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ABSTRACT Multicore platforms offer great potential for task-level redundancy to achieve a degree of
fault-tolerance/reliability in embedded systems by exploiting the idle cores. However, due to the Thermal
Design Power (TDP) constraint, it may not be possible to simultaneously power-on all cores in a multicore
chip at the full-throttle (e.g., in ARM’s big.LITTLE architecture). Since TDP is the maximum sustainable
power that a chip can dissipate safely (as per the specifications given by a chip vendor), violating TDP
triggers a performance throttling mechanism (e.g., by lowering the operating voltage and frequency, or by
power-gating with task migration) to avoid possible overheating problems. This can significantly affect
the timeliness of the system, and hence, represents a serious challenge in using (off-the-shelf) multicore
platforms in real-time embedded systems when exploiting it for full-scale reliability. That means only a few
tasks can be afforded to run in a fully reliable mode under a given TDP constraint. In this article, at first,
we study the power consumption of task-level redundancy running on multicore platforms. Then, to tackle
the peak power problem, we propose a novel primary-backup scheme for power-aware scheduling of real-
time tasks on core pairs in multicore systems. The proposed scheme aims at removing overlaps of peak
power of concurrently executing tasks to keep the power consumption below the chip-level TDP constraint.
This would facilitate higher reliability levels within a given power budget. To do this, considering the tasks’
power profiles, we propose a task partitioning method along with maximum-peak-power-first (MPPF) and
maximum-peak-power-last (MPPL) policies to schedule original and redundant copies of tasks, respectively.
Our experiments show that our technique provides up to 50% (on average by 29.5%) peak power reduction
compared to state-of-the-art schemes, while providing the same reliability level.

INDEX TERMS Peak power, primary-backup technique, embedded systems, fault-tolerance, thermal design
power, real-time, efficiency, multicore platforms.

I. INTRODUCTION
Technology scaling allows integrating multiple cores onto a
single chip for advanced embedded systems [1]–[4]. How-
ever, technology scaling also aggravates the reliability of on-
chip systems. For instance, transient fault rate is increased
due to lower voltages and shrinking transistor dimensions that
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lead to smaller critical charges [5], [6]. Transient faults typi-
cally resulted due to high-energy particle strikes in hardware
that manifest as bit flips. Multicore embedded systems pro-
vide a great opportunity to employ fault-tolerant mechanisms
against transient faults, such as redundant multithreading
(RMT) [7], [8] and process level redundancy [9]. Task-level
redundancy (e.g., RMT) is a well-established technique
to achieve high reliability in multicore systems [10]–[12].
However, replicated executions significantly increase system

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 142843

https://orcid.org/0000-0002-4670-8608
https://orcid.org/0000-0001-6675-7231
https://orcid.org/0000-0003-4645-8255
https://orcid.org/0000-0002-5661-3629
https://orcid.org/0000-0002-2607-8135


M. Ansari et al.: Peak-Power-Aware Primary-Backup Technique for Efficient Fault-Tolerance

power consumption that may exceed the chip Thermal Design
Power (TDP) constraint which cannot be sustained for longer
periods of execution. TDP is considered as the highest
sustainable power that a chip can dissipate before being
forced to exploit a performance throttling mechanism, e.g.,
Dynamic Thermal Management (DTM) [13], [14]. DTM is a
system-level solution to tackle thermal hot spots and to keep
the system below a safe operating temperature. However,
it may reduce system performance and may lead to violating
system timing constraints [13], [14]. When a chip violates its
TDP constraint, DTM techniques automatically trigger task
migration or throttle the voltage and frequency to prevent
hardware damage, but it can also significantly reduce the sys-
tem’s performance [13], [15]. Therefore, DTM techniques,
or at least their frequent triggers, may not be efficient for the
systems that require satisfying strict timing constraints, e.g.,
real-time embedded systems [1], [13], [17], [18].

In this article, we demonstrate how task replication may
increase peak power consumption and consequently may
result in a chip TDP violation (see Section II.A). Then,
we propose a peak-power-aware primary-backup technique
scheme, which manages peak power consumption efficiently
for task-level redundancy on multicore systems while con-
sidering the deadlines of different tasks (see Section IV).
Our technique schedules real-time tasks on core pairs in a
multicore system without violating the tasks’ timing con-
straints. This method aims at removing overlaps of peak
power of concurrently executing tasks to keep the peak power
consumption below the chip TDP. To do this, considering
the tasks’ power profiles, at first, we partition the tasks into
parts. We consider a part of a task a section of subsequent
instructions such that different parts have different peak
power values (see Section IV.A). Then, we use two different
policies for scheduling the original and redundant copies of
each task. We use the maximum-peak-power-first (MPPF)
policy to schedule the original tasks, and for the redundant
tasks, we use the maximum-peak-power-last (MPPL) policy.
In this way, those parts of a task that consume higher power
overlap with the parts of the other tasks that consume lower
power. This leads to meet the timing and power constraints
(see Section IV.A). In summary, our technique tries to spread
the parts of tasks that consume high power over the entire
available time interval before the tasks’ deadline with the aim
of keeping the total peak power below the chip TDP.

To evaluate our proposed technique, we compared it with
state-of-the-art schemes for the worst-case and average-case
execution conditions (Section V.B and Section V.C). Our
experiments show that our technique provides up to 50%
(on average by 29.5%) peak power reduction compared to
the other schemes in the worst-case fault condition. Also,
our technique provides up to 50% average power reduction
in the average-case execution condition through canceling
unnecessary execution when no fault occurs.

The rest of this article is organized as follows. In Section II
we present the motivation and contributions of this work.
Section III presents models and assumptions. Section IV

presents our technique in details. The experimental results
are presented and discussed in Section V. The related work
is reviewed in Section VI. Finally, we conclude the paper in
Section VII.

