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ABSTRACT In this work, we study two classes of quasi-cyclic (QC) codes and examine how several
properties can be combined into the codes of these classes. We start with the class of QC codes generated
by diagonal generator polynomial matrices; a QC code in this class is a direct sum of cyclic codes. Then we
move on to the class of QC codes of index 2; various binary codes with good parameters are found in this
class. In each class, we describe the generator polynomial matrices of reversible codes, self-orthogonal codes,
and self-dual codes. Hence, we demonstrate how such properties can be merged in codes of these classes.
Particularly for QC codes of index 2, we prove a necessary and sufficient condition for the self-orthogonality
of reversible codes. Thenwe show that reversible QC codes of index 2 are self-dual under the same conditions
in which self-dual codes are reversible. We clarify that self-orthogonal reversible QC codes of index 2 over
Fq exist for even and odd q, however self-dual reversible codes exist only for even q. Theoretical results
are reinforced by several numerical examples. Computer search is used to present some self-dual reversible
QC codes of index 2 that have the best known parameters as linear codes. Finally, we highlight the class of
1-generator binary QC codes of index 2 by exploring many self-dual reversible codes that achieve the upper
bound on the minimum distance for their parameters.

INDEX TERMS 1-generator quasi-cyclic code, best known parameters, generator polynomial matrix,
self-orthogonal code.

I. INTRODUCTION
Cyclic codes over finite fields are easy to construct, encode
and decode. Cyclic codes are naturally extended to the larger
class of quasi-cyclic (QC) codes. A linear code is said to
be QC of index ` if it is invariant under cyclic shifts of
` coordinates, where ` is a positive integer that meets this
property. Linear codes achieving the best known parame-
ters have been shown to be sometimes quasi-cyclic [1]–[3].
Various algebraic structures are used to represent QC codes.
According to [4], QC codes are a subclass of generalized
quasi-cyclic codes because their cyclic intervals are equal.
Therefore, a QC codeQ over Fq of index ` is identified by its
unique reduced generator polynomial matrix G of size `× `.
In this structure, QC codes correspond to Fq[x]-submodules
of
(
Fq[x]

)`. Several classes of QC codes over Fq of length
m` have been considered in literature. For example, the class
of QC codes generated by unfolding cyclic codes of length
m over Fq` [5], [6], and the class of QC codes generated by
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diagonal generator polynomial matrices, denoted by

G = diag[g1,1, g2,2, . . . , g`,`], gi,i ∈ Fq[x] for 1 ≤ i ≤ `.

In the latter case, the QC code is a direct sum of ` cyclic codes
Ci over Fq of length m and generator polynomials gi,i.
A code is said to be reversible if it is invariant under revers-

ing the coordinates of its codewords. Recently, reversible
codes have their applications in data storage systems, e.g.,
constructing locally repairable codes [7] and designing DNA
codes [8]–[11]. Massey introduced reversible cyclic codes
in [12], as he proved that the cyclic code generated by
g(x) ∈ Fq[x] is reversible if and only if g(x) is self-reciprocal,
i.e., g∗(x) = αg(x) for some α ∈ Fq − {0}, where f ∗(x) =
xdeg(f (x))f

(
1
x

)
is the reciprocal polynomial of f (x). On the

other hand, a code is self-orthogonal (respectively, self-dual)
if it is contained in (respectively, equal to) its dual code.
Researchers were interested in achieving these properties in
error correcting codes because some classical open prob-
lems relate to finding such codes with good parameters,
e.g., [13], [14].
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In this article, we investigate the QC codes in two specific
classes in which multiple properties are merged. The first
class is the class of QC codes generated by diagonal generator
polynomial matrices. In this class, Proposition 1 provides
an equivalent condition for reversibility and an equivalent
condition for self-orthogonality. Hence, the corresponding
condition for self-duality is deduced in Corollary 1. Some
examples are also used to illustrate how self-duality and
reversibility can be combined for QC codes with diagonal
generator polynomial matrix G. Thereafter, we consider the
class of QC codes of index ` = 2. In this class, we prove
conditions equivalent to reversibility, self-orthogonality, and
self-duality, separately. Although [13, Theorem 1] offers a
sufficient condition for reversibility of 1-generator QC codes,
our conditions are necessary and sufficient, do not assume
m coprime to q, and are not limited to 1-generator codes.
Once reversible QC codes of index 2 are specified, we estab-
lish equivalent conditions for appending self-orthogonality
and self-duality to these codes. For QC codes of index 2,
Corollaries 3 and 4 show that self-dual codes are reversible
under the same conditions in which reversible codes are self-
dual. Specifically, these conditions are g1,1g2,2 = xm +
1 and q is even. In fact, this result generalizes that of
[13, Corollary 4]. Although Examples 5 and 6 show that
self-orthogonal reversible QC codes over Fq of index 2 exist
for odd and even q, we demonstrate that self-dual reversible
QC codes can only exist for even q. This result was partially
confirmed in [13, Section 5.3] for 1-generator QC codes of
index 2 and gcd(m, q) = 1.
A linear code is called optimal if it meets the best known

parameters. That is, a linear code that achieves the upper
bound on the minimum distance provided by [15] is an opti-
mal code. As an application, we use computer search to exam-
ine the ability to append optimality to self-dual reversible QC
codes of index 2. We show that this is possible by introducing
some examples of optimal self-dual reversible QC codes of
various code lengths and dimensions. Finally, we consider the
class of binary 1-generator QC codes of index 2. In literature,
computer search is used to discover new good QC codes in
different classes, e.g., [16]. By computer search, we present
several binary optimal self-dual reversible QC codes in the
class of index 2.

