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ABSTRACT The DFT-based demodulator for BFSK has been introduced for applications where the received
signal experiences a carrier frequency offset (CFO) much larger than the symbol rate. The Ultra-Narrowband
(UNB) communication techniques have been introduced for implementing the emerging Low Power Wide
Area Networks (LPWAN). Since UNB communication is prone to CFO, a DFT-based BFSK demodulator is
an interesting option for this type of communication. However, for proper operation in a large frequency
offset, the DFT-based demodulator requires a complex window synchronization which is not desirable
for low power nodes. The main source of complexity, is calculating the DFT of a window which slides
over the preamble. In this work, the complexity is alleviated by considering the window synchronization
algorithm and its implementation together. First, a new window synchronization algorithm is proposed
which is designed such that an efficient class of implementations of the sliding DFT (SDFT), called Single
Bin SDFT (SB-SDFT) in this work, can be used. Moreover, a new stable implementation of SB-SDFT is
designed to enable zero-padding which is required by the demodulator. The complexity of the proposed
algorithm implemented using the SB-SDFT, scales more efficiently compared to the conventional algorithm
when the range of tolerable CFO increases. Using the proposed method, for a CFO tolerance in the order of
14.5 times the symbol rate (±14.5 kHz for a symbol rate equal to 100 Hz), the number of complex operations
is reduced by more than 85% (and memory by 90%) compared to the conventional method.

INDEX TERMS Frequency shift keying (FSK), frequency offset, sliding DFT, ultra-narrowband (UNB),
offset tolerant demodulator.

I. INTRODUCTION
The concept of Low Power Wide Area Networks (LPWANs)
has been recently introduced as an attractive technology to
address a variety of IoT applications [1], [2]. LPWANs focus
on low data rate applications which need a long range and
favor a battery life as long as ten years or more. One of
the proposed communication techniques for implementation
of LPWAN is Ultra-Narrowband (UNB) communication [3],
[4]. UNB offers very low data rate but its wide coverage,
low cost devices, unlicensed band and robustness against
interference makes it an attractive technology for LPWAN
implementation [3], [5]. One of the challenges in a UNB
communication system is Carrier Frequency Offset (CFO).
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It is particularly challenging in downlink communication as
a low power node needs to receive a signal with frequency
offset [6]. Considering the ultra-narrow bandwidth of the
signal (as narrow as 100 Hz), using a low cost crystal without
thermal compensation can lead to a CFO which is several
times the symbol rate at the receiver [7].

CFO is a well-known problem in communication systems.
It is either a consequence of mismatch between oscillators
in the communication nodes or the Doppler shift resulting
from their relative movement. Offset tolerant demodulators
have been proposed in the last decades as a solution to this
problem in low data rate satellite communications where the
CFO is larger than the data rate [8], [9]. Such demodulators
can also be used in UNB communications [6], [10], [11]. The
ability of the demodulator to tolerate CFO relaxes (or even
eliminates) the requirement for time and power consuming
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carrier recovery as well as costly precise crystals with power
hungry thermal compensation. Thus, a low power commu-
nication node for wireless sensor networks and IoT can be
designed.

A DFT-based demodulator for BFSK is an example
of aforementioned offset tolerant demodulators [8], [10].
To properly select the samples of a symbol for which the
DFT is calculated, a window synchronization is required.
To enable large offset tolerance for the demodulator, a win-
dow synchronization algorithm based on DFT is proposed
by Hara et al. in [8] (also used in [10]). For tolerating large
frequency offset using DFT-based demodulator, it must be
implemented together with this window synchronization.
Thus, the synchronization is discussed as a phase in the
demodulator operation in this work. The main challenge
of implementing this demodulator is the complexity of the
synchronization algorithm which also increases when the
tolerable frequency offset increases. In our previous work
[12], a low complexity window synchronization algorithm
was proposed and a Single Bin Sliding DFT (SB-SDFT)
structure was introduced to efficiently implement the pro-
posed algorithm.