II. MOTIVATION AND CONTRIBUTIONS
A. MOTIVATIONAL ANALYSIS OF PEAK POWER PROFILES
Let us consider a 4-core embedded chip with 3W of TDP
that executes two soft real-time tasks T1 and T2. For this
experiment, we used the applications QSORT (T1) and TIFF
(T2). We assume that the tasks arrive at time t = 0 and have a
deadlineD = 4ms. The execution time of T1 and T2 are 3.1ms
and 2.4ms, respectively, and each task consumes about 0.8W
of peak power throughout its execution (see details in V-B).
We also assume that after finishing the task, the underlying
core goes to deep sleep mode (i.e., power-gated) and con-
sumes almost no power. Here, for simplicity of presentation
and ease of discussion, we temporarily consider that the tasks’
peak powers are equal to the tasks’ average power. In the rest
of this article, when we present our technique, we consider
that the power consumption varies during a task’s execution
and, different tasks have different power profiles, similar to
real-world scenarios.

FIGURE 1. Motivational analysis of peak power problem in the
primary-backup technique. a) Parallel execution of original and
redundant tasks (hot standby sparing), b) Delayed execution of
redundant tasks [16], c) Partitioned tasks execution (our scheme).

We exploit task-level redundancy to achieve fault-
tolerance, and consider that any core can be dynamically
coupled to another core to form a core pair (based on the tech-
nique presented in [19]). Each core pair executes an original
task Ti and its redundant task Bi. For example, in Figure 1a,
we have two core pairs that execute the tasks T1 and T2 and
their redundant tasks B1 and B2. One way to execute a task in
the primary-backupmode is to execute each original task and
its redundant in parallel (i.e., hot standby sparing), as shown
in Figure 1a. In this way, the tasks start simultaneously at
t = 0, the tasks T1 and B1 finish at 3.1ms and the tasks T2 and
B2 finish at 2.4ms. Here, the total peak power of the system
is 3.2W during the time interval between 0 and 2.4ms, and
hence, it violates the chip TDP of 3W.

Figure 1b shows another possible execution scenario for
these tasks where the original tasks (T1 and T2) start as
soon as possible and the redundant tasks (B1 and B2) start
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as late as possible, hoping that the original tasks will fin-
ish successfully and the redundant tasks will be dropped to
avoid excessive power consumption. Such a method has been
used in many previous works [16], [20]–[23]. For example,
Haque et al. [23] propose exploiting the earliest-deadline-
first (EDF) and earliest-deadline-late (EDL) policies to
schedule the original and redundant tasks, respectively. These
methods effectively reduce average power consumption by
dropping unnecessary redundant executions when no fault
occurs. However, since they do not consider peak power, they
may result in violating TDP. This case is shown in Figure 1b
wherein the time interval 1.6ms to 2.4ms all the four cores
are active at the same time, and hence, the chip total power
consumption is 3.2W, which is higher than the chip TDP
(i.e., 3W).

Figure 1c shows a possible scheduling scenario for the
tasks that do not violate the TDP constraint. In this scenario,
T2 is divided into two parts, and then, T1 and the parts of
T2 are scheduled such that at any time instant at most three
cores are active. Therefore, since each core consumes 0.8W,
the total power is less than or equal to 2.4W (i.e., less than
the chip TDP). In this article, we propose a scheme that
considering tasks’ power profiles, at first, partitions the tasks
into parts with different peak power consumption, and then,
schedules the tasks such that the total power consumption is
kept below the chip TDP.

B. OUR NOVEL CONTRIBUTIONS AND CONCEPT
OVERVIEW
In this article, we propose a peak-power-aware primary-
backup technique that enables task-level redundancy to
achieve fault tolerance in multicore embedded systems under
timing and TDP constraints.

In a nutshell, the main contributions of this article are:
• A peak power management scheme that is conducted
at run time by managing peak-power overlaps between
concurrently executing tasks.

• A scheduling algorithm for the primary-backup tech-
nique to enable task-level redundancy on multicore sys-
tems. This algorithm reduces peak power consumption
through partitioning the tasks into parts without violat-
ing any real-time constraint.

• Employing two specific scheduling policies to manage
concurrent task executions and peak power consumption
in the worst-case fault scenario.

• An online technique to achieve further reduction in
power consumption beyond what is provided by the
proposed offline technique. It should be noted that in our
scheme, at design time, the system is designed such that
the chip TDP is met. At run time, we reduce average
power consumption to alleviate effects of high power,
e.g., aging and wear-out.

III. MODELS AND ASSUMPTIONS
In this Section, we present the models and preliminaries of
the paper.

A. SYSTEM AND TASK MODEL
We consider a multicore system with m cores C = {C1,
C2, . . . , Cm} similar to Intel SCC [24], [25]. In this article,
we assume that the system consists of k = m/2 core pairs
CP = {CP1, CP2, . . . , CPk}. The system executes a set
of n non-preemptive frame-based soft real-time tasks 9 =
{T1, T2, . . . , Tn} where the tasks release at the same time
and share a common deadline D. Note, this assumption is
valid for frame-based tasks and cases where multiple tasks
belong to one complex multi-tasked application (e.g., video
streaming), and such an application model is adopted in many
related works such as [13], [26]–[30]. We also assume that
each task Ti has an execution time τi and all tasks have the
same period of D. Examples of these systems are medical
care devices, avionics systems, control of chemical reactions,
and surveillance systems [22], and an example of a frame-
based soft real-time application is MPEG Player (multime-
dia) [31], [32].

B. POWER MODEL AND POWER MANAGEMENT
TECHNIQUE
We consider a system-level power model where total power
comprises static and dynamic power (Eq. 1). The static power,
(Ps), mainly consumed due to sub-threshold leakage current
(Isub) even when no computation is carried out. The dynamic
power, (Pd ), is dissipated due to activity of the digital circuits
and depends on both supply voltage (Vdd ) and operational
frequency (f ). According to [33]–[37], the total power of a
core can be written as:

P = Ps + Pd = Isub.V + Ceff .V 2
dd .f , (1)

where Ceff is the effective switched capacitance.
In this article, we use DPM to manage peak power con-

sumption, i.e., whenever a core is temporarily idle, it goes to
sleep mode to reduce dynamic power [38].

C. FAULT MODEL AND FAULT-TOLERANCE TECHNIQUE
High reliability as one of the main design objectives in
many embedded systems is subjected to different types of
faults [39]–[41]. The faults may occur at run time due to
hardware defects, electromagnetic interference, cosmic ray
radiations, etc. [5], [6], [42]. In this article, we consider
transient faults that are a major reliability concern in current
digital systems [6], [7], [41], [43]. Transient faults are usually
modelled as a Poisson process with a fault rate that is given as
a function of the supply voltage changes, as is used in many
related works [20], [23]. In our evaluations in Section V,
we assume that the transient fault rate is equal 10−7 faults
per second [23], [44].