The rest of this article is organized as follows. Some pre-
liminaries are presented in Section II. In Section III, we inves-
tigate the reversibility, self-orthogonality, and self-duality of
QC codes with diagonal generator polynomial matrix G.
These properties for the class of QC codes of index ` = 2
are considered in Section IV. Section V considers combining
different properties in this class and presents many numerical
examples. We conclude our results in Section VI.

II. PRELIMINARIES
For a prime power q, the finite field of q elements is denoted
by Fq. We refer to QC codes, cyclic codes, and codewords
by Q, C, and c, respectively. The dimension of the QC
code Q and its minimum Hamming distance are denoted

by k and dmin, respectively. A cyclic code over Fq of length n
is a linear subspace ofFnq that is invariant under cyclic shifts of
codewords, whereas a QC code over Fq of length n and index
` is a linear subspace of Fnq invariant under cyclic shifts of
codewords by ` coordinates. The index ` of a QC code divides
the code length, i.e., n = m` for some positive integer m.
A codeword c ∈ Q given by

c=
(
c1,0, . . . , c`,0, c1,1, . . . , c`,1, . . . , c1,m−1, . . . , c`,m−1

)
,

(1)

where ci,j ∈ Fq for 1 ≤ i ≤ ` and 0 ≤ j ≤ m − 1,
can be divided to ` subwords ci each of length m. Namely,
c = (c1, c2, . . . , c`), where ci = (ci,0, ci,1, . . . , ci,m−1).
Similar to cyclic codes, codewords of QC codes can be

represented by polynomials. The codeword given by (1) is
represented by the polynomial vector

c = (c1(x), c2(x), . . . , c`(x)) ∈
(
Fq[x]

)`
,

where ci(x) =
∑m−1

j=0 ci,jx j ∈ Fq[x] for 1 ≤ i ≤ `. In this
representation, the cyclic shift of a codeword by ` coordinates
corresponds to multiplication by x followed by a reduction
modulo xm−1. Consequently, the QC codes over Fq of index
` and length m` are in one-to-one correspondence with the
Fq[x]-submodules of

(
Fq[x]

)` that contain (xm−1) (Fq[x])`.
A generator polynomial matrix of Q is a polynomial matrix
whose rows generate Q as an Fq[x]-module. Therefore, if G
is a generator polynomial matrix of some QC code, then there
is an `× ` polynomial matrix A such that

AG = diag[xm − 1, . . . , xm − 1], (2)

where diag[xm − 1, . . . , xm − 1] is the `× ` diagonal matrix
whose diagonal entries are xm−1. Elementary row operations
over Fq[x] reduce a generator polynomial matrix to its unique
reduced form [4], which we refer to as G =

[
gi,j
]
. The

reduced generator polynomial matrix G is the ` × ` upper
triangular matrix

G =


g1,1 g1,2 g1,3 · · · g1,`
0 g2,2 g2,3 · · · g2,`
0 0 g3,3 · · · g3,`
...

...
. . .

. . .
...

0 0 · · · 0 g`,`

 (3)

such that:
1) For each 1 ≤ i ≤ `, gi,i is a monic divisor of xm − 1

and has a minimum degree among all codewords of the
form (0, . . . , 0, ci(x), . . . , c`(x)) with ci(x) 6= 0.

2) For 1 ≤ i 6= j ≤ `, we have deg(gi,j) < deg(gj,j).
In [4], the dimension of Q is given by

k =
∑̀
i=1

(
m− deg(gi,i)

)
. (4)

In addition, c is a codeword of Q if and only if there exist
ai(x) ∈ Fq[x] for 1 ≤ i ≤ ` such that

c = [a1(x) a2(x) · · · a`(x)]G. (5)
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From (5), one concludes that G is diagonal if and only ifQ is
a direct sum of ` cyclic codes Ci of lengths m. That is

G = diag[g1,1, g2,2, . . . , g`,`] ⇐⇒ Q =
⊕̀
i=1

Ci.

The QC code Q is also identified by its unique reduced
parity check polynomial matrix H [4]. The relation between
H and the polynomial matrix A that satisfies (2) is shown in
[4, Theorem 1]. Hereinafter,Q refers to a QC code over Fq of
index `, length n = m`, dimension k , minimum distance dmin,
reduced generator polynomial matrix G, and reduced parity
check polynomial matrixH . We denote the dual code ofQ by
Q⊥. In fact,Q⊥ is a QC code of lengthm`, dimensionm`−k ,
and a generator polynomial matrix H . The code Q is self-
orthogonal, i.e., Q ⊆ Q⊥, if and only if G = MH for some
polynomial matrixM . WhereasQ is self-dual, i.e.,Q = Q⊥,
if and only ifG = MH for an invertible polynomial matrixM .
For a codeword c ∈ Q as given by (1), we refer to its reverse
by r. That is,

r=
(
c`,m−1,. . ., c1,m−1, c`,m−2,. . ., c1,m−2,. . ., c`,0,. . ., c1,0

)
.

