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ABSTRACT This paper proposes an offline path planning method based on the Improved Quantum
Particle Swarm Optimization (IQPSO) algorithm for Autonomous Underwater Vehicles (AUVs) in the
underwater environment. The spherical modelling method is adopted to represent irregular underwater
obstacles as spheres with a specified radius. Then, the IQPSO algorithm is developed to solve the problem
of the limitations of the convergence and optimization ability of the traditional Quantum Particle Swarm
Optimization (QPSO) algorithm and to identify the best path for AUVs. In this algorithm, to satisfy the three
factors of path safety, path length and angle change of the path point, the fitness function is constructed
to achieve multi-objective optimization. A smooth path is designed using the cubic spline interpolation
algorithm. Different scenes or the same scene with different obstacles are designed to verify the effectiveness
of the algorithm. The simulation results show that compared with PSO algorithm, QPSO algorithm, EGA
algorithm and DENPSO algorithm, the path generated by IQPSO algorithm in various scenes is shorter,
smoother and more stable.

INDEX TERMS AUV, improved QPSO algorithm, multi-objective optimization, path planning.

I. INTRODUCTION
With the development of underwater applications, such
as seabed exploration and underwater resource exploita-
tion, Autonomous Underwater Vehicle (AUV) technology
is increasingly common. In most underwater applications,
AUVs are an increasingly important auxiliary tool for under-
water work [1]. An AUV completes the specified work by
moving within the work area. Path planning is the problem
of determining the path of an AUV from the starting point
to the target point [2], [3]. Path planning is recognized as
a key technique of AUVs. Traditional path planning algo-
rithms include the A∗ algorithm [4], the Rapidly exploring
Random Tree (RRT) [5] algorithm, the D∗ algorithm [6],
the Dijkstra algorithm [7], [8], the Ant Colony Optimization
(ACO) algorithm [9]–[11] and the Artificial Potential Field
(APF) algorithm [12], [13]. The A∗, D∗, Dijkstra and ACO
algorithms are path planning methods based on graph theory.
This kind of method depends on building a grid model of
the environment. The optimal path is obtained by searching.
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However, the grid method has a strict grid size and is vulner-
able to environmental restrictions. Thus, for complex large-
scale underwater environments, the computing costs of these
algorithms are high, and their efficiency is low. The RRT
algorithm can quickly generate conflict-free paths, but it can-
not guarantee optimality. The advantage of the APF method
is that the planning speed is very fast, but when the attraction
and repulsion forces are equal, this method easily becomes
trapped in local minimum points. As a result, the AUV
will be unable to move forward, resulting in the failure of
the planning task. In addition, the traditional path planning
algorithm does not consider such factors as path safety, path
length and angle change. Small angle change values make the
path shorter and smoother. When an AUVmoves underwater,
the path is short and smooth, which effectively saves energy.
Therefore, when energy is limited and the environment is
complex, the use of the traditional path planning algorithm
often results in AUVs exhausting their energy and colliding
with obstacles. To date, the path planning method based
on the intelligent evolutionary algorithm has been the most
effective and fastest method. This method can increase the
convergence speed, avoid local optimal solutions and identify
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feasible solutions that meet the requirements in a short
time [14].

In recent years, many researchers have proposed that the
path planning problem of AUVs can be regarded as an NP
complete problem [15]. Therefore, path planning algorithms
combinedwith intelligent optimization, including theGenetic
Algorithm (GA) [16], the Differential Evolution (DE) algo-
rithm, the Firefly Algorithm (FA), the Particle Swarm Opti-
mization (PSO) algorithm [17] and the Artificial Bee Colony
(ABC) algorithm have been proposed. However, in most
literature on path planning, single objective optimization is
only carried out for the factor of path length, while the
factors of smoothness and security are not considered, result-
ing in unsatisfactory path planning results. Moreover, there
are few path planning methods for the three-dimensional
(3D) environment. Many path planning methods in the two-
dimensional (2D) environment are not available for the 3D
environment. The optimization performance of most intel-
ligent optimization algorithms is unsatisfactory because the
convergence rate is low and the algorithms easily fall into
local optimization.

