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ABSTRACT Uncertainty quantification is an important aspect of engineering design, also pertaining to the
development and performance evaluation of antenna systems. Manufacturing tolerances as well as other
types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions
(e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this
usually leads to frequency shifts of the operating bands. Quantifying these effects is imperative to adequately
assess the design quality, either in terms of the statistical moments of the performance parameters or the yield.
Reducing the antenna sensitivity to parameter deviations is even more essential when increasing the proba-
bility of the system satisfying the prescribed requirements is of concern. The prerequisite of such procedures
is statistical analysis, normally carried out at the level of full-wave electromagnetic (EM) analysis. While
necessary to ensure reliability, it entails considerable computational expenses, often prohibitive. Following
the recently fostered concept of constrained modeling, this paper proposes a simple technique for rapid
surrogate-assisted yield optimization of narrow- and multi-band antennas. The keystone of the approach is
an appropriate definition of the optimization domain. This is realized by considering a few pre-optimized
designs that represent the directions of the major changes of the antenna resonant frequencies and operating
bands. Due to a small volume of such a domain, an accurate replacement model can be established therein
using a small number of training samples, and employed to improve the antenna yield. Verification results
obtained for a ring-slot antenna, a dual-band and a triple-band uniplanar dipoles indicate that the optimization
process can be accomplished at low cost of a few dozen of EM simulations: 62, 74 and 132 EM simulations,
respectively. Result reliability is validated through comparisons with EM-based Monte Carlo simulations.

INDEX TERMS Uncertainty quantification, tolerance-aware design, yield optimization, multi-band anten-
nas, performance-driven modeling.

I. INTRODUCTION
The vast majority of antenna design procedures aim at find-
ing the nominal designs, i.e., obtained under the assumption
that the fabricated prototype retains the values of geometry
and/or material parameters equal to those rendered in the
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course of antenna development (e.g., through parametric opti-
mization) [1]–[5]. In practice, uncertainties of various types
may affect the system operation in an undesirable manner.
Their appropriate quantification may therefore be crucial to
verify whether the system is likely to satisfy the prescribed
performance specifications. There are generally two types of
uncertainties pertaining to antenna structures. The most com-
mon ones are deviations of antenna dimensions as well as the
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material parameters (e.g., substrate permittivity) from their
nominal values. These are the inherent (or aleatory) uncer-
tainties, most often related to manufacturing tolerances [6]
and typically characterized by probability distributions. Due
to their stochastic nature, quantification requires performing
statistical analysis [7]–[9]. Reducing the effects of tolerances
normally entails stochastic design that aims at improving
statistical performance measures, e.g., the yield [10], [11].
The second type of uncertainties are systematic (or epistemic)
ones, related to the lack of knowledge of the operating condi-
tions (temperature, radius of bending of a wearable antenna,
etc.). These may often be handled by ensuring that the accept-
able system performance is secured for the specified ranges
of the conditions.

Statistical analysis of antenna structures is a challenging
endeavor mostly due to the necessity of using CPU-intensive
full-wave electromagnetic (EM) analysis for reliable evalua-
tion of performance parameters. Conventional statistical anal-
ysis routines, particularly Monte Carlo simulation [12], [13],
involving massive EM analyses, entail considerable com-
putational expenses, which typically turn prohibitive or at
least make the analysis impractical. There have been many
attempts to alleviate these difficulties in the literature. A sim-
ple approach is a worst-case analysis [14], [15], which can be
realized without incurring excessive costs, yet, it more often
than not provides overly pessimistic estimates. Nowadays,
the most popular methods involve fast surrogate models such
as response surface approximation [16], artificial neural net-
works [17], and, more and more popular, polynomial chaos
expansion (PCE) [18]–[20]. The attractiveness of the latter
originates from its convenience: PCE models allow for cal-
culating the statistical moments of the system output directly
from the expansion coefficients with no need forMonte Carlo
analysis. One of the practical issues related to the use of
surrogates is a potentially high cost of setting up the model,
especially for higher-dimensional parameter spaces. Some
of the recent approaches are arguably more economical in
that sense, e.g., PC kriging [10], where low-order polynomial
traditionally employed as a trend function is replaced by
the PCE surrogate. Other possibilities include reduction of
the problem dimensionality (e.g., using principal component
analysis [21]), incorporating variable-fidelity simulations by
means of space mapping [22], or co-kriging [23], as well
as combinations of various approaches such as surrogate
modeling and model order reduction [24].

