noise increased (it had equal top rank with
KalmanTune-M at the 20% noise level).

These results show that overall, the KalmanTune tuning
approach improves the performance of the base boosting
models and makes them more robust to class-label noise.

VI. CONCLUSION
This work presented a new approach, KalmanTune, which
tunes already trained boosted ensemble models to make them
more robust to class-label noise present in the data used
to train them. The KalmanTune approach is motivated by
the fact that, although they can perform very well, boosting
algorithms are sensitive to class-label noise. KalmanTune
considers the final ensemble model as a static state to be
estimated; the boosted ensemble model at iteration t of the
boosting process as a measurement of this state; and the
classification error achieved by the model at iteration t as
the uncertainty of this measurement. KalmanTune uses a
Kalman filter to combine multiple such measurements. The
output of this process is a set of Kalman gain values which
can be used to aggregate the results of the base models in
the ensemble in place of the weighting factors calculated
during the boosting process. The application of KalmanTune
reduces the impact of abrupt changes incorporated into the
ensemble during training. This abrupt changes may occur due
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TABLE 8. AdaBoost and KalmanTune-A F-Scores with 15% label noise.

TABLE 9. AdaBoost and KalmanTune-A F-Scores with 20% label noise.

to boosting algorithms attempting to fit a noisy class-label
dataset.

TABLE 10. MAdaBoost and KalmanTune-M F-Scores with 0% label noise.

TABLE 11. MAdaBoost and KalmanTune-M F-Scores with 5% label noise.

A large evaluation experiment was performed to demon-
strate the ability of KalmanTune tuning to improve
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TABLE 12. MAdaBoost and KalmanTune-M F-Scores with 10% label noise.

TABLE 13. MAdaBoost and KalmanTune-M F-Scores with 15% label noise.

the performance of ensemble models trained using the
AdaBoost and MAdaBoost algorithms. Class-label noise was

TABLE 14. MAdaBoost and KalmanTune-M F-Scores with 20% label noise.

synthetically induced into datasets to demonstrate the ability
of KalmanTune tuning to alleviate the impact of this. The
results of this experiment show that, on average, KalmanTune
tuning improves the performance of ensemble models trained
using both AdaBoost and MAdaBoost. For models trained
using AdaBoost, KalmanTune continued to improve perfor-
mance more and more, as the amount of induced class-label
noise was increased. Although it did lead to an improvement,
as the amount of class-label noise in the training dataset
increased, the impact of applying KalmanTune to models
trained using MAdaBoost became less significant. This is
evidence of the ability of MAdaBoost to handle some level
of class-label noise.

In the future, it would be interesting to study the effects of
the use of Kalman filter similarly on other ensembles. In some
cases the Kalman filter can converge too quickly. This paper
uses a trivial method, which can be made adaptive or fur-
ther improved in other ways. Also, it would be interesting
to explore the possibility of a linear time update step and
multiple measurements to build a better model. Further com-
parisons with other noise sensitive and noise robust methods,
like neural networks, other boosting methods, can be done
and how KalmanTune affects on them can be further studied.

APPENDIX
See Tables 5–14.
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