We callQ reversible if r ∈ Q for every c ∈ Q. In polynomial
representation r = (r1(x), r2(x), . . . , r`−1(x), r`(x)), where
ri(x) for 1 ≤ i ≤ ` is given by

ri(x) =
m−1∑
j=0

c`−i+1,jxm−1−j = xm−1c`−i+1

(
1
x

)
∈Fq[x].

Hence, Q is a reversible code if and only if

r =
(
xm−1c`

(
1
x

)
, xm−1c`−1

(
1
x

)
, . . . , xm−1c1

(
1
x

))
(6)

is in Q for every c = (c1(x), . . . , c`−1(x), c`(x)) ∈ Q.

III. REVERSIBILITY AND SELF-ORTHOGONALITY FOR QC
CODES GENERATED BY DIAGONAL G
In this section, we consider the class of QC codes generated
by diagonal generator polynomial matrices of the form

G = diag[g1,1, g2,2, . . . , g`,`]. (7)

We present conditions onG that characterize the reversibility,
self-orthogonality, and self-duality ofQ. Thenwe fulfill these
conditions in some numerical examples.
Proposition 1: Let Q be a QC code over Fq of index `,

length m`, and generator polynomial matrix

G = diag[g1,1, g2,2, . . . , g`,`],

where gi,i ∈ Fq[x] divides xm − 1 for 1 ≤ i ≤ `.
1) The codeQ is a reversible code if and only if there exist

αi ∈ Fq − {0} such that

g∗i,i = αig`−i+1,`−i+1 for every 1 ≤ i ≤ `.

2) The code Q is a self-orthogonal code if and only if

gi,ig∗i,i ≡ 0 (mod xm − 1) for every 1 ≤ i ≤ `.

Proof: We start with the reversibility conditions.
Assume g∗i,i = αig`−i+1,`−i+1 for every 1 ≤ i ≤ `.
Then deg(g`−i+1,`−i+1) = deg(g∗i,i) = deg(gi,i), which we
denote by di. For any c ∈ Q, (5) shows that there exist
a1(x), . . . , a`(x) ∈ Fq[x] such that

c =
(
a1(x)g1,1, a2(x)g2,2, . . . , a`(x)g`,`

)
.

For 1 ≤ i ≤ `, let

bi(x) = α`−i+1xm−1−dia`−i+1

(
1
x

)
.

Then bi(x) ∈ Fq[x] because deg(a`−i+1) ≤ m − 1 − di.
Consider the codeword r ∈ Q given by

r =
(
b1(x)g1,1, b2(x)g2,2, . . . , b`(x)g`

)
=

(
xm−1−d`a`

(
1
x

)
g∗`,`, . . . , x

m−1−d1a1

(
1
x

)
g∗1,1

)
=

(
xm−1a`

(
1
x

)
g`,`

(
1
x

)
, . . . , xm−1a1

(
1
x

)
g1,1

(
1
x

))
.

From (6), r is the reverse of c. Hence, Q is reversible.
Conversely, assume Q is reversible. For 1 ≤ i ≤ `, let

ci ∈ Q be the codeword corresponding to the ith row of G,
i.e., coordinates of ci are all zero except the ith coordinate
is gi,i(x). From (6), the reverse ri of ci has all zero coordi-
nates except the (` − i + 1)th coordinate is xm−1gi,i

(
1
x

)
=

xm−di−1g∗i,i(x). Since ri ∈ Q, g`−i+1,`−i+1(x)|xm−di−1g∗i,i(x).
That is,

g`−i+1,`−i+1(x)|g∗i,i(x).

Replacing i by `− i+ 1, we get gi,i(x)|g∗`−i+1,`−i+1(x). That
is,

g∗i,i(x)|g`−i+1,`−i+1(x).

Hence g∗i,i(x) = αig`−i+1,`−i+1(x) for some αi ∈ Fq − {0}.
Now we prove the self-orthogonality conditions. Since G

is a diagonal matrix, Q =
⊕`

i=1 Ci for some cyclic codes Ci
of length m over Fq. We denote the Euclidean inner product
for the codewords ci, c′i ∈ Ci (respectively, c, c′ ∈ Q) by
〈ci, c′i〉 (respectively, 〈c, c

′
〉). If c = (c1, . . . , c`) and c′ =

(c′1, . . . , c
′

`), where ci, c
′
i ∈ Ci, then

〈c, c′〉 =
∑̀
i=1

〈ci, c′i〉.

We show that Q is self-orthogonal if and only if Ci is
self-orthogonal for every 1 ≤ i ≤ `. Assume that Q is
self-orthogonal. Since Q =

⊕`
i=1 Ci, the code Q contains

an isomorphic copy of Ci for each 1 ≤ i ≤ `. Then, for
every codeword ci ∈ Ci, there exists a codeword inQ with all
zero components except the ith component is ci. Therefore,
the self-orthogonality of Q implies the self-orthogonality
of Ci. Conversely, assume that Ci is self-orthogonal for every
1 ≤ i ≤ `. Then Q is self-orthogonal because

〈c, c′〉 =
∑̀
i=1

〈ci, c′i〉 =
∑̀
i=1

0 = 0, ∀c, c′ ∈ Q.
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The result follows from the fact that the cyclic code Ci is
self-orthogonal if and only if gi,ig∗i,i ≡ 0 (mod xm − 1).