Given the limitations of traditional path planning meth-
ods and common optimization algorithms, many methods
have been proposed. ACO is an evolutionary algorithm that
simulates the foraging behaviour of ants [18], [19]; it was
inspired by the process of ants seeking food and created
by Marco Dorigo. ACO is often combined with the grid
method [20]. Compared to other evolutionary algorithms,
the ACO algorithm is used earlier and more widely in
path planning. Duan et al. [21] first modelled a grid in 3D
space and proposed a hybrid heuristic ACO-DE algorithm
for path planning calculations. The authors suggest using
the DE algorithm in the process of pheromone updating
unlike the traditional ACO algorithm. Although this method
can realize path planning in a 3D space, the mesh mod-
elling of 3D space still limits the performance of the algo-
rithm. Nazarahari et al. [22] proposed a multiple target mul-
tiple robots path planning algorithm based on the Enhanced
Genetic Algorithm (EGA). First, using the APF algorithm
generates a path from the source points to the target points
as the initial path. Then, the path length, path smoothness
and security are regarded as the objective function, and using
the EGA algorithm, the optimal path is generated. Finally,
the path is smoothed by cubic spline interpolation to obtain
the final path. Although the method achieves multi-objective
optimization in path planning, it is only available in the 2D
grid environment. In addition, the path smoothed by cubic
spline interpolation may not be a safe path. Parhi and Kundu
[23] proposed using the DE method in path planning. Wu
et al. [24] proposed a Distance Evolution Nonlinear Particle
Swarm Optimization (DENPSO) algorithm, with energy as
the optimization objective to avoid the influence of eddy
current fields. However, the convergence of the DE and PSO
algorithms is poor. Han [25] proposed a COSPS method,
which can be used to determine key obstacles without con-
sidering non-key obstacles, thus improving the efficiency of

path planning. However, synthetic factors such as the path
length and smoothness are not considered in this method.
Lucas et al. [26] used the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) for the multi-objective path planning
of underwater gliders. Lin et al. [27] used a convolutional
neural network to design an online path planning algorithm to
improve the autonomy and intelligence of obstacle avoidance.
Neural networks require a parameter training process. Thus,
the algorithm complexity is high, and its application in under-
water environments is limited. Silva Junior et al. [28] applied
the Q-learning method to the path planning of sailing robots.
In addition to the problem of the algorithm’s complexity, this
method is only available for the 2D water surface.

To solve the abovementioned problems, this paper designs
a 3D offline path planning algorithm based on the Improved
Quantum Particle Swarm Optimization (IQPSO) algorithm.
Offline means non-real-time, that is, planning the route for
an AUV prior to its operation. This method does not require
rasterized modelling of the underwater environment. The
expansion-contraction factor is improved to prevent particles
from falling into local optimization. To improve the conver-
gence speed of the QPSO algorithm, the average best position
of the particle is modified from the arithmetic average to
the weighted average, and the weight depends on the fitness
value of the particle. In addition, the corresponding fitness
functions are designed for the three factors of path length,
angle change and path safety to achieve the multi-objective
optimization of underwater AUV path planning.

To summarize, the main contributions of this paper are as
follows:

1) The convergence and optimization ability of the tradi-
tional QPSO algorithm are improved.

2) A reasonable fitness function is designed for the 3D
underwater environment. Path safety, path length and
angle change are considered to achieve multi-objective
optimization of path planning. The cubic spline inter-
polation algorithm is used to smooth the path.

3) Simulation tools are used to verify the effectiveness of
the algorithm, which is compared with other algorithms
to prove its superiority.

Section II defines AUV kinematic model and obstacle
model. Section III gives a detailed description of the proposed
methods. Simulation results are elaborated and analysed in
the section IV. Conclusion are summarized in the section V.

II. RELEVANT MODEL
A. AUV KINEMATIC MODEL
The Cartesian workspace is shown in Fig. 1. This workspace
contains two coordinate systems: the inertial coordinate sys-
tem based on global positioning and the body-fixed coor-
dinate system. Both of these systems obey the right-hand
rule [29].

In 3D space, an AUV has 6 Degrees of Freedom (DOFs),
including translational DOFs and rotational DOFs on the
x, y and z-axes. To better analyse the motion model of an
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FIGURE 1. Workspace coordinate system.

underwater AUV, the AUV motion parameters are defined as
follows:

1) The source point: q0 (x0, y0, z0).
2) The target point: qn+1 (xn+1, yn+1, zn+1).
3) Position and attitude vectors: η = [x, y, z, φ, θ, ψ]T .

x, y, z represent the position of the AUV, and φ, θ, ψ
represent the Euler angle of the AUV in the coordinate
system.

4) The translational and rotational velocities parameters
are V = [µ, ν, ω, p, q, r]T , where µ, ν, ω represent
the translational velocity (the wave, swing and heave
components, respectively), and p, q, r represent the
rotational velocity (the roll rate, pitch rate and yaw rate,
respectively).

Therefore, the motion model of the AUV is given as

η =

[
J1

J2

]
V (1)

where J1 and J2 are expressed as follows:
In the 3D underwater working environment, the AUV is

regarded as a point O. The path of points from the source (q0)
to the target (qn+1) can be represented byX = {qi|1 ≤ i ≤ n},
which is a discrete set of points. In general, AUVs do not
easily roll in the underwater environment, so it is assumed
that θ = 0◦. In this paper, the Euler angle components of
the AUV are considered to only be in the XOY plane and the
XOZ plane, as follows:

ψi = tan−1
(
yi − yi−1
xi − xi−1

)
(4)

φi = tan−1

 zi − zi−1√
(xi − xi−1)2 + (yi − yi−1)2

 (5)

The underwater environment model is an important part of
underwater path planning because the energy consumption of
underwater AUVs is mainly influenced by underwater eddies
and obstacles.When an AUV passes through an ocean vortex,
it easily yaws due to the external force of the vortex field.
The AUV also needs to expend more energy to arrive at the
destination. It is assumed that the working velocity of the

AUV is a constant V, and the velocity will change under
the influence of the eddy current field in the underwater
environment. The final velocity component is expressed as
follows: 

µ = |V | cosφ cos θ + µc
υ = |V | sinφ cos θ + νc
ω = |V | sin θ + ωc

(6)

where (µc, νc, ωc) is the component of the flow velocity.