This article elaborates on our previous design, mathemat-
ical formulation and related literature while, additionally,
contributes to extending and analyzing it. The stability of
the SB-SDFT proposed in [12] is considered and a stabilized
version (using a damping factor) is proposed. The complexity
is analyzed when the new stabilized SB-SDFT is utilized
for implementing the proposed algorithm. In addition to the
AWGN channel, which was considered in [12], in this work
the BER performance in fading channel is also presented.
Compared to our previouswork, amore efficient implementa-
tion of the conventional synchronization algorithm is derived
and used as the benchmark for complexity. This makes the
complexity comparison between the proposedmethod and the
conventional algorithm more realistic compared to our previ-
ous work. To increase the range of the tolerable frequency
offset, the sampling frequency increases (a larger number
of samples per symbol, N ). In our previous work, BER
performance and complexity results were presented only for
N = 8; however, here, the BER performance and complexity
are demonstrated for different values of N . This helps us to
illustrate how the demodulator scales for larger values of N
i.e. a larger tolerable frequency offset. Moreover, the design
parameters, including the damping factor, are determined
using simulations.

The paper is outlined as follows. The DFT-based demod-
ulator and the conventional window synchronization algo-
rithm (Hara synchronization) are briefly explained in the next
section to properly define the problem and show how we can
interpret the calculations of the algorithm as a sliding DFT.
Section III looks into related work on the efficient implemen-
tation of a sliding DFT while jointly motivating the design
of the proposed synchronization algorithm and the proposed
SB-SDFT. Subsequently, the proposed synchronization algo-
rithm is presented in Section IV. Next, section V elaborates

on the proposed SB-SDFT and derives its stabilized version.
The complexity analysis follows in Section VI to obtain
expressions for the number of operations and memory use.
Numerical results and discussions are included in section VII.
Finally, section VIII concludes the paper.

II. BACKGROUND AND PROBLEM DEFINITION
In this section, first, the principle of the DFT-based demod-
ulator in [10] is explicated to familiarize the reader with the
base of this work. Then, the window synchronization algo-
rithm introduced in [8] (and also used in [10]) is described
to clarify the algorithm which is used as a benchmark with
respect to performance and complexity. In the last subsection,
a primary overview of the complexity of the demodulator is
provided. It is shown that the synchronization complexity is
dominant and should be alleviated.

A. THE PRINCIPLE OF THE DEMODULATOR
The block diagram of the DFT-based demodulator in [10] is
shown in Fig. 1. Signal samples pass through a low pass filter
prior to the demodulator. The set of complex samples belong-
ing to a symbol are selected by a rectangular window which
needs to be synchronized (aligned with symbols).When these
samples are selected by a correctly synchronized window,
they are padded with zeros and sent to the DFT calculation
block. The zero-padding factor is defined as I whichmeansN
samples of the signal are padded byN (I−1) zeros to achieve a
zero-padded sequence with lengthNI as the input of the DFT.
Finally, the decision for each BFSK symbol is made based on
the magnitudes of the DFT for k0 and k1 which are the DFT
bins corresponding to the frequencies of symbol zero (f0) and
one (f1) of BFSK modulation, respectively.

FIGURE 1. Baseband block diagram of the DFT-based demodulator.

Zero-padding is used to improve bin resolution of the DFT
as explained in [8]. In [8] and [10], I = 8 is chosen because
increasing it further adds complexity but does not improve
the BER performance. The frequency separation of the BFSK
modulation is assumed to be equal to the symbol rate (f1 =
fc + 1/2T and f0 = fc − 1/2T where T is the symbol period
and fc is carrier frequency for passband signal and CFO for
the baseband signal). In this work we also consider I = 8 and
a frequency separation equal to the symbol rate.

To tolerate a large frequency offset, the lowpass filter
in Fig. 1 might be much wider than the signal bandwidth.
Moreover, complying with the Nyquist criterion (with respect
to the filter bandwidth) necessitates a higher sampling fre-
quency. The sampling frequency is assumed to be N times
the symbol rate RSym (N complex samples per symbol).
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FIGURE 2. The relation between the filter bandwidth, the tolerable
frequency offset and the sampling frequency.