The reversibility condition in Proposition 1 generalizes the
well-known result [12]. In fact, a cyclic code with a generator
polynomial g(x) is a QC code of index ` = 1 andG = [g(x)].
If we consider Proposition 1 in the particular case of cyclic
codes, it is required that g(x) = αg∗(x) for some α ∈ Fq−{0}
as a condition equivalent to reversibility.
Corollary 1: LetQ be aQC code overFq of index `, length

m`, and generator polynomial matrix

G = diag[g1,1, g2,2, . . . , g`,`],

where gi,i ∈ Fq[x] divides xm − 1 for 1 ≤ i ≤ `. The code Q
is a self-dual code if and only if the following conditions are
met:

1) q and m are even.
2) There exist βi ∈ Fq − {0} such that

gi,ig∗i,i = βi
(
xm − 1

)
, for every 1 ≤ i ≤ `

Proof: Similar to the proof of Proposition 1, Q is
self-dual if and only if Ci is self-dual for every 1 ≤ i ≤ `.
From [17, Proposition 1] and [17, Theorem 1], the proposed
conditions are equivalent to the self-duality of each cyclic
code Ci.
Two conditions of reversibility and self-duality for QC

codes with diagonal generator polynomial matrix G are gen-
erally independent. That is, we can construct a self-dual QC
code which is not reversible, a reversible one which is not
self-dual, and a reversible self-dual one. We illustrate these
different cases with the following example.
Example 1: We consider QC codes over F4 of n = 36, k =

18, ` = 2, and generated by diagonal generator polynomial
matrices. The factorization of x18+1 in F4[x] into irreducible
factors is

(x + 1)2(x + ω)2(x + ω2)2(x3 + ω)2(x3 + ω2)2,

where ω is a zero to x2 + x + 1 ∈ F2[x]. Let

G1 = diag[(x + ω)2 g, (x + ω2)2 g]

G2 = diag[(x + 1)(x + ω)g, (x + 1)(x + ω2)g∗]

G3 = diag[(x + ω)2 g, (x + ω2)2 g∗],

where g = (x+1)(x3+ω)2. By Proposition 1 and Corollary 1,
G1 generates a self-dual QC code which is not reversible, G2
generates a reversible QC code which is not self-dual, andG3
generates a reversible self-dual QC code.

IV. REVERSIBILITY AND SELF-ORTHOGONALITY FOR QC
CODES OF INDEX 2
In this section, we focus on the class of QC codes over Fq of
length 2m and index ` = 2. We separately prove necessary
and sufficient conditions for reversibility, self-orthogonality,
and self-duality of QC codes in this class.
Theorem 1: Let Q be a QC code over Fq of length 2m,

index 2, and reduced generator polynomial matrix

G =
[
g1,1 g1,2
0 g2,2

]
, (8)

where g1,1 and g2,2 divide xm − 1. Let

µ=gcd(g1,2, g2,2), f1=
g1,2
µ
, f2=

g2,2
µ
, and h=

xm − 1
g2,2

.

Then,

1) The code Q is reversible if and only if the following
conditions are met:

a) g1,1 = αµ∗ for some α ∈ Fq − {0}.
b) f2 is a self-reciprocal polynomial.
c) f2 divides

(
xm−deg(f1)f1 f ∗1 − α

2
)
.

2) The codeQ is self-orthogonal if and only if the follow-
ing conditions are met:

a) µ = βh∗ for some β ∈ Fq[x]− {0}.
b) g1,1g∗1,1 = γµh for some γ ∈ Fq[x]− {0}.
c) f2 divides

(
β∗xm+d11−d12 f1 f ∗1 + γ

)
, where dij =

deg(gi,j) for 1 ≤ i, j ≤ 2.
Proof: By assumption, G can be written as

G =
[
g1,1 µf1
0 µf2

]
,

where g1,1, µ, f2 are factors of xm− 1. From [4, Theorem 1],
a parity check polynomial matrix for Q is

H =
[

(xm − 1) /g∗1,1 0
−xm+d11−d12 f ∗1 µ

∗h∗/g∗1,1 h∗

]
. (9)

We start with the reversibility conditions. IfQ is reversible,
the reverses of the codewords

c1 = (g1,1, g1,2), c2 = (0, g2,2),

using (6), are the codewords

r1 = xm−1
(
g1,2

(1
x

)
, g1,1

(1
x

))
=

(
xm−d12−1µ∗f ∗1 , x

m−d11−1g∗1,1
)
,

r2 =
(
xm−1g2,2

(1
x

)
, 0
)
=

(
xm−d22−1µ∗f ∗2 , 0

)
.

Then, there exist a1(x), a2(x), a3(x), a4(x) ∈ Fq[x] such that

a1(x)g1,1 = xm−d12−1µ∗f ∗1 , (10)

a1(x)µf1 + a2(x)µf2 = xm−d11−1g∗1,1, (11)

a3(x)g1,1 = xm−d22−1µ∗f ∗2 , (12)

a3(x)µf1 + a4(x)µf2 = 0. (13)

From (10) and (12), g1,1|µ∗f ∗1 and g1,1|µ∗f ∗2 . Thus, g1,1|µ
∗

because f1 and f2 are coprime. Thus g1,1|µ∗. From (11),
µ|g∗1,1, hence µ

∗
|g1,1. Consequently, condition (1a) follows.

Substituting (12) in (13) with the use of condition (1a), we get

xm−d22−1f ∗2 f1 + αa4(x)f2 = 0.