Mitigating the effects of uncertainties on the antenna
operation is an important design consideration. In practice,
it requires the adjustment of geometry parameters so as
to minimize the sensitivity of the figures of interest (cen-
ter frequencies, bandwidths, axial ratio, etc.) to, e.g., man-
ufacturing tolerances, or to maximize the probability of
satisfying prescribed performance requirements. The latter
is typically referred to as robust design, tolerance-aware
design, yield-driven design, or design centering [25]–[30],
depending on a particular explicit merit function (e.g., yield)
being processed. Computational-wise, robust design is an

expensive process because it normally involves multiple sta-
tistical analyzes encapsulated in an optimization loop [18].
Clearly, direct EM-based stochastic optimization is normally
prohibitively expensive. In practice, the methods of choice
involve surrogate models [6]–[31]. As mentioned in the pre-
vious paragraph, popular techniques include response sur-
face approximations [14], space mapping [8], [22], [32]
neural networks [8], and polynomial chaos expansion
(PCE) [18]–[20], [33], [34]. As yield-driven optimization
may need to handle considerable ranges of the antenna
parameters, a construction of reliable surrogates may become
problematic, especially for higher-dimensional spaces. One
of the workarounds is sequential approximate optimization
(SAO) [35], where the surrogate is constructed locally with
the domain relocated between iterations along the optimiza-
tion path. Another option is the employment of the response
feature approach [36], in which direct handling of origi-
nal system characteristics (usually, S-parameters versus fre-
quency) is replaced by constructing the surrogate at the level
of suitably defined characteristic points. Reformulating the
design task this way leads to a less nonlinear functional land-
scape, resulting in easier modeling that requires significantly
smaller training data sets [37]–[39].

This paper proposes a novel and low-cost procedure for
yield optimization of multi-band antennas. Our methodology
employs the overall concept of performance-driven mod-
eling [40]–[43] to construct a fast surrogate in the region
corresponding to maximum changes of the antenna responses
in the vicinity of the nominal design. By appropriate con-
straining of the model domain, the surrogate can be rendered
at a very low cost of a few dozen of EM antenna analyzes
while being valid over a sufficiently large parameter ranges
to permit efficient optimization of the antenna yield. The pre-
sented framework is comprehensively validated using three
test cases: a ring-slot antenna, a dual-band dipole antenna,
and a triple-band dipole antenna. The performance of our
algorithm is favorably compared to two surrogate-assisted
approaches which involve: (i) a one-shot kriging surrogate
constructed over a larger vicinity of the nominal design,
and (ii) sequential approximate optimization with local krig-
ing models set up along the optimization path.

The primary novelties and technical contributions of the
paper, beyond what was proposed in the literature so far,
include: (i) introduction of the concept of a surrogate
domain confinement into the yield optimization process,
(ii) a definition of a constrained domain based on the
directions corresponding to the major variations of the
antenna characteristics, (iii) demonstration of a consider-
able computational cost reduction of establishing an accurate
replacement model for yield-optimization purposes within
the constrained domain to as low as few dozen of EM simula-
tions, (iv) demonstration of efficacy of the yield optimization
procedure involving performance-driven surrogates, espe-
cially, a possibility of combining the advantages of one-shot
and iterative (sequential approximation optimization) based
techniques. Performing yield optimization of narrow- and
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multi-band antennas at such a low cost and, at the same time,
in a one-shot manner without neither design relocation nor
surrogate re-building, has not been reported in the literature
thus far.

II. FAST YIELD OPTIMIZATION USING CONSTRAINED
SURROGATES
This section formulates the yield optimization problem
as well as outlines the proposed algorithm for rapid
tolerance-aware antenna design. The keystone of our method
is a fast surrogate model constructed in a carefully defined
constrained domain. The model exhibits good predictive
power despite being based on small training data set. Fur-
thermore, it is sufficiently flexible (in terms of the parameter
space coverage) to be employed for reliable yield improve-
ment.

A. PROBLEM STATEMENT
The problem of statistical analysis and tolerance-aware
design can be formulated in various ways, depending on
what type of statistical figures of merit are of interest for the
designer. In this work, the focus is on multi-band antennas.
We assume the minimax specifications for the input charac-
teristics, specifically, given the target operating frequencies
f0k , k = 1, . . . ,N , and the target fractional bandwidth B. The
antenna at the design x (x stands for a vector of adjustable
parameters) is said to satisfy the requirements if the following
condition holds:{
f ∈

N⋃
k=1

[
(1− B) f0k

2
,
(1+B) f0k

2

]
: |S11(x, f )|

}
≤Smax

(1)

where f is the frequency, whereas Smax is typically –10 dB.
The condition (1) means that the antenna matching is no
worse than Smax within all target fractional bandwidths.