To increase the offset tolerance, the sampling frequency and
the number of samples per symbol, N , must be increased.
The relation between the filter bandwidth, the sampling fre-
quency, the signal bandwidth and the tolerable frequency
offset are shown in Fig. 2. Bt is the transition band of the
filter and BF is the filter bandwidth including the transition
band. The sampling frequency (for complex samples) is set to
Fs = 2BF to avoid aliasing and noise folding. The bandwidth
of the baseband signal is BS/2 (where BS is the bandwidth of
the passband signal) and the maximum tolerable frequency
offset is shown ±fO,max .

Two phases can be distinguished in the demodulator oper-
ation; synchronization and detection. In the synchronization
phase, the window must be aligned to the received symbols;
otherwise, frequency components of the adjacent symbols
introduce inter-symbol interference. Furthermore, the DFT
frequency bins corresponding to the frequency of symbol one
(k1) and zero (k0) of the BFSK modulation are determined
in this phase. In the detection phase, the DFT is calculated
for samples of each symbol. For each symbol the decision is
made by comparing the magnitude of the DFT bins k1 and k0.

B. THE WINDOW SYNCHRONIZATION ALGORITHM
The window synchronization algorithm described here has
been introduced by Hara et al. [8] and, in the rest of this
work, is referred to as Hara synchronization or conventional
synchronization algorithm. This algorithm uses a preamble
of alternating ones and zeros (1, 0, 1, 0, . . .). The number of
symbols in the preamble is denoted by L. For each symbol,
windows with different delay values, between 0 and N − 1,
are considered. Note that, because of oversampling, each
symbol consists of N samples. Only one of these windows
is fully aligned with a symbol and others include samples
of two consecutive symbols. Fig. 3 illustrates the first three
symbols of the preamble and the windows in case of four
samples per symbol (each square is a sample). The double-
headed horizontal arrows denote windows. Each row of
arrows corresponds to a certain delay value as shown in
the figure. Solid (dotted) arrows show the windows for an
Odd (Even) symbol with different delay values. The sym-
bols of the preamble are called Even and Odd depending
on their index m = 1, . . .L. Fig. 3 also shows how the
magnitude of the DFT changes for different delays. When
the DFT for each window is calculated, for each delay value,

FIGURE 3. Three symbols of a preamble starting with symbol one,
the windows of different delay values for the first two symbols and an
example of spectrum variation when there are 4 samples per symbol.
Solid and dotted lines show windows and spectra of odd and even
symbols (which in this figure are considered to be 1 and 0), respectively.

all DFT magnitudes corresponding to Odd symbols (Even
symbols) in the preamble are added together to achieve the
following.

SOi (k) =
L/2∑
n=1

|X ik,2n−1|
2 (1)

SEi (k) =
L/2∑
n=1

|X ik,2n|
2 (2)

where X ik,2n (X ik,2n−1) is the DFT value for the k th bin and
symbol 2n (2n−1) with a window delay i. Considering Fig. 3,
(1) and (2) actually calculate the sum of the DFT magnitudes
for solid windows within one row of arrows and the sum of
those for dotted windows, respectively.

To synchronize the window, the Hara algorithm finds the
delay value for which Ri in the following equation is maxi-
mized [8], [10].

Ri = [SEi (k
E
i )− S

E
i (k

O
i )]+ [SOi (k

O
i )− S

O
i (k

E
i )], (3)

where kEi and kOi are the bins with maximum magnitude in
SEi and SOi , respectively. Finding the maximum of (3) is sim-
ply finding the delay value which maximizes the difference
shown by D in Fig. 3 which in the specific case of Fig. 3 is
for Delay = 0. When the delay value is found, the k1 and k0
can be achieved from kOi and kEi , respectively.