Since f2 is coprime to xm−d22−1f1, f2|f ∗2 , i.e., f2 is
self-reciprocal polynomial. Substituting (10) in (11) with the
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use of condition (1a), we get αa2(x)f2 = α2 xm−d11−1 −
xm−d12−1f1 f ∗1 . Equivalently,

αxd11+1a2(x)f2 =
(
α2 xm − xm−d12+d11 f1 f ∗1

)
=

(
α2
(
xm−1

)
−
(
xm−deg(f1)f1 f ∗1 −α

2)) .
Condition (1c) follows because f2|(xm − 1).
Conversely, if conditions (1a), (1b), and (1c) are met, then,

there exist a1(x), a2(x), a3(x), a4(x) ∈ Fq[x] satisfying (10)
to (13). For any codeword c ∈ Q, there exist b1(x), b2(x) ∈
Fq[x] such that

c = (b1 g1,1, b1 g1,2 + b2 g2,2).

Let r be the codeword of Q given by

r =
((
a1(x)b1(xm−1)+ a3(x)b2(xm−1)

)
g1,1,(

a1(x)b1(xm−1)+ a3(x)b2(xm−1)
)
g1,2

+
(
a2(x)b1(xm−1)+ a4(x)b2(xm−1)

)
g2,2

)
.

Using (10) to (13) and reduction modulo xm − 1, we get

r ≡
(
xm−1b1

(
1
x

)
g1,2

(
1
x

)
+ xm−1b2

(
1
x

)
g2,2

(
1
x

)
,

xm−1b1

(
1
x

)
g1,1

(
1
x

))
∈ Q.

From (6), r is the reverse of c. Hence, Q is reversible.
Now we prove the self-orthogonality conditions. The code

Q is self-orthogonal if and only if G = MH for some poly-
nomial matrix M . Equivalently, there exist m1,m2,m3,m4 ∈

Fq[x] such that

m1
(
xm − 1

)
− m2xm+d11−d12 f ∗1 µ

∗h∗ = g1,1g∗1,1, (14)

m2h∗ = µf1, (15)

m3
(
xm − 1

)
− m4xm+d11−d12 f ∗1 µ

∗h∗ = 0, (16)

m4h∗ = µf2. (17)

If Q is self-orthogonal, then h∗|µ due to the coprimality
of f1 and f2, (15), and (17). Hence, condition (2a) follows.
Equation (14) reduces to

g1,1g∗1,1 = m1
(
xm − 1

)
− βf1 xm+d11−d12 f ∗1 µ

∗h∗

= m1
(
xm − 1

)
− xm+d11−d12 f1 f ∗1 µ

∗µ

= m1
(
xm − 1

)
− xm+d11−d12 f1 f ∗1 β

∗hµ

=

(
m1 f2 − β∗xm+d11−d12 f1 f ∗1

)
µh

= γµh,

where γ =
(
m1 f2 − β∗xm+d11−d12 f1 f ∗1

)
. That is, m1 f2 =

β∗xm+d11−d12 f1 f ∗1 + γ and condition (2c) follows.
Conversely, assume conditions (2a), (2b), and (2c) are

satisfied. Then G = MH for the polynomial matrix

M =
[ (
β∗xm+d11−d12 f1f ∗1 + γ

)
/f2 βf1

β∗xm+d11−d12 f ∗1 βf2

]
. (18)

Hence, Q is self-orthogonal.

Corollary 2: The QC codeQ is self-dual if and only if the
following conditions are met:

1) µ = βh∗ for some β ∈ Fq − {0}.
2) g1,1g∗1,1 = γµh for some γ ∈ Fq − {0}.
3) f2 divides

(
xm−deg(f1)f1 f ∗1 + γβ

−1
)
.

Proof: The codeQ is self-dual if and only if the polyno-
mial matrixM given by (18) is invertible. The determinant of
M is det(M ) = βγ . Then,M is invertible if and only if β, γ ∈
Fq − {0}. In addition, since deg(µ) = deg(h) = deg(g1,1),
m+ d11 − d12 = m− deg(f1).

For even and odd q, the following examples emphasize the
existence of reversible codes that are not self-dual and vice
versa.
Example 2: In F2[x], we have x6+ 1 = (x+ 1)2(x2+ x+

1)2. Let Q be the binary QC code of length 12, index ` = 2,
and reduced generator polynomial matrix

G =
[
(x + 1)2 x(x + 1)2

0 (x + 1)2(x2 + x + 1)

]
.

From Theorem 1, Q is reversible because
1) µ∗ = gcd(g1,2, g2,2)∗ = (x + 1)2 = g1,1, i.e., α = 1.
2) f2 = g2,2/µ = x2 + x + 1 is self-reciprocal.
3) f1 = g1,2/µ = x. Hence,

(
xm−deg(f1)f1 f ∗1 − α

2
)
=

x5(x)(1)+ 1 = x6 + 1 is divisible by f2.
From (4), although the dimension of Q is k = 6 = n/2, Q
is not self-dual because condition (1) of Corollary 2 is not
satisfied. In particular, h∗ = x2 + x + 1 6= µ.
Example 3: In F2[x], we have

x14 + 1 = (x + 1)2(x3 + x + 1)2(x3 + x2 + 1)2.

Let Q be the binary QC code of length 28, index 2, and
reduced generator polynomial matrix

G =
[
(x3+x+1)(x3+x2+1) x(x3+x+1)2

0 (x+1)2(x3+x+1)2

]
.