Let x(0) be the nominal design and dx stand for a vector of
deviations, e.g., manufacturing tolerances; dx is described by
an assumed probability distribution, e.g., joint Gaussian with
zero mean and variance σ , or uniform with maximum devi-
ation dmax. Generalization for other probability distribution
(e.g., normal distributions described by a specific covariance
matrix) is possible as well.

We define the function H (x) which takes two values: 1 if
the condition (1) is satisfied, and 0 otherwise. The estimated
yield can be found by running Monte Carlo analysis as

Y (x) = p−1
∑p

k=1
H (x(k)) (2)

where x(k) = x+dx(k), k = 1, . . . , p, are random observables
with dx(k) being the random deviations as described above.
The yield at the nominal design is then Y (x(0)), and yield
optimization problem is formulated as

x∗ = argmin
x
{−Y (x)} (3)

Typically, the initial design for (3) is the nominal design
x(0), which may be obtained by solving a standard minimax

problem of the form

x(0) = argmin
x{

max
{
f ∈

⋃N

k=1

[
(1−B) f0k

2
,
(1+B) f0k

2

]
: |S11(x, f )|

}}
(4)

The solution to (4) determines the design that exhibits the
best possible antenna matching within the operating bands of
interest.

B. REFERENCE ALGORITHMS
As mentioned in the introduction, perhaps the most efficient
option for EM-driven statistical analysis and robust design of
antennas is the use of fast surrogate models. For the purpose
of benchmarking the proposed procedure (Section II.C), the
following two surrogate-assisted algorithms are considered:

Algorithm 1: Construct a kriging surrogate in a vicinity
of the nominal design of the size d = [d1 . . . dn]T (i.e., the
interval [x(0) – d, x(0)+ d]) and solve the yield maximization
problem (3) therein. In order to create a sufficient room for
yield improvement, the size of the mentioned vicinity should
be sufficiently large. Here, we assume that dk = 10dmax,
k = 1, . . . , n, where dmax is the maximum deviation in the
case of uniform distribution, or 3σ for Gaussian distribution
of variance σ . This algorithm is very simple to implement but
the cost of constructing an accurate surrogate model may be
considerable due to the domain size.

Algorithm 2: Sequential approximate optimization (SAO).
Replace (3) by an iterative process

x(i+1) = argmin
x
{−Y (i)

s (x)} (5)

where x(i), i = 0, 1, . . ., are the approximations of x∗,
whereas Y (i)

s is the yield estimated using the ith surrogate
model constructed in the vicinity x(i) – dl ≤ x ≤ x(i) +
dl of the current design x(i) = [x(i)1 . . . x(i)n ]T . In this case,
the model domain is smaller, say, 3dmax, and it is being
relocated between the algorithm iterations. Solving the prob-
lem (5) is subjected to constraints x(i)k – dl.k+ dmax ≤ xk ≤
x(i)k + dl.k – dmax, k = 1, . . . , n, to ensure that the point
x is at least at the distance dmax from the surrogate model
domain boundary (in all directions). In this case, the com-
putational cost of constructing a reliable surrogate is much
lower than for Algorithm 1, but a few iterations are necessary
to conclude the optimization process. The algorithm is termi-
nated if the current iteration does not improve the yield, i.e.,
if Y (i+1)

s (x(i+1)) ≤ Y (i)
s (x(i)).

C. YIELD OPTIMIZATION USING PERFORMANCE-DRIVEN
SURROGATES
The reference algorithms outlined in Section II.B represent
the two extreme strategies for yield optimization, i.e., single
surrogate model constructed over a larger portion of the
parameter space versus an iterative process with the surro-
gates constructed over smaller regions relocated along the
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optimization path. The purpose of this work is to develop a
procedure employing a single model rendered over a smaller
region but without the necessity of iterating the construction-
prediction process. In order to accomplish this, the concept
of performance-driven modeling is employed [41]. The main
purpose of adopting it here is to narrow down the surrogate
model domain so that it is oriented along the path corre-
sponding to the maximum changes of the relevant antenna
responses (here, reflection characteristics at and around the
target operating frequencies), while maintaining its small size
in the directions orthogonal to that path.