C. AN OVERVIEW OF COMPLEXITY
In the synchronization phase, all bins of an NI -point DFT are
calculated over all symbols of the preamble and N different
windows for each symbol in the preamble. In the detection
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phase, only two bins of the DFT are required for each symbol.
Calculating only two bins of the NI -point DFT using the
definition of the DFT series requires 2(N − 1) complex
multiplications (notice that there are onlyN non-zero samples
in the zero-padded set of samples). The synchronization is
done once in a packet; however, the packet length is short
in target applications (in the order of 200 symbols) [4], [6],
[7] which makes the complexity of the synchronization a sig-
nificant overhead. Moreover, the operations required for the
synchronization phase are executed in a shorter period of time
compared to the detection phase which leads to high instan-
taneous power consumption. Thus, it might be unsuitable
for applications where the maximum instantaneous power
is limited (such as energy scavenging applications). Thus,
the complexity of the synchronization algorithm is dominant
and needs to be alleviated.

In our previous work and the current paper, the DFT
calculations required for the window synchronization are
interpreted as calculating DFT for a window which slides
over a sequence of samples (see the arrows in Fig. 3). DFT
for a window sliding over a sequence can be implemented
efficiently using sliding DFT algorithms. Thus, this inter-
pretation enables us to achieve an efficient implementation.
The next section elaborates on implementing the sliding DFT
reviewing related literature and clarifies the motivation for
the proposed window synchronization algorithm and the pro-
posed SB-SDFT.

III. RELATED WORK ON SLIDING DFT
Calculating the DFT for a window which is sliding over a
sequence is called Sliding DFT (SDFT). As a computation-
ally intensive block, many researchers have investigated the
efficient implementation of the SDFT. In case of a sliding
window, only one sample (or a few samples) is (are) different
between the current set of input samples of the DFT and
the previous set. Exploiting this property, various methods
have been proposed for efficient implementation of the DFT
with a sliding window [13]–[29]. By reusing calculations
done for each window, the DFT of the next window can be
calculated in a more efficient way. For a better understanding,
we categorize the methods into two general groups. The
first group, Complete SDFT (C-SDFT), includes algorithms
that calculate all the DFT bins for each window in a single
structure; whereas, the second category, Single-Bin SDFT
(SB-SDFT), covers algorithms which derive only a single
bin of the DFT. In the next two subsections these cate-
gories are explained. Although the final design in this work
belongs to the SB-SDFT category, review of the C-SDFT
methods is necessary. It helps us to derive an efficient imple-
mentation of the Hara synchronization algorithm (the algo-
rithm explained in the previous section) which is used as
a benchmark for complexity comparison. In the last sub-
section, the conclusions that can be drawn from literature
are pointed out. This subsection also describes how this
insight provokes the design of the proposed algorithm and the
proposed SB-SDFT.

A. COMPLETE SDFT (C-SDFT)
One of the initial examples of an SDFT has been introduced
in [13]–[15]. Based on the conventional Decimation-in-Time
FFT structure and storing calculated intermediate values, this
method decreases the complexity of FFT calculation for the
new coming sample from O(N log2 N ) in the FFT to O(N )
[15]. However, it increases the memory as it needs to store
all the intermediate values. Interpreting the FFT structure as
a prism, Wang et al. [16] proposed a method to calculate the
SDFT. Although its complexity is more than that of the SFFT
in [15], it can be implemented in parallel for faster calcu-
lation [17] which is not necessary in our target application
as it involves very low data rates. Rewriting the sliding DFT
definition and using time shift properties, Montoya et al. have
proposed a sliding DFT method with almost 50% reduction
in the number of complex multiplications compared to the
SFFT [18]. This idea is also extended to a Radix-4 decompo-
sition in [19] which achieves even more savings at the cost
of limiting the DFT points to a power of four. Despite the
complexity reduction achieved in [18], [19], these cannot be
used when zero-padding is involved which is the case in our
target application. A guaranteed stable recursive algorithm
for calculation of all bins is proposed in [20] which is based
on a single bin recursive structure from the same author in
[21]. This method is only applicable in a hopping scenario
where each window hops N/4 samples (N is the DFT size).
Another recursive algorithm for C-SDFT is introduced in
[22] utilizing the observer theory in the control systems. The
algorithm calculates the C-SDFT while solving the stability
problem associated with recursive SDFTs with less memory
than what is required by the SFFT. However, it cannot work
when zero-padding is used in the input sequence. Among the
C-SDFT methods, the technique in [15] (the first mentioned
method in this section) is the best one for implementing
the Hara synchronization algorithm due to its simplicity and
possibility of using zero-padding. This method is called SFFT
in the sequel.