From Corollary 2, the code Q is self-dual because
1) µ = gcd(g1,2, g2,2) = (x3 + x + 1)2 = h∗, i.e., β = 1.
2) g1,1g∗1,1 = (x3+x+1)2(x3+x2+1)2 = µh, i.e., γ = 1.
3) f1 = g1,2/µ = x. Hence, f2 = (x + 1)2 divides(

xm−deg(f1)f1 f ∗1 + γβ
−1
)
= x14 + 1.

From Theorem 1, Q is not reversible because g1,1 6= µ∗.
Example 4: In F5[x], we have

x6 − 1 = (x + 1)(x + 4)(x2 + x + 1)(x2 + 4x + 1).

Let Q1 be the QC code over F5 of length 12, index 2, and
reduced generator polynomial matrix

G1 =

[
x + 4 4(x + 1)(x + 4)(x2 + x + 2)
0 (x + 4)(x2 + x + 1)(x2 + 4x + 1)

]
.

From Theorem 1, Q1 is reversible because
1) µ = (x + 4) and g1,1 = 4µ∗, i.e., α = 4.
2) f2 = (x2 + x + 1)(x2 + 4x + 1) is self-reciprocal.
3) f1 = 4(x + 1)(x2 + x + 2), hence f2 divides(

xm−deg(f1)f1 f ∗1 − α
2
)

= 2(x+2)(x+3)(x2+x+1)(x2+4x+1)(x3+x2+2).
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Although the dimension of Q1 is k = 6 = n/2, it is not
self-dual because condition (1) of Corollary 2 is not satisfied.
Let Q2 be the QC code over F5 of length 12, index 2, and

reduced generator polynomial matrix

G2 =

[
1 2(x + 3)(x4 + 2x2 + 2x + 1)
0 x6 − 1

]
.

From Corollary 2, Q2 is self-dual because
1) µ = 1 = h∗, i.e., β = 1.
2) g1,1g∗1,1 = 1 = µh, i.e., γ = 1.
3) f1 = 2(x + 3)(x4 + 2x2 + 2x + 1), and f2 divides(

xm−deg(f1)f1f ∗1 + γβ
−1
)

= 2(x6 − 1)(x2 + 2x + 3)(x3 + 2x + 4).

Although g1,1 = αµ∗ for α = 1 and f2 is self-reciprocal, but
Q2 is not reversible because condition (1c) of Theorem 1 is
not satisfied.

V. OPTIMAL QC CODES OF INDEX 2 WITH SEVERAL
PROPERTIES
In this section, we examine QC codes of index 2 that combine
more than one property. We start with a self-orthogonality
condition for reversible QC codes of index 2.
Theorem 2: Let Q be a reversible QC code over Fq of

length 2m, index 2, and generator polynomial matrix as given
by (8). Then, Q is self-orthogonal if and only if{

g1,1g2,2 ≡ 0 (mod xm + 1), for even q.
g1,1g∗1,1 ≡ 0 (mod xm − 1), for odd q.

Proof: Let Q be a reversible code. If Q is self-
orthogonal, then all conditions in Theorem 1 are met. For
even q,

g1,1g2,2 = αβ∗hg2,2 = αβ∗(xm + 1) ≡ 0 (mod xm + 1).

However, for odd q, we have γ = α2β∗ because γµh =
g1,1g∗1,1 = αµ

∗αµ = α2β∗µh. But conditions (1c) and (2c)
of Theorem 1 ensure that(

xm−deg(f1)f1f ∗1 − α
2
)
= η1f2 and

β∗
(
xm−deg(f1)f1f ∗1 + α

2
)
= β∗

(
xm+d11−d12 f1f ∗1 + α

2
)

=

(
β∗xm+d11−d12 f1f ∗1 + γ

)
= η2f2,

for some η1, η2 ∈ Fq[x]. Consequently,

g1,1g∗1,1 = α
2β∗µh =

1
2
2α2β∗µh =

1
2
(η2 − β∗η1)f2µh

=
1
2
(η2 − β∗η1)(xm − 1) ≡ 0 (mod xm − 1).

Conversely, if q is even and g1,1g2,2 = η(xm+ 1) for some
η ∈ Fq[x], then g1,1 = ηh, and

1) µ = g∗1,1/α = η
∗h∗/α = βh∗, where β = η∗/α.

2) g1,1g∗1,1 = ηhαµ = γµh, where γ = αη.

3) From condition 1(c) of Theorem 1, f2 divides(
β∗xm+d11−d12 f1f ∗1 +γ

)
=
η

α

(
xm−deg(f1)f1f ∗1 +α

2
)
.

Hence Q is self-orthogonal by Theorem 1. Now, if q is odd
and g1,1g∗1,1 = η(xm − 1) for some η ∈ Fq[x], then Q is
self-orthogonal by Theorem 1 because
1) Since α2µµ∗ = g1,1g∗1,1 = η(x

m
− 1) = −ηµ∗f ∗2 h

∗,
µ = βh∗ for β = −ηf ∗2 /α

2.
2) g1,1g∗1,1 = ηf2µh = γµh, where γ = ηf2.
3) f2 divides

(
β∗xm+d11−d12 f1f ∗1 + γ

)
because it divides

β∗ and γ .

The following examples show that self-orthogonal
reversible QC codes of index 2 exist for odd and even q.
Example 5: InF3[x], we have x6−1 = (x−1)3(x+1)3. Let

Q be the ternary QC code of length 12 and index 2 generated
by

G =
[
(x − 1)2(x + 1)2 −(x − 1)2(x + 1)2

0 x6 − 1

]
.