The directions of essential changes of antenna responses
are identified by executing two optimization runs, one aim-
ing at maximization of the fractional bandwidths of the
antenna (symmetric with respect to the operating frequen-
cies), the second aiming at minimizing the antenna reflection
at the operating frequencies. Thus, two additional designs are
obtained (apart from the nominal design x(0)) as

x(1) = argmin
x
{−min {B1(x), . . . ,BN (x)}} (6)

x(2) = argmin
x
{max { |S11(x, f01)|, . . . , |S11(x, f0N )|}} (7)

In (6), Bk (x) is a symmetric part of the kth bandwidth, i.e.,
Bk (x) = 2min{f0k – f1k (x), f2k (x) – f0k} with f1k and f2k
being the frequencies corresponding to –10 dB level of |S11|
(left- and right-hand-side ends of the kth resonance). Note
that both (6) and (7) are formulated in a minimax sense,
i.e., the improvement of the worst case, the bandwidth in (6)
and the reflection levels at the operating frequencies in (7).
It should be reiterated that particular formulations of the
problems (6) and (7) are motivated by the need for identifying
the directions corresponding to possibly large change of the
antenna responses at and around its operating frequencies.
They do not need to coincide with the formulation of the
original design problem used to generate the nominal design
of the antenna of interest.

The problems (6), (7) are solved using trust-region gradi-
ent search [44] with the Jacobian matrix updated using the
rank-one Broyden formula [45], [46]. The latter is sufficient
because the expected design relocations ||x(0) – x(1)|| and
||x(0) – x(2)|| are limited. Consequently, the optimization
process can be realized at a very low cost of around 1.5n EM
analyses, where n is the parameter space dimensionality.

Let s(t) = [s1(t) . . . sn(t)]T be a t-parameterized curve
such that

sj (t) = aj0 + aj1t + aj2t2 (8)

for 0 ≤ t ≤ 1, so that s(0) = x(1), s(0.5) = x(0), and s(1) =
x(2). The model coefficients can be found as a10 · · · an0
a11 · · · an1
a12 · · · an2

 =
 1 0 0
1 0.5 0.25
1 1 1

−1 (x(1))T

(x(0))T

(x(2))T


(9)

Let S(t) be the interval with the center at s(t) and the size
dc = [dc1 . . . dcn]T , where dcj is a small multiplicity of the

maximum design deviation dmax, e.g., 2dmax. We define the
surrogate model domain XS as the set-theory union of the
intervals S(t) for 0 ≤ t ≤ 1, i.e.,

XS =
⋃

0≤t≤1

S(t) (10)

This domain contains the designs x(0), x(1), x(2), and a
vicinity of the entire curve s(t) of the size dc. The set is of
small size, yet it covers the directions of significant changes
of the antenna responses, which are the most important from
the point of view of manipulating the shape of the resonances,
and, consequently, the performance figures such as yield.
Due to a limited volume, a reliable surrogate model can
be established in XS using a small number of training data
samples. Furthermore, the entire optimization process can
be performed within XS without the necessity of iterating
the process, upon domain relocation, as in Algorithm 2 of
Section II.B. Figure 1 provides a graphical illustration of the
reference designs and the domain XS .

FIGURE 1. Yield optimization of narrow- and multi-band antennas using
performance-driven surrogates: (a) reflection responses of an exemplary
narrow-band antenna at the nominal design x (0), maximum bandwidth
design x (1), and best matching (at f0) design x (2). These designs
determine the directions of the most significant response changes (from
the point of view of the target operating bandwidth); (b) The reference
designs x (0) through x (2) form a path (a parameterized curve s(t)). The
union of intervals S(t) (cf. (10) form the surrogate model domain XS .

Having defined the domain, the surrogate is constructed
using kriging interpolation. The yield optimization is then
carried out by directly solving the problem (3) at the level
of surrogate, similarly as in Algorithm 1 of Section II.B.
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It should be emphasized that solving (3) using local algo-
rithms (e.g., gradient-based procedures or pattern search
methods) is sufficient, because the best-yield design is nor-
mally located in a relatively close vicinity of the nominal
design. In particular, there is no need to use global search
techniques such as population-based metaheuristics.