To achieve fault tolerance against transient faults,
we deploy well-established mechanisms such as the
primary-backup technique [19], [16], [20], [23]. To realize
this technique in multicore systems, the dynamic core cou-
pling (DCC) technique [19] can be used, to create a core pair.
Each core pair includes two cores C1 and C2 where the origi-
nal tasks are executed on C1 and redundant tasks are executed
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FIGURE 2. Operational flow of our technique illustrating the offline and online steps.

on C2. This provides flexibility in establishing core pairs to
execute original and redundant tasks. This has two main ben-
efits: i) the system is able to tolerate permanent and transient
faults and ii) hot spots can be effectively reduced by executing
tasks with high peak power on physically distant cores.

The primary-backup technique requires a fault detection
method. For this purpose, processing cores typically employ
a low-cost hardware checker such as Meixner [45]. Argus
provides low-cost, comprehensive, low power and high accu-
racy fault detection [20]. Argus provides run-time checking of
control flow, computation, data flow and memory invariants.
Meixner et al. in [45] have shown that checking these four
invariants is sufficient for detecting all possible single errors.
In this article, if during the execution of a task no fault
has been detected, its results are supplied to the system and
its backup task is cancelled. However, when a fault occurs,
we ignore the faulty task and continue with its backup task
and consider the results of the backup task as the correct
results. Since the occurrence of a fault is indeterminate and
considering the acceptance test for each part of tasks incurs
the significant time and power overhead, the acceptance test
is ran at task completion times. In addition, due to the data
dependencies between the partitions of the tasks and transmit-
ting the data of the mentioned partitions to the corresponding
core for each task, partitions cannot be canceled when their
corresponding part is completed. Therefore, when the first
copy of a task completes successfully, the remaining parts of
its corresponding copy are canceled.

IV. PEAK-POWER-AWARE PRIMARY-BACKUP
TECHNIQUE
We propose a scheduling algorithm for frame-based task sets
on multicore systems when the primary-backup technique is

used for fault tolerance. Our proposed technique consists of
the following steps:

Step-1: As shown in Figure 2, in the initialization step,
at first, our proposed technique measures the tasks’ execu-
tion times and extracts the tasks power profiles using offline
profiling.

Step-2: Each task is divided into execution parts (task
partitioning) and by the use of the power profile of each task,
our technique determines peak power value for each part of
the tasks (peak power assignment). To do this, for each part of
a task, it considers the maximum instantaneous power as the
peak power of the whole part. The task partitioning method
consists in dividing a task into several subtasks that can be
executed separately. Partitioning a task has both positive and
negative effects: (i) positive effects: task partitioning might
reduce physical interference between subtasks, enhance
the exploitation of specialization, and increase efficiency;
(ii) negative effects: task partitioning may incur overheads.
As a result, whether task partitioning is useful or not has
to be evaluated on a real-world task. For example, we have
partitioned the application TIFF into two parts in Figure 1c
such that the TDP constraint is met.

Step-3: At run time, when a task set becomes ready for
execution, at first, to keep a balance between the power con-
sumption and utilization of the cores, tasks are mapped with
higher power consumption to core pairs with lower utilization
(Utilization Based Task Mapping). Then, the tasks’ ordering
in the schedule of each core pair is determined considering the
maximum-peak-power-first (MPPF) policy for the original
tasks and the maximum-peak-power-last (MPPL) policy for
their redundant tasks (Task Scheduling on each Core Pair).
Finally, the parts of the tasks are spread over the schedule
such that the peak power consumption is kept below the chip’s
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FIGURE 3. Offline part of our system. (A) Dividing the tasks into parts, (b) Power profiles of the tasks, (c) Peak power values for each part.

TDP considering the worst-case fault scenario where all the
original and redundant tasks are executed. This scenario,
though pessimistic, guarantees that the maximum power con-
sumed by the system is kept below the chip TDP. To achieve
further power reduction, if during the execution of the first
copy of a task no fault has occurred, the second copy of the
task is not required, and then its execution is canceled.

In the following, we use an example to illustrate how our
proposed scheme works.

A. AN ILLUSTRATIVE EXAMPLE TO DEMONSTRATE THE
CONCEPT AND FUNCTIONING OF OUR TECHNIQUE
As an example, let us consider a frame-based task set con-
sisting of three soft real-time tasks T1, T2 and T3 with the
execution time τ1 = 20ms, τ2 = 15ms and τ3 = 10ms
that share a common deadline D = 60ms. In this example,
we consider a dual-core chip with 20W of TDP where the
cores (C1 and C2) constitute a core pair.

1) Initialization Step (Design Time): As shown in Fig-
ure 3, At first, our proposed technique calculates the
task partitioning time slot PS as the greatest common
divisor (GCD) of the execution time of the tasks, so we
have: PS= 5ms. By the use of PS= 5ms, the tasks T1,
T2 and T3, are divided respectively into 4, 3 and 2 parts,
as shown in Figure 3a (the jth part of Ti is denoted by
Tij). Then, by the use of the tasks power profiles in
Figure 3b, the peak power values for the parts of the
tasks are determined (Figure 3c). For instance, based on
the power profile of the first part of T1 (T11) between
time t = 0 ms and 5ms in Figure 3b, the maximum
instantaneous power of T11 (marked in Figure 3b) is
considered as the peak power value for the whole part
T11 in Figure 3c. In this step, like the original tasks T1,
T2 and T3, their redundant tasks B1, B2 and B3 are also
divided into parts. For example, like T1, B1 is divided
into 4 parts, B11, B12, B13 and B14. Also, the same peak
power values in Figure 3c are used for the parts of the
redundant tasks.