B. SINGLE BIN SDFT (SB-SDFT)
The second group of SDFT algorithms are those which focus
on calculating a single bin of the DFT (SB-SDFT). The core
idea of such systems is based on the shifting property of the
Fourier transform [23]. To clarify, consider the N -point DFT
for Xn = {x(n− N + 1), . . . , x(n)} as follows

Xk (n) =
N−1∑
i=0

x(n− N + i+ 1)W−kiN , (4)

where Xk (n) is the k th DFT bin ofXn andWN = exp(j2π/N ).
Xnk can be written in terms of Xk (n−1), which is the DFT for
Xn−1 = {x(n− N ), . . . , x(n− 1)}, as follows.

Xk (n)=Xk (n−1)W k
N−x(n−N )W k

N + x(n)W
−(N−1)k
N (5)

Noticing thatWNk
N = 1, (5) can be rewritten as:

Xk (n) = W k
N (Xk (n− 1)− x(n− N )+ x(n)) (6)
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FIGURE 4. The simplest form of the SB-SDFT structure [23].

The block diagram of a filter which realizes (6) is depicted
in Fig. 4. It calculates the k th bin of an N -point DFT by
implementing the DFT series for each bin as an IIR filter.

With each incoming sample (each filter iteration), the value
of the k th bin of an N -point DFT is updated for the last N
samples. As a result, when the window hops one sample, only
one complex multiplication and two complex additions are
required to obtain the k th bin for the new set of samples.

As can be seen, in the second stage there is a feedback loop
with a pole on the unity circle of the complex plane. This pole
makes the system conditionally stable. In real applications,
the limited precision of the twiddle factors (W k

N ) can push
the pole out of the unit circle and cause instability. In [23]
a damping factor, r , is used to force the pole inside the unit
circle while compromising the precision of the DFT calcu-
lation and causing errors. Nonetheless, if the damping factor
is chosen close to one, the error can be kept small enough
for many applications. Due to using the damping factor r ,
the method in [23] is also called rSDFT. To overcome the sta-
bility problem without compromising precision, a modulated
SB-SDFT algorithm (modulated-SDFT) has been introduced
in [25]. In this method the time-domain modulation duality of
the Fourier Transform is used to shift any desired frequency
component to the zero frequency. In this way, the pole in the
feedback loop is equal to one and the filter will always be
stable. Although both stability and precision are addressed in
this method, the complexity increases considerably since the
input samples need to be modulated with a proper twiddle
factor.

C. CONCLUDING THE LITERATURE REVIEW
Considering previous work on the sliding DFT, one may
conclude that C-SDFT methods are more efficient if all bins
of the DFT are required; however, if a subset of the bins
are needed, the complexity of an SB-SDFT is lower [29]
(less than half of all bins when SB-SDFT is compared to
SFFT). The Hara synchronization algorithm needs all bins
of an NI -point DFT. Now, if a new algorithm is designed
which only uses a subset of the bins belonging to an NI -
point DFT, the complexity can be decreased using an SB-
SDFT implementation. This is the incentive for designing the
proposed window synchronization algorithm.

On the other hand, as mentioned in section II, zero-padding
is necessary for correct detection in the demodulator. None
of the mentioned SB-SDFT algorithms can be used together
with zero-padding. Hence, for efficient implementation of
the proposed algorithm a modified SB-SDFT is needed that

incorporates zero-padding. In the next section, a synchroniza-
tion algorithm is proposed which only needs a subset of the
NI -point DFT bins. In section V, a stable SB-SDFT struc-
ture is derived for efficient implementation of the proposed
algorithm.