III. DEMONSTRATION CASE STUDIES
This section discusses numerical validation of the yield opti-
mization procedure proposed in Section II.C. It is based on
three antenna structures, a ring-slot antenna, a dual-band
uniplanar dipole, and a triple-band dipole. Our methodology
is compared to the surrogate-assisted algorithms of Section
II.B. At the same time, the reliability of surrogate-based
statistical analysis is validated using EM-driven Monte Carlo
analysis run at the initial and optimized designs.

FIGURE 2. Geometry of the ring slot antenna with a microstrip feed
(dashed line) [47]. The geometry parameters of the structure are
x = [lf ld wd rssd og]T . Antenna is to be optimized for minimum in-band
reflection within the frequency range 4.15 GHz to 4.85 GHz (center
frequency f0 = 4.5 GHz). The nominal design is obtained by solving (4).

A. CASE I: RING-SLOT ANTENNA
The first verification example is a ring slot antenna shown in
Fig. 2 [47], implemented on 0.76-mm-thick substrate of rela-
tive permittivity εr = 2.0. The structure is excited through
a microstrip line feeding a circular ground plane slot with
defected ground structure (DGS). The latter is employed to
suppress the antenna harmonic frequencies [48]. There are
eight geometry parameters x = [lf ld wd r s sd o g]T . The
computational model of the antenna is implemented in CST
Microwave Studio (∼300,000 cells, simulation time 90 s).
The simulations of all the benchmark structures were per-
formed on Intel Xeon 2.1 GHz dual-core CPU with 128 GB
RAM.

The design objective is minimization of the in-band reflec-
tion for the frequency range 4.15 GHz to 4.85 GHz (center
frequency f0 = 4.5 GHz). The nominal design is x(0) =
[20.28 6.54 0.24 11.83 2.95 6.77 7.85 2.23]T . The other
reference designs x(1) = [20.03 6.30 0.20 11.84 2.94 6.74
7.89 2.43]T , and x(2) = [20.26 6.51 0.20 11.68 2.92 6.47
7.49 2.24]T , were obtained by solving (6) (maximum band-
width design) and (7) (best reflection at f0 = 4.5 GHz
design). The cost of obtaining the reference designs is
only 13 and 14 EM simulations, respectively.

Geometry parameter deviations are described by indepen-
dent uniform probability distributions with the maximum

deviation dmax = 0.05 mm. Table 1 shows the results
of yield estimation at the initial design, yield optimization
results, yield estimation at the final design for the proposed
algorithm (Section II.C), as well as the reference algorithms
(Section II.B). The size parameters dc.k defining the surrogate
model domainwere set to 2dmax, and themodel itself has been
set up using 35 training samples (relative RMS error 0.5%).
The surrogate model for Algorithm 1 has been set using 400
samples within the domain of size 10dmax (relative RMS error
0.7%). The surrogate models for Algorithm 2 have been set
with 50 samples within the domain of size 3dmax (relative
RMS error 0.4% at the first domain centered at x(0)). The
design of experiments (sampling scheme) used in a construc-
tion of all surrogate models for this and the remaining verifi-
cation examples is Latin Hypercube Sampling (LHS) [49].
The optimum design produced by the proposed approach
is x∗ = [20.18 6.43 0.21 11.85 2.95 6.78 7.90 2.31]T .
Figure 3 shows visualization of the Monte Carlo analysis at
the nominal design and at x∗. In each case, Monte Carlo anal-
ysis was performed using 500 samples generated according to
the respective probability distribution.

TABLE 1. Yield optimization of the ring slot antenna of Fig. 2.

The results of Table 1 indicate that appropriate constraining
of the surrogate model domain as in the proposed approach
allows for a significant reduction of the computational cost
of the yield optimization process. On one hand, the cost
of setting a reliable model itself is low due to the small
volume of the domain. On the other hand, because the domain
covers the relevant directions within the parameter space (i.e.,
those corresponding to the essential changes of the antenna
response), there is no need to iterate the procedure: a one-
shot approach is normally sufficient. This is corroborated by
comparisons with Algorithms 1 and 2 of Section II.B. Both
render the results of similar quality in terms of the final value
of the yield, although the quality of the results produced by
Algorithm 1 is slightly degraded due to a larger domain of
the surrogate. The latter affects the model predictive power
despite using a considerably larger number of training sam-
ples. Furthermore, EM-based Monte Carlo analysis executed
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FIGURE 3. Monte Carlo analysis of antenna of Fig. 2 using EM simulations
(gray plots): (a) nominal design, (b) yield-optimized design obtained
using the algorithm proposed in this work. Black plots show the antenna
response at the nominal and optimized designs, respectively.

for validation confirms reliability of yield estimation obtained
from the surrogates.