B. OBSTACLE MODEL
Active sonar technology can be used to detect underwater
obstacles. In this paper, it is assumed that the location of
underwater obstacles is detected by sensors carrying active
sonar. Irregular obstacles are expressed as spheres with spec-
ified spherical centres and radii based on the spherical mod-
elling method. The real obstacle is limited inside the sphere.
To avoid collision between the AUV and obstacles after
circular modelling in a 2D environment, d0 is used as the safe
distance, as shown in Fig. 2. Similarly, in the 3D environment,
when the path of the AUV is a tangent line of the sphere, this
strategy ensures that the AUV does not collide with obstacles
and improves the safety of the path.

FIGURE 2. 2D obstacle model diagram.

III. THE PROPOSED PATH PLANNING ALGORITHM
A. PARTICLE SWARM OPTIMIZATION
Inspired by the foraging behaviour of birds, the PSO algo-
rithm was proposed by Eberhart and Kennedy [30] in 1995.
The algorithm sets a flock of birds to search for food ran-
domly in a designated area, and only one piece of food will be
found in the area. All birds only know the distance from their
current position to the food; they do not know the specific
location of the food. Therefore, individuals search by the
individual closest to the food in the flock.

The PSO algorithm uses particles to simulate the above
individual birds, and each particle can be regarded as a search
individual in the N-dimensional search space. The current
position of the particle is a candidate solution of the cor-
responding optimization problem, and the flight process of
the particle is the search process of the individual. The flight
velocity of particles can be dynamically adjusted according to
the historical optimal position of particles and the historical
optimal position of the population. Particles have only two
properties: velocityVi = (νi1, νi2, . . . , νim), which represents
how fast they move, and position Xi = (xi1, xi2, . . . , xim),
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which represents the direction in which they move. The opti-
mal solution of individual search for each particle is called
individual extremum, and the optimal individual extremum
in the particle swarm is regarded as the current global opti-
mal solution. By constantly updating the speed and location,
the optimal solution satisfying the termination condition is
finally obtained. The PSO algorithm needs to update the
position and velocity of the particles simultaneously in the
iterative process. The iterative formulas of the velocity and
position are as follows:

Vi (k + 1) = ωVi(k)+ C1rand (0, 1) (Pi(k)− Xi(k))

+C2rand (0, 1) (Gi(k)− Xi(k)) (7)

Xi(k + 1) = Xi(k)+ Vi(k + 1) (8)

where ω is the inertia weighting factor; C1 and C2 are
acceleration constants: C1 is the individual learning factor
of the particle, and C2 is the global learning factor of the
particle; Pi(k) represents the individual extremum; and Gi(k)
represents the global optimal solution.

B. QUANTUM PARTICLE SWARM OPTIMIZATION
ALGORITHM
In PSO, the particle velocity is always limited. The search
space in the search process is a limited area that does not
cover the entire feasible space. However, the particles have
the characteristics of an aggregation state in the quantum
space; thus, the algorithm can implement search in the entire
feasible solution space. According to the basic convergence
properties of the particle swarm and inspired by the basic
theory of quantum physics, Sun et al. [31] proposed the
QPSO algorithm. Particle updating does not require a velocity
vector; therefore, this algorithm improves the search speed of
the PSO algorithm, reduces the number of parameters and has
a simple form.

Assuming that Xi (k) , pi (k) , yi (k) ,C (k) and ŷ (k) repre-
sent the current position, attractor position, individual best
position, average best position and global best position,
respectively, of the particle swarm when the number of itera-
tions is k, the particle update equation of the QPSO algorithm
is as follows:

In this equation, α is the expansion-contraction factor that
ranges from 0 to 1. It is either a constant, or it gradually
decreases as the number of iterations increases, and it is
the only parameter in the QPSO algorithm other than the
population size and the number of iterations. µi,j (k) and
ϕi,j (k) are uniformly distributed random variables that range

from 0 to 1, i = 1, 2, . . . ,N . N is the number of particles.
j = 1, 2, . . . ,D, and D is the particle dimension.

C. IMPROVED QUANTUM PARTICLE SWARM
OPTIMIZATION ALGORITHM
In complex problems, because of the excessive number of
particles, the QPSO algorithm has a slow convergence speed
and easily falls into local optima. To solve these problems,
an improved QPSO algorithm is proposed.