IV. THE PROPOSED WINDOW SYNCHRONIZATION
ALGORITHM
So far, it has been concluded that using only a subset of the
bins of anNI -point DFT for window synchronization reduces
complexity compared to the Hara synchronization method.
Before introducing the proposed synchronization algorithm,
it is needed to check whether it is feasible to only rely on
a subset of bins for synchronization (without losing signal
information). This is done in the first subsection where a set
called Bins of Interest is defined and the general concept of
the proposed synchronization algorithm is introduced. After-
wards, the algorithm is described in detail.

A. BINS OF INTEREST AND THE PROPOSED
SYNCHRONIZATION CONCEPT
In the presence of large frequency offset (multiple times the
symbol rate) a filter wider than (multiple times) the signal
bandwidth is needed before the demodulator to capture the
signal. It means that the sampling frequency should be higher
than the actual information bearing bandwidth of the signal.
On the other hand, using zero-padding increases the number
of bins that must be calculated including those which are out
of the signal bandwidth. As a result of this oversampling and
zero-padding, only a small part of the spectrum calculated
by an NI -point DFT includes signal information. These bins
of the spectrum are called Bins of Interest hereafter and BoI
for each DFT is defined as the set which includes these bins.
Since the signal information resides in the BoI, solely the
BoI can already provide a correct synchronization without
loss of information. The BoI is in the vicinity of the signal
center frequency, fc = (f0 + f1)/2 + CFO (fc = CFO in the
baseband signal). This is shown in figure Fig. 5 for a case
where the sampling frequency is 8 times the symbol rate and
a zero-padding factor of 4 is used (32-point DFT). In Fig. 5,

FIGURE 5. The spectrum of the signal and the BoI.
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the k0, k1 and kc correspond to the frequencies f0, f1 and fc,
respectively.

Since the frequency offset is assumed to be unknown, there
is no prior knowledge about the whereabouts of the BoI in the
spectrum. The proposed method aims first at finding the BoI
to limit the number of the DFT bins required for the synchro-
nization later on. Using a subset of the DFT bins, not only SB-
SDFT algorithms can be used to decrease complexity but also
fewer bins need to be stored during synchronization which
considerably decreases memory requirements.

In the proposed synchronization concept an extra process
is added to the synchronization, splitting it into two stages;
the zoom stage and the window alignment stage. The concept
of the proposed synchronization method is shown in Fig. 6.
Input samples pass through a sliding rectangular window
providing sequences of length N . First, in the zoom stage
(explained in the next subsection) the BoI of an NI -point
DFT called BoIFinal , is detected. Secondly, BoIFinal is sent to
the window alignment stage where a proper window delay
is obtained only calculating the DFT bins in BoIFinal and
using the algorithm illustrated in Fig. 3. To compensate for
the delay introduced by the zoom stage, an equivalent delay
(z−2N (0+1)) has been inserted before the Window Alignment
block. It enables the algorithm to reuse the same samples
used in the zoom stage for the window alignment. It avoids
an increased number of preamble symbols for the proposed
synchronization. In the next subsection, the zoom stage is
explained in detail.

FIGURE 6. The block diagram of the proposed synchronization concept.