B. CASE II: DUAL-BAND UNIPLANAR DIPOLE ANTENNA
The second verification example is a dual-band uniplanar
dipole antenna shown in Fig. 4 [50]. The antenna is imple-
mented on a Rogers RO4350 substrate (εr = 3.5, h = 0.76
mm) and fed by a 50 Ohm coplanar waveguide (CPW). The
adjustable variables are x = [l1 l2 l3 w1 w2 w3]T . Other
parameters are fixed: l0 = 30, w0 = 3, s0 = 0.15 and
o = 5 (all dimensions in mm). The computational model
of the antenna is implemented in CST Microwave Studio
and evaluated using its time-domain solver (∼100,000 cells;
simulation time 60 seconds).

The design objective is to minimize the in-band reflection
within 8-percent symmetric bandwidths centered at the fre-
quencies f01 = 3.0 GHz and f02 = 5.5 GHz. The nominal
design is x(0) = [30.47 11.60 19.20 0.472.46 1.30]T . The
other two reference designs x(1) = [29.98 11.13 18.86 0.44
3.04 1.05]T (maximum bandwidth) and x(2) = [29.72 11.03
19.04 0.273.01 0.67]T (best reflection at the operating fre-
quencies) were obtained by solving (6) and (7), respectively.
The reference designs are generated using only 11 and 10 EM
simulations, respectively.

Similarly as in Section III.A, geometry parameter devia-
tions are described by independent uniform probability distri-
butions with the maximum deviation dmax = 0.05 mm. The

FIGURE 4. Geometry of a dual-band uniplanar dipole antenna [50]. The
geometry parameters of the structure are [l1l2l3w1 w2w3]T , fixed
parameters: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 (all dimensions in mm).
Antenna is to be optimized for minimum in-band reflection within
8-percent symmetric bandwidths centered at the frequencies f01 = 3.0
GHz and f02 = 5.5 GHz. The nominal design is obtained by solving (4).

results of yield optimization using the proposed algorithm
and the benchmark methods have been gathered in Table 2.

TABLE 2. Yield optimization of the dual-band antenna of Fig. 4.

The size parameters dc.k were set to 2dmax (training set
size 53 samples, relative RMS error 0.8%). The surrogate
model for Algorithm 1 has been set using 800 samples within
the domain of size 10dmax (relative RMS error 1.3%). The
surrogate models for Algorithm 2 have been set with 50
samples within the domain of size 3dmax (relative RMS
error 0.9% at the first domain centered at x(0)). The opti-
mum design produced by the proposed approach is x∗ =
[30.38 11.58 19.22 0.47 2.46 1.28]T . Figure 5 shows visu-
alization of the EM-based Monte Carlo analysis (using 500
random samples) at the nominal design and at x∗.

The results obtained for this example are consistent with
those discussed in Section III.A. The proposed approach out-
performs both Algorithm 1 and Algorithm 2 of Section II.B
in terms of the computational efficiency while providing the
results of similar quality.

It should be noted that the predictive powers of the surro-
gate models are not as good as for the case of Section III.A.
Therefore, slight discrepancies between the surrogate-based
and EM-based yield estimations can be observed. The com-
putational cost of yield optimization using the proposed
method is reduced by about fifty percent compared to Algo-
rithm 2, and it is significantly lower than for Algorithm 1.
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FIGURE 5. Monte Carlo analysis of antenna of Fig. 2 using EM simulations
(gray plots): (a) nominal design, (b) yield-optimized design obtained
using the algorithm proposed in this work. Black plots show the antenna
response at the nominal and optimized designs, respectively.

FIGURE 6. Geometry of a triple-band uniplanar dipole antenna [44]. The
geometry parameters of the structure are [l1 l2l3l4l5 w1w2w3w4 w5]T ;
fixed parameters: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 (all dimensions in
mm). Antenna is to be optimized for minimum in-band reflection within
4-percent symmetric bandwidths centered at the frequencies f01 = 2.45
GHz, f02 = 3.6 GHz, and f03 = 5.3 GHz. The nominal design is obtained by
solving (4).