In Eq. (11), due to the continuous decline of α, the particles
converge prematurely, and the fitness value is locally rather
than globally optimal, which is not ideal in the iterative pro-
cess. Therefore, this paper proposes a self-adaptive αmethod.
If the fitness difference between the current particle and the
global optimal particle is less than the threshold γ = 0.01,
the value of α decreases as the number of iterations increases.
Otherwise, α is a random number in the range of (αmin, αmax).
In this paper, αmin = 0 and αmax = 1. When the fitness value
of the particle does not reach convergence, adding a random
disturbance to α can prevent the particle from falling into the
local optimum. The value of α is as follows:

α=


(αmax − αmin)

Maxn− k
Maxn

+ αmin, . . .fitness(X (k))

−fitness(ŷ) < γ,

rand(αmin, αmax), . . .fitness(X (k))−fitness(ŷ)≥γ.
(14)

whereMaxn is the maximum number of iterations.
According to Eq. (11), the average best position also plays

an important role in particle updating, and the direction of
particle updating tends to the average best position. In this
paper, the average best position is calculated by combining
the fitness of the particle to increase the convergence speed
of the QPSO algorithm and to make the particle update
to a higher fitness value. The larger the particle fitness is,
the stronger the particle fitness is. Thus, the larger the weight
ai of yi (k) is, the closer C (k) is to the optimal value. There-
fore, the improved average best position C (k) is updated as

C (k) =
N∑
i=1

aiyi (k) (15)

where ai can be calculated as

ai =
fitness(Xi(k))
N∑
i=1

fitness(Xi(k))

(16)

J1 =

 cosψ cos θ − sinψ cosφ + cosψ sin θ sinφ sinψ sinφ + cosψ cosφ sin θ
sinψ cos θ cosψ cosφ + sinψ sin θ sinφ − cosψ sinφ + sin θ sinψ cosφ
− sin θ cos θ sinφ cosφ cos θ

 (2)

J2 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (3)
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Each path point of the particle must meet two conditions:
it must be within the boundary of the 3D environment, and it
must avoid the obstacle. The conditions can be expressed as

X xmin ≤ X
x
ij ≤ X

x
max

X ymin ≤ X
y
ij ≤ X

y
max

X zmin ≤ X
z
ij ≤ X

z
max

, d
(
Xij, obsk

)
> d0 (17)

By Eq. (17), the safety and effectiveness of the initial
particle generation path are guaranteed.

D. IQPSO FITNESS FUNCTION
The fitness functions in some studies only consider the path
length and path safety or only the path length. The angle
change is not considered, which causes the path planning task
to fail and causes energy to be consumed by the directional
adjustment of the AUV. In this paper, the proposed algorithm
obtains a short and safe path, and the fitness function of the
IQPSO algorithm is given as follows:

fitness (X) = S1 (X) · (c1D (X)+ c2S2 (X)) (18)

where X = {q1, q2, . . . , qn} represents a series of discrete
points between the source point and the target point. c1 and
c2 are constants, and c1 + c2 = 1. S1 (X) is the safety
function, D (X) is the path length function and S2 (X) is the
angle change function. The larger the particle fitness value
is, the higher the particle fitness is. By iteration, the fitness
values gradually converge. At the same time, the obtained
particles are output as the path points. The path formed by
these path points is the optimal path.

1) Safety function.
The safety of the path can be calculated using the following
formula:

S1 (X) =

{
1, . . . d

(
qiqi+1, obsj

)
> d0 + r

j
obs

0, . . . else.
(19)

where d
(
qiqi+1, obsj

)
represents the distance between qiqi+1

(the adjacent path point vector) and obsj (the centre of the
obstacle). r jobs represents the radius of the obstacles. The

distance between the line qiqi+1 and the centre of any obstacle
is greater than the radius of the obstacle. In other words,
when the line between two adjacent path points does not pass
through the obstacle, the value of S1 (X) is 1, which represents
the path safety. Otherwise, the path is in danger of colliding
with obstacles.

FIGURE 3. Schematic diagram of distance solution.

As shown in Fig. 3, it is assumed that in a 3D environment,
the coordinates of points A, B and O and the radius of sphere
O are known. The distance from the centre of the sphere to
the vector AB can be obtained as

d =
‖
−→
AB×

−→
AO ‖

‖
−→
AB ‖

(20)

Therefore, as above, d
(
qiqi+1, obsj

)
can be expressed as

follows:

d
(
qiqi+1, obsj

)
=
‖ (qi+1 − qi)×

(
obsj − qi

)
‖

‖ (qi+1 − qi) ‖
(21)

2) Path length function.
The path length function is given as

D (X) =
d (q0, qn+1)
n∑
i=0

d (qi, qi+1)
(22)

yi (k + 1) =


Xi(0), . . . k = 0,
yi (k) , . . . k > 0, fitness(yi(k)) ≥ fitness(Xi(k + 1)),
Xi(k + 1), . . . k > 0, fitness(yi(k)) < fitness(Xi(k + 1)).

(9)

ŷ (k) =

{
max {y1(k), y2(k), . . . yN (k)} , . . . k > 0,
max {X1(0),X2(0), . . .XN (0)} , . . . k = 0.