2) Task Scheduling: Based on the MPPF policy, T3, T1
and T2 are respectively selected to be scheduled on
the primary core from the beginning of the execution
frame. Also, for the spare core, based on theMPPL pol-
icy, the redundant tasks B3, B1 and B2 are respectively

selected to be scheduled from the end of the execution
frame. Accordingly, at first, the parts T31 and T32 of the
first original task T3 are placed at the beginning of the
schedule of the primary core. Then, the parts B31 and
B32 of B3 (i.e., the redundant task for T3) are placed
at the end of the schedule of the spare core. For the
next original task T1, the parts T11, T12, T13 and T14
are placed in the time slots between 10ms and 30ms on
the schedule of the primary core. For the redundant task
of T1 (B1), its parts are placed in the time slots between
30ms and 50ms on the schedule of the spare core. For
the last selected original task (T2), its first part T21 is
placed in the time slot [30ms, 35ms]. However, if the
next part of T2 (T22) is placed in the next free time slot
[35ms, 40ms], the chip TDP is violated (this condition
is shown in Figure 4a). This is because, in this case, T22
is executed in parallel with B12 on the spare core, and
hence, the total peak power is 23W that is higher than
the TDP value (B12 consumes 13W and T22 consumes
10W of peak power).
To find a suitable time slot in which the peak power is
less than or equal to 20W, our technique checks the next
free time slots. Therefore, T22 is placed in the time slot
[40ms, 45ms] where T22 is executed in parallel with
B13 and the peak power is 18W (i.e., less than TDP).
After placing T22, the last part of T2 (T23) is placed in
the next free time slot [45ms, 50ms]. For the redundant
task of T2 (B2), the parts B23 and B22 are placed in
the time slots [25ms, 30ms] and [20ms, 25ms] in the
schedule of the spare core, respectively. This can be
done because when B22 and B23 are executed in parallel
with T13 and T14, the peak power is less than 20W (as
shown in Figure 4a). After placing B22 and B23, the
next free time slot is [15ms, 20ms]. However, the next
part of B2(B21) cannot be placed there, because if B21
is executed in parallel with T12, the peak power will
be 21W (T12 consumes 13W and B21 consumes 8W
of peak power), and hence, the chip TDP is violated.
Therefore, in order to meet the TDP constraint, our
technique checks the next free time slots to find a
suitable time slot in which the peak power is less than
or equal to 20W. Finally, B21 is placed in the time slot
[10ms, 15ms] where B21 on the spare core is executed
in parallel with T11 on the primary core and the peak
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FIGURE 4. Scheduling the tasks of the example in Section IV.A. a)
Shifting the parts of B3 and B1 on C2, respectively, b) Final schedule for
the worst-case fault scenario, c) Fault-free execution.

power is 19W (i.e., less than the TDP). Figure 4b shows
the final schedule where the peak power consumption
of the system is kept below the TDP and even if both
the original and redundant copies of all of the tasks
are executed (i.e., under the worst-case fault scenario).
As shown in this figure, this schedule meets the timing
and TDP constraints.

3) Tasks Execution (Run time): Figure 4b shows the
maximum power consumed by the system in the
worst-case fault scenario where all the original and
redundant tasks are executed completely. However,
at run time, when during the execution of a task no fault
occurs, i.e., the predominant execution scenario [50],
the execution of the second copy of the task will be
cancelled. Figure 4c shows the case where no fault
occurs during the execution of the tasks. In Figure 4c,
the dashed line shows the power values which is con-
sidered in our scheme, and the straight line shows the
real power values, at run time. When T3 on the primary

core finishes successfully at t = 10ms, its redundant B3
(B31 and B32) is dropped from the schedule of the spare
core. Also, when T1 finishes successfully at t = 30ms,
all parts of its redundant B1 will be canceled. As we
explained earlier, in our system, a redundant task may
finish before its original task finishes (even before it
starts). No matter what copy of a task finishes first,
after finishing the first copy of a task, if no fault has
occurred, the second copy is dropped from the sched-
ule to avoid extra power consumption. For instance,
as shown in Figure 4c, when the redundant task B2
finishes successfully at t = 30ms, our technique drops
all parts of the original task T2 from the schedule of the
primary core.

B. FORMAL PROBLEM DEFINITION
We formulate the problem using integer linear programing
(ILP), and use the following notation to demonstrate the
system power consumption and task-to-core mapping [46].
In this formulation, n is the number of ready tasks in the task
set, m is the number of execution parts of the tasks, p is the
number of free core pairs and t is the number of time slots in
each execution frame of the task set:
• The peak power consumption is represented by the
matrix PPεRn×m×p×t , in which each element PPijkl
denotes the peak power consumption of the time slot l
when the jth part of the task Ti (Tij or Bij) is executed on
the core k .

• The task-to-core-pair mapping is represented by the
matrix Xε{0,1}n×m×p×t . The jth part of the task Ti (Tij
or Bij) is mapped to the core k at the time slot l if and
only if Xijkl = 1.

The goal of our technique is to keep the total peak power
consumption under a given TDP constraint and to meet tasks
timing constraints (deadlines).

1) SATISFIABILITY GOAL
The peak power consumption of the chip (i.e., the sum of the
peak power of all underlying cores in each time slot l) should
be less than the chip TDP constraint:

∀l :
∑
i,j,k

Xi,j,k,lPPi,j,k,l ≤ PPTDP,chip. (2)

Also, peak power consumption of each core in each time slot
l should be less than the core’s TDP constraint (if given):

∀l : Xi,j,k,lPPi,j,k,l ≤ PPTDP,l . (3)

Therefore, this is a 0-1 assignment problem and we have:

∀i, j, k, l : Xi,j,k,l ∈ {0, 1} . (4)

2) TIMING CONSTRAINT
All execution parts of all tasks in the task set have to finish
before the deadline. In Eq. 5, FTl is the finish time of the time
slot l.

∀i, j, k, l : Xi,j,k,lFTl ≤ D. (5)
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3) TASK TIME SLOT ORDERING
In order to guarantee that the order of time slots of a task is
met, we check that the next part of each task Ti(j+1) does not
schedule before the previous parts of the selected task.

∀i, j : tTij < tTi(j+1) . (6)

4) CORE ASSIGNMENT CONSTRAINT
Each execution part of each task can be only mapped to one
core.

∀i, j, l :
∑
k

Xi,j,k,l = 1. (7)

Since solving the above ILP problem and finding a schedule
for a multicore system to optimally minimize peak power
consumption is an NP-hard problem [1], [13], [47], we
present a heuristic to provide a solution for peak power
reduction (see Section IV.C).