C. CASE III: TRIPLE-BAND UNIPLANAR DIPOLE ANTENNA
The last verification example is a triple-band uniplanar dipole
antenna shown in Fig. 6. The structure is based on the design

FIGURE 7. Monte Carlo analysis of antenna of Fig. 6 using EM simulations
(gray plots): (a) nominal design, (b) yield-optimized design obtained
using the algorithm proposed in this work. Black plots show the antenna
response at the nominal and optimized designs, respectively.

of [50] and implemented on RO4350 substrate. The design
variables are x = [l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T ; other
parameters are fixed: l0 = 30,w0 = 3, s0 = 0.15 and
o = 5 (all dimensions in mm). The EM-simulation model
of the antenna is implemented in CST Microwave Studio
(∼200,000 cells; simulation time 110 seconds).

The design objective is to minimize the in-band reflec-
tion within 4-percent symmetric bandwidths centered at
the frequencies f01 = 2.45 GHz, f02 = 3.6 GHz,
and f03 = 5.3 GHz. The nominal design is x(0) =
[35.42 11.54 26.07 8.09 17.14 0.60 0.99 1.44 0.78 1.17]T .
The other two reference designs x(1) = [35.38 11.50 25.72
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6.60 15.87 0.52 0.90 1.38 0.81 1.09]T (maximum bandwidth)
and x(2) = [35.54 11.69 26.53 6.63 15.76 0.70 1.36 1.90
0.48 0.67]T (best reflection at the operating frequencies) were
obtained by solving (6) and (7), respectively. The compu-
tational cost of obtaining x(1) and x(2) is 16 EM antenna
simulations in both cases.

Deviations of geometry parameters are described by the
independent uniform probability distributions with the max-
imum deviation dmax = 0.05 mm. The results of yield
optimization using the proposed algorithm and the bench-
mark methods have been gathered in Table 3. The surrogate
model setup for all methods is the same as for the previous
cases. The size parameters dc.k were set to 2dmax (training set
size 100 samples, relative RMS error 1.3%).

TABLE 3. Yield optimization of the triple-band antenna of Fig. 6.

The surrogate model for Algorithm 1 has been set
using 1,600 samples within the domain of size 10dmax
(relative RMS error 2.8%). The surrogate models for
Algorithm 2 have been set with 100 samples within
the domain of size 3dmax (relative RMS error 2.1%
at the first domain centered at x(0)). The proposed
algorithms rendered the yield-optimized design x∗ =

[35.37 11.52 26.0 8.09 17.14 0.59 1.01 1.43 0.80 1.22]T .
Figure 7 shows visualization of the EM-based Monte Carlo
analysis at the nominal design and at x∗.
Also in this case, the proposed algorithm outperforms the

benchmark and the overall results are consistent with those
obtained for the previous cases. In this case, due to higher
dimensionality of the parameter space and nonlinearity of the
antenna response (three resonances), the numbers of train-
ing samples necessary to construct the surrogate models are
noticeably larger.

Notwithstanding, Algorithm 2 (sequential approximate
optimization) is not capable of finding as good design as those
identified using Algorithm 1 and the proposed method. This
is most likely due to restricted size of the domain of the local
surrogate.

Furthermore, reliability of Algorithm 1 is not as good as for
the previous examples because of limited predictive power of
the surrogate (2.8%). Finally, this last verification example
pronounces even more the benefits of the approach proposed

in this work, i.e., the capability of rendering high-quality
design at the low computational cost.

IV. CONCLUSION
The paper proposed a novel yield optimization procedure for
narrow- and multi-band antennas. Our methodology exploits
the concept of performance-driven modeling to yield a fast
and reliable surrogate model over a constrained domain
spanned by the directions corresponding to the essential
changes of the antenna characteristics. The appropriate selec-
tion of the reference designs for domain definition allows
for rendering the model at a very low cost of a few dozens
of EM analyses of the antenna at hand. At the same time
the model covers the relevant regions of the parameter space
so that the yield optimization process can be carried out in
a one-shot manner (neither design relocation nor surrogate
re-building is necessary). Numerical results obtained for the
three test cases, a ring slot antenna, dual-band and triple band
uniplanar dipoles, demonstrate the efficacy of the presented
framework as well as its superiority over the benchmark (also
surrogate assisted) procedures. Reliability of the procedure
is confirmed by comparisons with EM-based Monte Carlo
analysis at the nominal and the optimized designs. The future
workwill address generalization of themethod for other types
of antenna and microwave components.
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