(10)

Xi,j (k + 1) =

{
pi,j (k)+ α|C (k)− Xi,j (k) | ln 1

µi,j(k)
, . . . µi,j (k) ≥ 0.5

pi,j (k)− α|C (k)− Xi,j (k) | ln 1
µi,j(k)

, . . . µi,j (k) < 0.5.
(11)

pi,j (k) = ϕi,j (k) yi,j (k)+
(
1− ϕi,j (k)

)
ŷi,j (k) (12)

C (k) =
1
N

N∑
i=1

yi (k) (13)
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where d (q0, qn+1) represents the distance from the beginning

to the end, and
n∑
i=0

d (qi, qi+1) is the path length. D (X) is in

the range of (0,1]. The shorter the path length is, the larger
the value of D (X) is.

3) Angle change function.

The angle change function is given as

S2 (X) =

n∑
i=1

Ui

n
(23)

Ui =

{
1, . . . θi ≤ π

2 ,

0, . . . else.
, (i = 1, 2, . . . , n)

(24)

cos (qiqi−1, qi+1qi) =
(qi − qi−1)× (qi+1 − qi)
d (qi, qi−1)× d (qi+1, qi)

θi = arccos(qiqi−1, qi+1qi) (25)

where θi represents the angle change between two adja-
cent paths and is in the range of [0, π]. By Eq. (25),
cos (qiqi−1, qi+1qi) can be calculated, and θi can be obtained
at the same time. If θi > π

2 , the path length may be extended.
Otherwise, the path length is shorter. The smaller the angle
changes are, the larger the value of S2 (X) is, and the shorter
and smoother the path is.

E. CUBIC SPLINE INTERPOLATION
According to the above IQPSO algorithm, a set of dis-
crete points from the starting point to the end point can
be obtained. The path obtained by connecting these points
satisfies C0-continuity, but not C1-continuity. This paper
uses the cubic spline interpolation [32], [33] to smooth the
path. Cubic spline interpolation is a sectional interpolation
method. By using a series of points based on cubic polyno-
mial interpolation, the interval forms a smooth curve. Using
the cubic spline interpolation method, the mobile robot path
fitting curve is smoother, and the robot is assured to have
good dynamic characteristics when it abruptly stops or turns.
Compared with straight line and arc fitting, this method is
more prominent.

If there are n nodes on the interval [a, b], a = x1 <

. . . < xn = b. The corresponding functional values of
these nodes are f (xi) = fi (i = 1, 2, . . . , n). In the inter-
val [xj, xj+1] (j = 1, 2, . . . , n− 1), there is a function g (x)
expressed as g (x) = ajx3 + bjx2 + cjx + dj. Cubic spline
interpolation requires the following conditions to be met:

(1) g(xj) = fj;
(2) g(x) is continuous;
(3) The first derivative of g(x) is continuous;
(4) The second derivative of g(x) is continuous. g(x) can

be expressed as follows:

g(x) =
(xj−1 − x)3

6(1xj)
Mj +

(x − xj)3

6(1xj)
Mj+1 + Ajx + Bj,

1xj = xj+1 − xj. (26)

where

Aj =
fj+1 − fj
1xj

−
Mj+1 −Mj

6
·1xj (27)

Bj = fj+1 −
Mj+1

6
·
(
1xj

)2
−

(
fj+1 − fj
xj+! − xj

−
Mj+1 −Mj

6
·
((
1xj

)))
xj+! (28)

In Eq. (27) and (28), the values of Mj and Mj+1 can be
obtained by the following formula:

2 1
µ2 2 1− µ2

. . . . . . . . .

2 1− µn−1
1 2




M1
M2
. . .

Mn−1
Mn

 =

β1
d2
. . .

dn−1
βn


(29)

where

β1 =
6
1x1

(
f2 − f1
1x1

− f ′1

)
(30)

βn =
6
1xn

(
fn − fn−1
1xn−1 1

− f ′n

)
(31)

µj =
1xj−1

1xj−1 +1xj
(32)

dj = 6
(
fj+1 − fj
1xj

−
fj − fj−1
1xj−1

)
1

1xj−1 +1xj
(33)

Therefore, the interpolation function of each segment of
the interval can be obtained by solving Eq. (29).

F. IQPSO PATH PLANNING ALGORITHM
The path planning steps based on the IQPSO algorithm are as
follows:
Step 1: Initialize the number of particles N, the dimension

D and the maximum number of iterations.
Step 2: Initialize the population and obtain N groups of

initialization paths Xi =
{
q1i , q

2
i , . . . , q

N
i

}
. All particles use

the fitness equation to calculate the fitness value.
Step 3: Calculate attractor position p and the weighted

average optimal extremum C according to the fitness value.
Update the particle position.
Step 4: Calculate the particle fitness value according to the

fitness function, and obtain the individual optimal value y and
the global optimal value ŷ.
Step 5: Repeat steps 3 to 5 until the maximum number of

iterations is reached.
Step 6: Output the global optimal solution.
Step 7: Take the optimal solution of the output as the

path points. The path points are processed using cubic spline
interpolation to generate smooth paths.