C. ALGORITHM AND DISCUSSION
The online part of our proposed scheme consists of two steps:
i) partitioning ready task sets and mapping them to appropri-
ate core pairs and ii) partitioning the tasks to execution parts
and scheduling the parts of the tasks such that chip TDP and
the deadline constraint of the task set are not violated. For task
mapping, we select the core pair with the lowest utilization
to execute the selected ready task. We do this to distribute
the workload evenly between the cores. For task partitioning,
the greatest common divisor (GCD) of the execution time
of the tasks is considered as the partitioning time slot (PS)
and, the tasks are scheduled based on the maximum-peak-
power-first (MPPF) and maximum-peak-power-last (MPPL)
policies. Finally, if it is required, the tasks execution parts are
shifted over the schedule such that the peak power consump-
tion is kept bellow the chip’s TDP.

1) INITIALIZATION STEP (LINES 1-9)
Algorithm 1 shows the pseudo-code of the online task map-
ping and scheduling part of our technique. It gives the task
partitioning and peak power values of the tasks’ execution
parts that are determined at design time and schedules a ready
task set 9 on a multicore system 8. It gives the schedules
Sprimary and Sspare for each core pair in 8. At first, the tasks
are sorted with respect to their maximum power consumption
in line 1. The size ofPS is the greatest common divisor (GCD)
of the execution time of the tasks in line 2. Using PS, the exe-
cution frame (with the length of D) is divided into h = D/PS
slots in line 3. To determine the peak power consumption of
the system in each time slot, we use an array including h slots
with the initial value of 0 (i.e., the power consumption list PL
in line 4). Next, the algorithm iterates until all of the tasks are
scheduled (lines 5-38). In each iteration of the while loop,
we select the task with the largest peak power value in the
task list 9 (line 6). In lines 7 and 8, we divide the original
and redundant copies of the selected task (Ti and Bi) into
parts with size PS (τi/PS is the number of execution parts).

Algorithm 1 The Online Part of Our Technique
Inputs: Set of ready tasks 9 = {T1, T2, . . . , Tn} with the
execution time {τ1, τ2,. . . , τn} and a common deadline D, set of
free core pairs 8 = {CP1, CP2, . . . , CPk}, tasks’ power profile,
and chip TDP value.
Output: The task scheduling Sprimary and Sspare for the primary
and spare cores in each core pair CP.
BEGIN:
1: 9.sort(); //Sort tasks w.r.t the max. power
2: PS = GCD(τi, 1≤ i ≤ n); //Calculate the partitioning time
slot
3: h = D/PS; //Total # of time slots in the
frame
4: PL[1. . .h]= {0}; //Initialize the total power consumption
list
5: while(9 6= Ø) do
6: Ti = 9.remove(); //Select the task with the max. power
7: Ti = {Tij, 1≤ j ≤ τi/PS} //Divide Ti into parts with the
size PS
8: Bi = {Bij, 1≤ j ≤ τi/PS} //Divide Bi into parts with the
size PS
9: ϕ = minutilization{CPl , 1≤ l ≤ k};
- - //Scheduling Ti on ϕ.Sprimary based on theMPPF policy
10: k = 1;
11: foreach part Tij starting from the first part do
12: foreach free slot s = k → h in ϕ.Sprimary do
13: if PL[s]+peak_power(Tij) ≤ TDP then
14: ϕ.Sprimary.add(s,Tij);
15: PL[s] = PL[s]+ peak_power(Tij);
16: k = s+1;
17: break;
18: end if;
19: end for;
20: if Tij has not been placed then
21: return infeasible;
22: end if;
23: end for;
- - //Scheduling Bi on ϕ.Sspare based on theMPPL policy
24: k = h;
25: foreach part Bij starting from the last part do
26: foreach free slot s = k →1 in ϕ.Sspare do
27: if PL[s]+peak_power(Bij) ≤ TDP then
28: ϕ.Sspare.add (s,Bij);
29: PL[s] = PL[s]+ peak_power(Bij);
30: k = s–1;
31: break;
32: end if;
33: end for;
34: if Bij has not been placed then
35: return infeasible;
36: end if;
37: end for;
38: end while
END

To provide core usage efficiency, we schedule the selected
task on the core pair with the lowest utilization (denoted by
ϕ in line 9).

2) SCHEDULING THE ORIGINAL TASKS BASED ON MPPF
(LINES 10-23)
The parts of Ti beginning from the first one, are placed in
the time slots that come earlier in the schedule ϕ.Sprimary
(lines 11-23). We use the variable k to determine the first
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time slot in which the current part of Ti (Tij) can be placed.
When Tij is placed in a time slot s, the next part (Tij+1)
can be placed in a time slot starting from the next time slot
s + 1. Starting from k , we check free time slots one after
another and place each part Tij in the first free time slot s
(s = k → h) in which the peak power consumption of Tij
does not increase the total power consumption beyond the
chip TDP (PL[s]+peak_power(Tij) ≤TDP). In this case, Tij
is placed in the sth time slot of ϕ.Sprimary in line 14. The power
consumption list is updated in line 15 and the variable k is
updated in line 16. If there is no such time slot, the algorithm
is not feasible and returns in line 21.

3) SCHEDULING REDUNDANT TASKS BASED ON MPPL
(LINES 24-37)
After scheduling the original tasks, we place the parts of the
redundant tasks, beginning from the last part, in time slots
that come later in the schedule ϕ.Sspare (lines 25-37). To do
this, the variable k determines the free time slots starting
from the end of the execution frame (i.e., k is initialized
to h in line 24). Therefore, when the current part of the
redundant task Bi (Bij) is placed in a time slot s, the next
part Bij+1 can be placed in the next time slot starting from
s-1. We check the free time slots one after another starting
from k and place Bij on the first free time slot s (s =
k →1) in which the peak power consumption of Bij does
not increase the total power consumption beyond the chip
TDP (i.e., PL[s]+peak_power(Bij) ≤TDP). In this case, Bij
is placed in the time slot s of ϕ.Sspare in line 28. The power
consumption list is updated in line 29 and the variable k is
updated in line 30. If Bij has not been placed in any time slot
on ϕ.Sspare, the algorithm is infeasible and returns to line 35.
Finally, it should be noted that Algorithm 1 can be applied to
task graph applications such that the dependencies between
the tasks should be considered for execution.