The dimension of Q is k = 2 and its minimum distance is
dmin = 6. From Theorem 1, Q is reversible because
1) g1,1 = µ∗ = µ = (x − 1)2(x + 1)2, i.e., α = 1.
2) f2 = (x − 1)(x + 1) is self-reciprocal.
3) Since f1 = −1,

(
xm−deg(f1)f1f ∗1 − α

2
)
= x6 − 1 is

divisible by f2.
Moreover, Theorem 2 shows that Q is self-orthogonal
because g1,1g∗1,1 ≡ 0 (mod x6 − 1). Hence, Q is
self-orthogonal reversible code.
Example 6: In F2[x], we have x15+ 1 = (x+ 1)(x2+ x+

1)(x4+ x + 1)(x4+ x3+ 1)(x4+ x3+ x2+ x + 1). LetQ be
the binary QC code of length 30 and index 2 generated by

G =
[
g1,1 g1,2
0 g2,2

]
,

where

g1,1 = (x + 1)(x4 + x + 1),

g1,2 = x(x + 1)2(x3 + x + 1)(x4 + x3 + 1),

g2,2 = (x+1)(x2+x+1)(x4+x3+1)(x4+x3+x2+x+1).

The dimension of Q is k = 14 and its minimum distance is
dmin = 8. According to [15], Q achieves the upper bound
on the minimum distance of binary linear codes of length 30
and dimension 14. Thus, we call Q an optimal code. From
Theorem 1, Q is reversible because
1) g1,1 = µ∗ because µ = (x + 1)(x4 + x3 + 1).
2) f2 = (x2+x+1)(x4+x3+x2+x+1) is self-reciprocal.
3) Since f1 = x(x + 1)(x3 + x + 1), f2 divides(

xm−deg(f1)f1f ∗1 − 1
)

= x11(x + 1)2(x3 + x + 1)(x3 + x2 + 1)+ 1

= (x2 + x + 1)(x4 + x3 + x2 + x + 1)

(x13 + x12 + x11 + x9 + x7 + x6 + x3 + x2 + 1).
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Moreover, Q is self-orthogonal by Theorem 2 since
g1,1g2,2 ≡ 0 (mod xm + 1). Hence, Q combines optimality,
self-orthogonality, and reversibility.

Although there are self-orthogonal reversible QC codes of
index 2 for odd and even q (cf. Examples 5 and 6), the follow-
ing results confirm that self-dual reversible codes exist only
for even q. In addition, we demonstrate that the reversibility
condition of self-dual codes is the same as the self-duality
condition of reversible codes.
Corollary 3: Let Q be a reversible QC code over Fq of

length n = 2m, index 2, and generator polynomial matrix
G as given by (8). Then,Q is self-dual if and only if q is even
and g1,1g2,2 = xm + 1.

Proof: From (4), the dimension ofQ is k = 2m−d11−
d22. If Q is self-dual, then k = m and d11 + d22 = m. From
Theorem 2, if q is even, then g1,1g2,2 = η(xm + 1). Hence
deg(η) = d11 + d22 −m = 0, i.e., η ∈ Fq. The reduced form
of G implies that η = 1, hence g1,1g2,2 = xm + 1. On the
other hand, if q is odd, Theorem 2 implies that

0 ≥ m− 2d11 = d22 − d11 = d22 − deg(µ) = deg(f2).

This is impossible unless f1 = 0, i.e., G is diagonal, which
contradicts Corollary 1 because a diagonal G generates a
self-dual code only if q is even.
Conversley, if q is even and g1,1g2,2 = xm + 1, Theorem 2

shows thatQ is self-orthogonal. ThenQ is self-dual because
k = 2m− d11 − d22 = m = n/2.
Corollary 4: Let Q be a self-dual QC code over Fq of

length 2m, index 2, and generator polynomial matrix G as
given by (8). Then,Q is reversible if and only if q is even and
g1,1g2,2 = xm + 1.

Proof: From Corollary 3, if Q is reversible, then the
self-duality ofQ implies that q is even and g1,1g2,2 = xm+1.
Conversely, if q is even and g1,1g2,2 = xm+1, then g1,1 = h.
By Theorem 1 and Corollary 2, Q is reversible because
1) g1,1 = h = µ∗/β = αµ∗ for α = 1/β.
2) f2 is self-reciprocal since

f2 =
xm + 1
µh

=
xm + 1
βh∗h

=
xm + 1
h∗µ∗

= f ∗2 .

3) Since g1,1 = αµ∗, γ = α and f2 divides(
xm−deg(f1)f1f ∗1 + γβ

−1
)
=

(
xm−deg(f1)f1f ∗1 − α

2
)
.

Proposition 2: Let Q be a self-orthogonal QC code over
Fq of length 2m, index 2, and generator polynomial matrix
G as given by (8). If q is even, g1,1 = αµ∗, and
g1,1g2,2/ (xm + 1) is coprime to f2, then Q is reversible.