Fig. 4 shows the flow chart of the IQPSO path planning
algorithm.

IV. SIMULATION RESULTS
To verify the effectiveness and feasibility of the proposed
algorithm for underwater AUV path planning, in this section,
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FIGURE 4. Flow chart of path planning based on the IQPSO algorithm.

the algorithm is implemented and compared with the PSO
algorithm, the QPSO algorithm, the EGA and the DENPSO
algorithm by simulation.

A. EXPERIMENTAL PARAMETERS
In this paper, the PSO, DENPSO, traditional QPSO and
IQPSO algorithms and the EGA are applied to the path
planning of an AUV. By comparing these algorithms, the per-
formance of the proposed IQPSO algorithm is verified.
To determine the values of c1 and c2 in the fitness function
of the algorithm proposed in this paper, 10 different envi-
ronments are set. By changing the values of c1 and c2 in
each environment, the values of c1 and c2 can be obtained
by finding the best mean fitness value. In the experiment,
c1 is set to increase linearly and c2 is set to decrease linearly
in [0,1]. For both, the change step is 0.1, and the constraint
condition c1+c2=1 is met. From Fig. 5, it can be seen that the
value of c1 is 0.7, and the value of c2 is 0.3. In this situation,
the mean fitness value equals to 0.88, which is the best.

According to the following settings, in the above three
experimental scenarios, the path planning ability and algo-
rithm stability of the PSO, DENPSO, traditional QPSO
and IQPSO algorithms and the EGA were compared and
analysed.

FIGURE 5. Change of the mean fitness value when c1 increases.

TABLE 1. Details of the obstacles in scenario 1.

TABLE 2. Details of the obstacles in scenario 2.

B. ALGORITHMS VALIDITY
1) SPECIFIC SCENARIOS WITH DIFFERENT SCALES AND
NUMBERS OF OBSTACLES
By using the simulation tool, three random 3D experimental
scenarios are established. In the three scenarios, there are
different numbers of obstacles and obstacles with different
radii. The size of every experimental scenario is also dif-
ferent. The size of scenario 1 is 10 m∗10 m∗10 m. The
size of scenario 2 is 50 m∗50 m∗50 m. The size of sce-
nario 3 is 100 m∗100 m∗100 m. These scenarios represent
small, medium and large scale underwater areas, respectively.
By doing so, the robustness of the algorithm is verified.
Details of the spherical centre and radius of the obstacles in
each scenario are shown in Tables 1 to 3. The experimental
scenarios are shown in Fig. 6.

In this section, the PSO, DENPSO, traditional QPSO and
IQPSO algorithms and the EGA are tested for 200 times
each in every scenario. The minimum, maximum, mean and
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FIGURE 6. Experimental scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.

TABLE 3. Details of the obstacles in scenario 3.

TABLE 4. Algorithm parameters.

standard deviation values of the path length, angle change and
fitness value are obtained. In Table 5, the shortest path length
is the minimum path length, and the longest path length is the
maximum path length. The experimental results are shown
in Tables 5 to 7.

As shown in Table 5, the path length of the IQPSO
algorithm is the shortest compared with those of the other
algorithms in terms of the minimum, maximum, mean and
standard deviation values. In every scenario, the results the

IQPSO algorithm are the best. In terms of the mean and
standard deviation, in the experimental scenarios, as the scale
of the scenarios and the number of obstacles increase, the gap
between the average path length value of the IQPSO algo-
rithm and the average lengths of the other algorithms is
increasingly large.Moreover, the standard deviation is always
the smallest, which proves that the path planning results of
the IQPSO algorithm have the smallest degree of dispersion.
These data indicate that the IQPSO algorithm has the capa-
bility of planning the shortest path.

In Table 6, as the scale of the experimental scenarios and
the number of obstacles increase, the mean and standard
deviation of the angle change gradually increase. In terms of
the angle change values, the results of the IQPSO algorithm
are optimal compared with those of the other four algorithms,
regardless of the scenario or indicator. These data indicate
that the IQPSO algorithm has the ability to minimize the
change of the path planning angle.

Table 7 shows the fitness value result of every algorithm. In
scenarios 1 and 2, themean fitness values of all the algorithms
are above 0.9. In scenario 3, the mean fitness value of the
IQPSO algorithm is more than 0.9, but the mean fitness
values of the other algorithms are below 0.9. In each scenario,
the IQPSO algorithm has the best mean fitness value. Com-
pared with the other algorithms, the standard deviation of the
fitness value of the IQPSO algorithm is the best, except in
scenario 2. In scenario 2, the standard deviation of the fitness
value of the IQPSO algorithm is only lower than that of the
EGA, but the values of the IQPSO algorithm and the EGA are
very close. This proves that the algorithm has a better multi-
objective optimization capability.