At run time, when a copy of a task that comes earlier
in the schedule finishes (regardless of whether the task is
original or redundant), our technique performs fault detection
to check the correctness of the task execution. If no fault has
occurred, the other copy of the task is cancelled to prevent
consuming extra power. However, if the first copy of the
task is faulty, we continue executing the second copy to
achieve fault tolerance execution. Also, in our system, when
a core is temporarily idle (i.e., there is no task for execution)
the core is put into sleep mode to further reduce power
consumption. It should be noted that the time complexity
of our proposed algorithm depends on the partitioning size.
If the partitioning size is very small, the number of context
switches between partitions increases. By using the GCD of
the tasks’ durations, we determine the points in each program
that can be used as possible partitioning points (but they are
not necessarily used for partitioning). As the final discussion
of this section, we discuss the time incurred to meet the
TDP, timing and reliability constraints simultaneously. Since
we shift some tasks to the next time slots to reduce peak
power, we require more time slots for meeting the deadlines.

Therefore, our proposed scheme incurs more time overhead
as compared to other schemes that consider fewer constraints,
e.g., the references [16] and [20].

D. ANALYSIS OF TIME COMPLEXITY
In the algorithm, n is the number of frame-based tasks, k is
the number of free core pairs, m is the number of free cores,
and h is the total partitioning time slots. In Algorithm 1, the
ready tasks are sorted in O(n log (n)). The main While loop
iterates for O(n × m × h) times. The For loops iterates for
O(n× k×h) times. Finally, the algorithm schedules the tasks
such that the TDP constraint is met. This step is also done in
O(m×n×h). Therefore, the order of the algorithm ismax{O(n
log (n)), O(m× n× h), O(n× k × h)}.

FIGURE 5. Our tool flow for processor synthesis, scheduling simulation,
and power and energy evaluation.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
Figure 5 shows our tool flow and simulation setup with
processor synthesis, logic simulation, fault generation and
injection, scheduling simulation, and power evaluation.
To evaluate the efficiency of our technique, we developed
a system-level simulator that is equipped with power and
performance characteristics for the LEON3 processor [48]
obtained through ASIC synthesis. To do this, we synthe-
sized a VHDL implementation of LEON3 with Synopsys
Design Compiler and a TSMC 45nm low-power standard
cell library. The processor features direct-mapped, 4Kbyte/set
and 32Byte/line instruction and data caches. The Memory
Management Unit (MMU) includes 8-entry instruction and
data TLB entries with a fast write buffer and 4kMMU page
size.

To realize a wide range of competing real-world appli-
cation scenarios, we selected several benchmark appli-
cations from different program groups of MiBench [49]
including automotive, consumer, network, office, security
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TABLE 1. The selected benchmark applications from different program groups of MiBench [49].

FIGURE 6. Characteristics of the benchmark applications. (a) Execution
time, (b) Maximum and minimum power consumption.

and telecommunication. The MiBench Benchmark suite has
been widely used in previous related works [1], [18], [50].
MiBench has different program groups and to have a fair anal-
ysis, we used applications from all of the different program
groups including automotive, consumer, network, office,
security, and telecommunication.We have shown the selected
benchmark applications from different program groups of
MiBench with the red color in Table 1. It should be noted
that in embedded real-time systems, such features and timing
constraints of the system are known at design time to ensure
guarantees during their real-world operations [51], [52]. The
worst-case execution time, the peak power consumption, and
energy consumption of applications can be calculated at
design time, as it has been demonstrated by various leading
groups [2], [53]–[55], and industries related to automotive
and industrial systems that strictly consider such worst-case
analysis at design time. Therefore, we conducted experiments
on various task sets including real-life embedded applications
from the MiBench Benchmark suite [49]. The execution time
and power consumption of the tasks were obtained through
processor synthesis and gate-level simulations (the proces-
sor operates at 1.23Volt and 970MHz). In our experiments,
we used the parameter core utilization (L) to consider dif-
ferent workloads in the simulations. It should be noted that
this parameter determines themaximum (but not the absolute)
core utilizations in each simulation case. The cores are set
to different utilizations, but the utilization values can vary
up to L. To study the effects of system workload on our
scheme, we considered four core workload classes: L = 0.6,

0.7, 0.8 and 0.9. The workload values determine the cores’
utilization in the experiment (e.g., for the workload L = 0.6
the utilization of each core is considered to be 0.6). For each
workload value, we generated 100 task sets from the tasks
in V-B and the average results were reported, similar to [50].
We also considered different chips withm = 4, 8 and 16 cores
and with different TDP values. In addition to the power
profiles of the tasks in V-B b that were derived for a given
input data set, we generated several random power profiles
for the tasks to realize a good coverage of real-world input
data sets. To generate synthetic power profiles, in a power
profile of a task, the instantaneous power consumption was
randomly generated between the minimum and maximum
power consumption of the task obtained from V-Bb. In this
section, in the figures, we called our technique ‘‘RAPPM’’.

We compare our technique with the following state-of-the-
art power management techniques:
• [16]-APM: A scheme that addresses average-power

management in conjunction with fault-tolerance. This
scheme executes original tasks as soon as possible and
redundant tasks as late as possible, hoping that the
original tasks finish successfully and the redundant
tasks cancel to prevent extra power consumption (like
that is shown in Figure 1b). We selected [16]-APM
for comparison to highlight the important differences
between peak-power and average-power management.

• ConvPB [41]: The conventional primary-backup
scheme where each redundant task is executed in
parallel with its original tasks (like that is shown in
Figure 1a).

The comparisons are performed for two scenarios, i.e., (1)
the worst-case fault condition when the system consumes the
maximum possible power (Section V.B), and (2) the average-
case execution scenario including both faulty and fault-free
scenarios (Section V.C).