Proof: From Theorem 1, we have µ = βh∗, g1,1g∗1,1 =
γµh, and f2|

(
β∗xm+d11−d12 f1f ∗1 + γ

)
for some β, γ ∈

Fq[x]. Now, βf2 = β(xm − 1)/µh = (xm − 1)/h∗h =
β∗(xm − 1)/h∗µ∗ = −β∗f ∗2 . Since

(
g1,1g2,2

)
/ (xm + 1) =

αµ∗/h = αβ∗ is coprime to f2, we have f2|f ∗2 , i.e., self-
reciprocal. In addition, f2 divides

(
β∗xm+d11−d12 f1f ∗1 + γ

)
=

β∗
(
xm−deg(f1)f1f ∗1 + α

2
)
. Thus, the coprimality of f2 and

β∗ implies condition (1c) of Theorem 1. Therefore, Q is
reversible.
Example 7: In F4[x], we have x16 + 1 = (x + 1)16. LetQ

be the QC code over F4 of length 32, index 2, and

G =
[
x + 1 g1,2
0 (x + 1)15

]
,

where g1,2 = x6(x+ 1)(x+ω)(x3+ω2)(x3+ x+ 1) and ω is
a zero to x2 + x + 1 ∈ F2[x]. By Theorem 1, Q is reversible
because

1) g1,1 = µ∗ = (x + 1), i.e., α = 1.
2) f2 = (x + 1)14 is self-reciprocal.
3) f1 = x6(x + ω)(x3 + ω2)(x3 + x + 1) and f2 divides(

xm−deg(f1)f1f ∗1 − 1
)

= (x + 1)14(x2 + ωx + ω)

(x2 + ω2x + ω2)(x5 + x4 + x3 + x2 + 1).

Corollary 3 shows that the reversible code Q is self-dual
because q is even and g1,1g2,2 = x16 + 1. The dimension
of Q is k = 16 and its minimum distance is dmin = 10.
According to [15], the best known minimum distance

for a linear code over F4 of length 32 and dimension 16
is 11. Although the QC code of Example 7 is self-dual and
reversible, it is not optimal. However, in the following exam-
ples, we illustrate that there are optimal self-dual reversible
QC codes of index 2.
Example 8: In F2[x], we have

x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).

Let Q be the binary QC code of length 14, index 2, and

G =
[
x3 + x2 + 1 x3 + x + 1

0 (x + 1)(x3 + x + 1)

]
.

With Theorem 1, one can prove that Q is reversible. From
Corollary 3, Q is self-dual because q is even and g1,1g2,2 =
x7 + 1. According to [15], Q is optimal because dmin = 4,
which is the upper bound on theminimumdistance of a binary
linear code of length 14 and dimension 7.
Example 9: In F4[x], we have

x11 + 1 = (x + 1)(x5 + ωx4 + x3 + x2 + ω2x + 1)

(x5 + ω2x4 + x3 + x2 + ωx + 1),

where ω is a zero to x2 + x + 1 ∈ F2[x]. Let Q be the QC
code over F4 of length 22, index 2, and

G =
[
1 g1,2
0 x11 + 1

]
,

where

g1,2=ω2x10+ωx9+ω2x6+ωx5+ωx4+ω2x3+x2+ωx+ω2.

FromTheorem 1,Q is reversible. FromCorollary 3,Q is self-
dual. In addition, Q is optimal because dmin = 8, which is
the best known minimum distance for a linear code over F4
of length 22 and dimension 11.
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TABLE 1. 1-Generator binary optimal self-dual reversible QC codes of index 2.

The code generated in Example 9 is an example of
a 1-generator QC code [13], [18]. A 1-generator QC code of
index 2 has a generator polynomial matrix (8) with g2,2 =
xm − 1. That is, the code is generated by (g1,1, g1,2) as an
Fq[x]/〈xm − 1〉-module. In the special case of 1-generator
QC code with g1,1 = 1, Corollaries 3 and 4 reduce to
the result [13, Corollary 4], i.e., self-duality is equivalent to
reversibility.

We conclude this section by presenting some optimal
self-dual reversible codes of different code lengths in the class
of binary 1-generator QC codes of index 2. We search for
generator polynomial matrices of the form

G =
[
1 g1,2
0 xm + 1

]
that meet the reversibility conditions of Theorem 1, and hence
are self-dual by Corollary 3. In Table 1, we provide polynomi-
als g1,2 from computer search results. Since binary self-dual
codes have even minimum distances, any code in Table 1 is
optimal in the sense that its minimum distance is the largest
even integer less than or equal to the upper bound in [15].
We write g1,2 = 〈18, 17, 15, 13, 8, 7, 4, 1, 0〉 to mean g1,2 =
x18 + x17 + x15 + x13 + x8 + x7 + x4 + x + 1 ∈ F2[x]. For
each of the codes in Table 1, one can verify the reversibility
conditions of Theorem 1 by using µ = 1, f1 = g1,2, f2 =
xm + 1, and h = 1.

VI. CONCLUSION
In this work, we focused on two classes of QC codes: the class
of QC codes generated by diagonal generator polynomial

matrices and the class of QC codes of index 2. We provided
equivalent conditions for reversibility, self-orthogonality, and
self-duality of QC codes in these classes. Consequently,
we were able to combine some of these properties in QC
codes of these classes. We showed that self-orthogonal
reversible QC codes of index 2 exist for odd and even q.
However, self-dual reversible QC codes of index 2 exist only
for even q.We supported the theoretical results with computer
search to include the property of being optimal. Finally,
we considered the class of binary 1-generator QC codes of
index 2. In Table 1, we offered some of these codes that com-
bine the properties of being optimal, self-dual, and reversible.
Many interesting numerical examples are presented.
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