Clearly, the mean and standard deviation are used as indi-
cators to measure these algorithms. The average reflects
the central trend of a dataset. The standard deviation can
reflect the dispersion degree of a dataset and the robustness.
In Tables 5 and 6, the mean and standard deviation of the
path length and angle change of the IQPSO algorithm are the
smallest. In Table 7, the mean fitness value of the IQPSO
algorithm is the largest, and the standard deviation is the
smallest, indicating that this algorithm has a strong robustness
in different scale scenarios.
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TABLE 5. Comparison of path length results.

TABLE 6. Comparison of smoothness results.

Fig. 7 shows the comparison graph of the 3D path planning
results of the five algorithms under scenario 1. Among these
algorithms, the path planning results from (a) to (e) are those
for PSO, QPSO, EGA, DENPSO and IQPSO, respectively.
Similarly, Fig. 8 shows the path planning result graph in
scenario 2, and Fig. 9 shows the path planning result graph
in scenario 3. As seen from the figure, all three algorithms

can accomplish the path planning task from the beginning to
the end. However, the algorithm results are different. In Fig. 7,
the fitness values of PSO, QPSO, EGA,DENPSO and IQPSO
are 0.9612, 0.9768, 0.9842, 0.9901 and 0.9943, respectively.
In Fig. 8, the fitness values of PSO, QPSO, EGA, DENPSO
and IQPSO are 0.9226, 0.9414, 0.9477, 0.9659 and 0.9711,
respectively. In Fig. 9, the fitness values of PSO,QPSO, EGA,
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TABLE 7. Comparison of fitness value results.

DENPSO and IQPSO are 0.8821, 0.8952, 0.8964, 0.8981 and
0.9067, respectively. Obviously, the IQPSO results are the
best. Form the following figures, it can be seen that the paths
obtained by the IQPSO algorithm are smoother and shorter
those obtained with the other algorithms.

2) RANDOM SCENARIOS WITH THE SAME NUMBER OF
OBSTACLES
To further verify the algorithm proposed in this paper,
the PSO, DENPSO, traditional QPSO and IQPSO algorithms
and the EGA are compared in 10 random experiment scenar-
ios. The size of every scenario is a random number ranging
from 10 to 100. The number of obstacles in each experimental
scenario is also randomly generated and ranges from 1 to 10.
In each scenario, the size and position of the obstacles also
are random. Therefore, the number of obstacles may not be
the same in the 10 scenarios. In every randomly generated
scenario, each algorithm is tested 200 times. Finally, themean
and standard deviation of the path length, angle change and
fitness values of each algorithm are obtained. The results are
shown in Figs. 10 to 12. The results of the 10 scenarios are
sorted by the mean value of the path length (to show the data
clearly in the figure).

As shown in Fig. 10(a), as the scenario number increases,
the average path length increases gradually. In each scenario,
the mean values of the path length of the PSO and QPSO
algorithms are close and higher than those of the other three
algorithms. The IQPSO algorithm has the smallest average
path planning length. In Fig. 10(b), the standard deviation of
the path length of the PSO algorithm is the largest in every
scenario apart from scenario 2. The standard deviation of the

path length of the IQPSO algorithm is the smallest and the
best of any scenario.

As shown in Fig. 11(a), in terms of the overall trend, the
mean value of the angle change shows an increasing trend.
The angle change value is easily affected by the number
and position of obstacles. In the case of a large number of
obstacles, the AUV needs to bypass the obstacles, which
leads to angle change increases. In every scenario, the mean
angle change value of the IQPSO algorithm is the smallest.
In Fig. 11(b), the standard deviation of the angle change of the
IQPSO algorithm is also the smallest. In scenario 7, the gaps
between the results of the IQPSO algorithm and those of the
other algorithms are the largest.

The goal of the algorithm proposed in this paper is to
obtain the maximum fitness value. As shown in Fig. 12(a),
the mean fitness value is the largest in each scenario com-
pared with the PSO, QPSO and DENPSO algorithms and the
EGA. These data prove that the optimization ability of the
IQPSO algorithm is superior to that of the other algorithms.
In Fig. 12(b), the standard deviation of the fitness value of
the IQPSO algorithm is the smallest, proving that the IQPSO
algorithm has better stability than the other algorithms.

Overall, in terms of the path length, angle change and
fitness value, the IQPSO algorithm proposed in this paper is
superior to the other algorithms in both specified and random
environments.

C. ALGORITHMS STABILITY
In this section, by changing the number of particles N and
the particle dimension D, the influence on the fitness value
and the convergence location of the PSO, traditional QPSO
DENPSO and IQPSO algorithms and the EGA is analysed.
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FIGURE 7. Comparison of the 3D path planning results in scenario 1 for (a) PSO; (b) QPSO; (c) EGA; (d) DENPSO;
(e) IQPSO.

FIGURE 8. Comparison of the 3D path planning results in scenario 2 for (a) PSO; (b) QPSO; (c) EGA; (d) DENPSO; (e)
IQPSO.