B. WORST-CASE EXECUTION CONDITION ANALYSIS
The worst-case fault condition where all redundant tasks
are executed as well as original tasks, although pessimistic,
determines the maximum power consumed by the system.
Therefore, it can be considered as a good condition to com-
pare peak power management techniques. Figure 7 shows
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FIGURE 7. Power consumption profile for a frame-based task set in the worst-case execution condition.

the power consumption of our technique and the [16]-APM
scheme for different numbers of cores (m = 4, 8 and 16) and
core workloads (L = 0.6, 0.7 and 0.8). As Figure 7 shows,
our technique reduces peak power by distributing the power
consumption over the whole execution frame. This figure also
determines the maximum peak power that is consumed by
our technique (the dashed TDP line in Figure 7). This is the
minimum possible value for the TDP constraint of the system
that can be satisfied by our technique. For example, when our
technique is used for a system with m = 4 cores under a core
workload of L = 0.6 (Figure 7a), the chip TDP can be as low
as 1.75W. However, the [16]-APM scheme misses this TDP
constraint.

In Figure 7, for each system configuration we used only
one random task set to provide insight into how our technique
reduces peak power consumption. To provide a more detailed
analysis, for each system configuration we used more task
sets and the average results are shown in Figure 8. In this
experiment, the minimum peak power consumption of our
technique is considered as the chip TDP constraint and the
peak power consumption of the schemes are normalized with
respect to TDP (the normalized peak power of our technique
is 1). The following observations can be made from Figure 8:

• The peak power consumption of our technique is far less
than those of the [16]-APM and ConvPB schemes for
all system configurations and core workloads. Our tech-
nique provides up to 39.1% and 50% peak power reduc-
tion compared to the [16]-APM and ConvPB schemes,
respectively.

• When the number of cores increases (Figure 8a), the
peak power reduction of our technique is higher than that
of the other schemes. In this case our technique provides
up to 43.8% and 44.7% peak power reduction compared
to the [16]-APM and ConvPB schemes, respectively.

• When the core workload increases (Figure 8b), the peak
power consumption of our technique increases and the
difference between the three schemes reduced. However,
our technique still outperforms the two schemes. In this
case, our technique provides up to 44.75% and on aver-
age by 37.31% peak power reduction compared to [16]-
APM and ConvPB.

FIGURE 8. Normalized peak power to TDP in the worst-case fault
condition. a) Under the core workload L = 0.7, b) For the number of cores
m = 8.

C. AVERAGE-CASE EXECUTION CONDITION ANALYSIS
We study the average-case execution condition where both
faulty and fault-free execution scenarios were considered.
To do this, we exploited a system-level fault injection
where transient fault rate is equal 10−7 faults per sec-
ond [16], [20], [44]. At first, we generate a fault vector
that determines at which times faults occur. Then, based
on the fault vector, we decide which task becomes faulty
during the execution of a task set. Since transient faults
are rare, the online part of our technique achieves further
power reduction beyond what is achieved through the offline
part of our technique at design-time. It cancels unnecessary
task execution whenever the first copy of a task finishes
successfully, resulting in a significant power reduction. Note
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FIGURE 9. Power consumption profile for a frame-based task set in the average-case execution condition under the fault rate = 10−7.

that the offline part of our technique guarantees meeting the
TDP constraint. Nonetheless, reducing the average power
consumption through the online part of our technique reduces
the system energy consumption as well.

Figure 9 shows the execution of the task sets that were
deployed in Figure 7, but in the average-case execution con-
dition (where some tasks may become faulty). Recall that
in Figure 7 the task sets were executed in the worst-case
fault condition where it was considered that all tasks become
faulty. As shown in Figure 9, both our technique and
the [16]-APM schemes provide relatively less peak power
consumption compared to the worst-case fault condition in
Figure 7. This is because they cancel the second copy of the
tasks that finish successfully. However, the power consump-
tion of the [16]-APM scheme still increases beyond the TDP
constraint even when no fault occurs. Also, as it can be seen
from Figure 9, both schemes consume no power at the end
of the execution frame. This is because, at the end of the
execution frame, the first copy of the tasks may have already
finished successfully (when no fault occurs) and the second
copy of the tasks are cancelled. Therefore, considering that
the fault rate is low, almost always at the end of each execution
there is no task to be executed and the underlying cores go to
sleep mode and consume no power. It should be noted that
the deadline of each figure of Figure 9 is the last number of
each figure (x-axis).

Figure 10 shows the average power consumption of our
technique, [16]-APM and ConvPB schemes where the power
consumption values are normalized with respect to the
power consumption of our technique (i.e., the normalized
power consumption of our technique is 1). As Figure 10
shows, our technique significantly reduces the average power
consumption as compared to the [16]-APM and ConvPB
schemes (our technique reduces the average power con-
sumption to 30.4% and 49.7% of those of [16]-APM and
ConvPB). Also, as Figure 10a shows, under a given core
workload, the average power reduction of our technique com-
pared to the other schemes does not change by increasing
the number of cores. However, when the core workload
increases, our technique provides higher power reduction as
compared to [16]-APM (i.e., the normalized average power

FIGURE 10. Normalized average power to our technique in the
average-case execution condition. a) Under the core workload L = 0.7,
b) For the number of cores m = 8.

of [16]-APM increases from 1.16 to 1.44 in Figure 10b). This
is because our technique cancels more unused task copies
compared to [16]-APM. Note that, in all cases (for allm and L
values) the average power consumption of ConvPB is almost
twice the average power consumption of our technique. This
is because ConvPB always executes all original and redun-
dant tasks, while our technique usually executes only one
copy of each task, while providing the same fault tolerance
capability. In our technique, the second copy of a task is
executed only when a fault occurs during the execution of
the first copy of the task. In this case, we also compared the
energy consumption of our technique with [16]-APM. The
experiments show that our technique completely outperforms
[16]-APM from the energy consumption viewpoint. The our
technique scheme provides on average respectively 14.3%
(up to 28.1%) energy saving as compared to [16]-APM.
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FIGURE 11. Normalized peak power to TDP in the worst-case fault
condition comparing between our proposed technique and [56] -EM.

FIGURE 12. Accuracy and run-time efficiency comparison with the
exhaustive simulation.

Recently, Roy et al. [56] have proposed a primary-backup
technique that reduces the energy consumption for heteroge-
neous multicore systems. In order to provide a fair compari-
son between our proposed technique and [56]-EM, we apply
our task and hardware model to this work and repeated
the simulations. For these simulations, we have considered
different numbers of tasks ranging from 5 to 30 tasks and
compare our proposed technique and [56]-EM in the terms of
peak power consumption. As shown in Figure 11, the peak
power consumption of our technique is far less than [56]-
EM for different number of tasks. Our technique provides
up to 35.6% (on average by 19.3%) peak power reduction
compared to [56]-EM.

Finally, we have compared our proposed technique to
exhaustive simulation for reducing peak power consumption.
For these simulations, we have considered different numbers
of tasks ranging from 5 to 30 tasks. The experiments in
Figure 12 show that our technique deviates by an average of
3.1% in the terms of power efficiency, but speeds up the peak
power management decision time by a factor of up to 1230X.

VI. RELATED WORK
Many related works use dynamic voltage and frequency scal-
ing (DVFS) [35], [44], [53], [57] to manage average power
consumption [53], [54], [58]. In a multicore system where
each core individually uses DVFS, the problem of minimiz-
ing the peak power consumption can be considered as the
problem of minimizing the average power consumption [59].
However, due to scaling down the supply voltage, the rate of
transient faults increases significantly [55], [60]. Moreover,
due to chip-area cost and power consumption overhead of
on-chip controllable power supplies, per-core DVFS may
not be applicable for multicore systems featuring hundred

cores [13]. Therefore, in this article, we use Dynamic Power
Management (DPM) [61] to reduce the peak power con-
sumption. DPM dynamically turns on/off system components
to provide the requested services with a minimum number
of active components [61]. In the following, we partition
the previous related works into two parts: i) Power-Aware
Reliability Management, and ii) Peak-Power Management.

A. POWER-AWARE RELIABILITY MANAGEMENT
Most of the previous researches focused on average power
and energy consumption in fault-tolerant embedded sys-
tems [44], [50], [53], [55]. Also, some studies concentrated
on thermal management in multicore systems [62], [63].
Fisher et al. [62] have proposed a global thermal-aware
scheduling for sporadic tasks to minimize temperature.
Jejurikar et al. [63] minimize energy consumption by consid-
ering the real-time constraints by using a deferment interval
for each task. However, most of the studies in this field have
focused on reducing the average power and energy consump-
tion and have not considered peak power management.

B. PEAK-POWER MANAGEMENT
Some related works focused on minimizing the peak power
consumption under real-time constraints [1], [13], [64].
Lee et al. [1] have proposed a new scheduling algorithm
for real-time tasks to minimize chip-level power consump-
tion, without relying on any extra hardware (e.g., DVFS
controller). This work restricts the concurrent execution of
tasks that are assigned to different cores. Lee et al. [64]
has proposed a task scheduling that prevents the occurrence
of the peak power consumption for task-graph models. The
proposed algorithm in [64] schedules the tasks, consider-
ing data dependency information while reducing the peak
power. As one of the most related work, Munawar et al. [13]
have presented a scheme to minimize the peak power for
frame-based and periodic tasks with real-time constraints
on multicore systems. They schedule the sleep cycles for
each active core to manage the peak power. These works
try to minimize peak power and do not consider fault tol-
erance against transient faults. In this article, we consider
peak power management for a fault-tolerant technique (the
primary-backup technique) on multicore systems. Recently,
Ansari et al. [18] proposed a peak-power-aware reliabil-
ity management method that manages peak power overlaps
between concurrently executing tasks such that the system
reliability is preserved at an acceptable level while guaran-
teeing to keep the total power consumption of cores below
the chip TDP and the power consumption of each underlying
core below the core TDP constraint. It should be noted that
the application model in [18] is task graph and hard real-
time, while the model in this article is frame-based and soft
real-time. It should be noted that in the context of real-time
systems, this difference in application model is a fundamental
switch from hard real-time to soft real-time, which is a shift
from literature, e.g., from [31] to [32]. This difference in
application model results in difference in almost all the other

142854 VOLUME 8, 2020



M. Ansari et al.: Peak-Power-Aware Primary-Backup Technique for Efficient Fault-Tolerance

aspects including scheduling policies, energy management,
experiments and experimental setup, etc. Another important
difference is that the work in [18] considers the NMR tech-
nique for fault avoidance, while in this article we consider
the primary-backup technique for fault tolerance, which is
quite different from NMR and changes the problem fun-
damentally. Furthermore, unlike the work in [18], in this
article we only exploit dynamic power management because
per-core DVFS (used in [18]), due to chip-area cost and power
consumption overhead of on-chip controllable power sup-
plies, may not be applicable for multicore systems featuring
hundred cores [13]. Generally, in this article, we exploit the
primary-backup technique to achieve high reliability for mul-
ticore embedded systems and propose a scheme to keep the
chip-level peak power consumption under its TDP constraint.

Note that in this article, we have solved the peak power
problem using a primary-backup technique for a soft real-
time non-preemptive frame-based task model. In the con-
text of real-time systems, the difference in the objective
function and application model is very fundamental. Indeed,
different objective functions and application models result
in difference in almost all other aspects including schedul-
ing policies, power management, experiments, experimen-
tal setup, etc. To do this, in this article, we have proposed
a peak-power-aware primary-backup technique that enables
task-level redundancy to achieve fault tolerance in multicore
embedded systems under timing and TDP constraints.

VII. CONCLUSION
We proposed a peak-power-aware primary-backup technique
that manages peak power consumption for reliable task
execution (i.e., using the primary-backup technique) on mul-
ticore systems through managing time overlaps between con-
currently executing real-time tasks. To do this, we partition
original and redundant tasks, and schedule them on core pairs
in a multicore system under chip’s TDP constraint without
violating the tasks’ timing constraints. For the offline part
of our technique, we developed maximum-peak-power-first
(MPPF) and maximum-peak-power last (MPPL) policies to
minimize peak power overlap between original and redun-
dant tasks. This part guarantees meeting the chip TDP in
the worst-case fault condition. For the online part of our
technique, we exploit a scheme that provides further power
reduction in the average-case execution condition. It cancels
the execution of the second copy of those tasks that have no
fault in their first copy’s execution. The experimental results
show that our technique provides up to 50% peak power
reduction compared to state-of-the-art schemes. In summary,
our technique enables task-level redundancy to achieve reli-
ability improvement in multicore systems under tight power
consumption constraints.
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