In this instance, the convergence location is the number
of iterations when the algorithm begins to converge. When
the number of particles is changed, the particle dimension
is 3 and remains unchanged. When the dimensions of the
particles are changed, the number of particles is 150, and

this number remains the same. The number of particles are
increased from 100 to 200 with an interval of 25. The particle
dimensions are increased from 3 to 7with an interval of 1. The
experimental environment of this section is that of scenario 2
of Fig 6.
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FIGURE 9. Comparison of 3D path planning results in scenario 3 for (a) PSO; (b) QPSO; (c) EGA; (d) DENPSO; e IQPSO.

FIGURE 10. Comparison results: (a) mean value and (b) standard
deviation of the path length in the 10 scenarios.

1) CHANGING THE NUMBER OF PARTICLES
As shown in Fig. 13(a), as the number of particles increases,
the fitness values of the PSO, traditional QPSO, DENPSO

FIGURE 11. Comparison results: (a) mean value and (b) standard
deviation of the angle change in the 10 scenarios.

and IQPSO algorithms and the EGA increase gradually. The
fitness values of these algorithms are all greater than 0.9. As
the number of particles increases, the fitness values of the
QPSO, IQPSO, and DENPSO algorithms and the EGA all
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FIGURE 12. Comparison results: (a) mean value and (b) standard
deviation of the fitness value in the 10 scenarios.

are smaller than that of the QPSO. In Fig. 13(b), the conver-
gence locations of the PSO, traditional QPSO, DENPSO and
IQPSO algorithms and the EGA decrease when the number
of particles is in the range of [100,150) and increase when the
number of particles is in the range of [150,200]. At the begin-
ning, as the number of particles increases, the optimization
ability of the algorithm becomes stronger, and the algorithm
converges more easily. However, as the number of particles
increases later, the complexity of the algorithm increases,
which affects the convergence of the algorithm. In general,
the convergence location of the IQPSO algorithm is better
than that of the other algorithms at every stage.

2) CHANGING THE PARTICLE DIMENSION
In Fig. 14(a), as the particle dimension increases, the fitness
value of the IQPSO algorithm increases gradually. Com-
pared with the PSO, QPSO, EGA and DENPSO, the fitness
value of the IQPSO algorithm is improved by approximately
0.0211, 0.111, 0.01 and 0.0094, respectively, on average.
In Fig. 14(b), the convergence location of all the algorithms
decreases as the particle dimension changes from 3 to 4 and
increases when the particle dimension changes from 4 to 7.
Appropriately increasing the particle dimension is conducive
to algorithm convergence. However, as the particle dimension

increases, the complexity of the algorithm increases, which
is not conducive to algorithm convergence. However, the
IQPSO algorithm has a better convergence location than the
other algorithms at every stage. These data demonstrate that,
as the particle dimension changes, the performance of the
IQPSO algorithm is better.

FIGURE 13. Effect of the number of particles on (a) the fitness value and
(b) the convergence location of the algorithms.

Fig. 15 shows the change curve of the fitness value as the
number of iterations of the algorithms increases. This result
is a randomly selected set of experiments in which the num-
ber and dimension of particles are 150 and 3, respectively.
As seen from Fig. 15, the convergence locations of the PSO,
traditional QPSO, DENPSO and IQPSO algorithms and the
EGA are 29, 51, 28, 15 and 26, respectively, and the fitness
values after convergence of the three algorithms are 0.9475
(PSO), 0.9434 (QPSO), 0.9616 (EGA), 0.9632 (DENPSO)
and 0.9701 (IQPSO). Thus, compared with the other algo-
rithms, the IQPSO algorithm has a higher fitness value and
convergence speed. When the number of iterations is 10,
the IQPSO algorithm becomes trapped in a local optimum.
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FIGURE 14. Effect of the particle dimension on (a) the fitness value and
(b) the convergence location of the algorithms.

However, it can quickly jump out of the local optimum and
reach a higher fitness value. The results show that compared
with the other four algorithms, the IQPSO algorithm has a
faster convergence speed and better solution results.

V. CONCLUSION
To address the problem of AUV path planning, this paper
analyses the motion model of an AUV under water and pro-
poses a multi-objective path planning optimization method
that considers the path safety, path length and angle change on
the premise of spherical modelling of obstacles. The method
proposed in this paper does not require mesh modelling of the
3D environment, which saves time, reduces the calculation
cost and enables greater flexibility. Aiming at the slow con-
vergence speed of the traditional optimization algorithm, this
paper strongly improves the convergence and optimization
ability of the QPSO algorithm. The simulation results show
that under different experimental environments, the IQPSO
algorithm has a stronger path planning ability and a higher

FIGURE 15. Fitness value change diagram.

stability than the PSO, DENPSO and QPSO algorithms and
the EGA and can converge to the optimal solution faster.
Since the AUV usually plans the path in advance before exe-
cuting the task, there is no need to execute the algorithmwhen
tracking the trajectory. At the same time, the algorithm is not
suitable for avoiding moving obstacles. Therefore, dynamic
real-time path planning for AUVs will be a research direction
in the future.
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