B. THE ZOOM STAGE
The target of this stage is to find the BoI of an NI -point DFT
(BoIFinal) which covers the DFT bins corresponding to the
BFSK modulation frequencies k1 and k0. For this purpose,
a step-by-step zooming approach is utilized which searches
for the center bin in an NI -point DFT, kc,Final . The center bin
is the bin closest to the center frequency (fc) of the signal. The
BoIFinal is calculated using the kc,Final . Before elaborating on
the step-by-step zooming algorithm, parameters are defined.
T is the symbol period and N is the number of samples per
symbol. I = 20 is the zero-padding factor. As mentioned
earlier, the zero-padding factor for the DFT-based demodula-
tor is selected to be I = 8, yet, for the proposed algorithm
it can be any power of two, 20 . Moreover, the frequency
separation of the BFSK modulation is equal to the symbol
rate (f1 = fc + 1/2T and f0 = fc − 1/2T ) similar to [8], [10].
The zoom stage includes 0 + 1 steps while the zero-padding

FIGURE 7. A visual description of step-by-step zooming for N = 8 and
I = 8 (or 0 = 3).

factor at step γ is equal to 2γ (γ = 0, . . . , 0). A visual
illustration of the step-by-step zooming is shown in Fig. 7.
In this figure N = 8 and I = 8 which is equivalent to
0 = 3. At each step γ , the bin kγc of an N2γ -point DFT
which is closest to fc is detected based on calculating only the
bins within BoIγ . Then, an estimate of the next step center
bin, k̂γ+1c , is calculated using kγc . Following on that, k̂γ+1c
is exploited to determine the BoI for step γ + 1, BoIγ+1.
Subsequently, in step γ + 1, the actual center bin kγ+1c is
detected by calculating only a subset of the bins of anN2γ+1-
point DFT in BoIγ+1. Continuing this procedure, the center
frequency of an NI -point DFT is obtained which is used to
find BoIFinal .
The zoom stage starts with the first step, γ = 0, which

uses an N -point DFT i.e. with a zero-padding factor of one
(or no zeros). The BoI for the first step (γ = 0) includes all
the bins of the N -point DFT. All points of the N -point DFT
are required in the very first step because the center frequency
can be anywhere in the spectrum that can be covered by the
sampling frequency. Thus, we need to look at all bins at the
first step and then we can limit ourselves to the BoIγ calcu-
lated for further steps.Methods for calculating kγc , calculating
k̂γ+1c from kγc and determining BoI are explicated as follows.

1) CALCULATING kγc
At step γ , a window of length N slides for 2N hops (in
shifts of one sample) over the the preamble (this is equal
to the number of samples for two symbols) and the DFT is
calculated for each window. For each one-sample shift of the
window, only the bins of an N2γ -point DFT inside BoIγ are
calculated. So there will be 2N DFTs for which the bin with
maximum magnitude is changing from f1 to f0. An example
of the windows for N = 4 and how the spectrum changes can
be seen in Fig. 3.

The magnitudes of all these DFTs for each bin are added.
Then, the bin for which this sum is maximum is closest to the
center frequency kγc . Thus, k

γ
c is obtained as follows.

kγc = max
k∈BOIγ

X γ
k , (7)
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where:

X γ
k =

2N−1∑
i=0

|Xγk,i|
2 (8)

Xγk,i is the DFT for the k th bin and delay i = 0, . . . , 2N −1
in step γ . The first window can start from any part of either a
‘‘one symbol’’ or a ‘‘zero symbol’’ in the preamble. Proving
why the bin achieved using this method is actually the center
bin is dealt with in Appendix.

2) CALCULATING k̂γ+1
c FROM kγc

The zero-padding factor is doubled between two consecutive
steps. It means that zeros are added so that the length of
the sequence over which DFT is calculated (including zeros)
becomes twice of its value in the previous stage. This actually
adds a new ‘‘interpolated’’ bin between each two bins of an
N2γ -point DFT to achieve an N2γ+1-point DFT. Therefore,
the center bin in step γ + 1 can be estimated as k̂γ+1c = 2kγc .
Notice that fc might not be matched to a bin due to the arbi-
trary CFO. In this case, two adjacent bins close to the fc have
the largest magnitudes among all (the magnitudes are exactly
the same if fc is exactly in the middle of the two bins and there
is no noise). In such cases, a noisy received signal and leakage
causes the calculated k̂γ+1c to deviate from the actual center
bin in step γ + 1. That is why the center frequency should
be detected step-by-step so that the final center frequency
bin in the NI -point DFT is selected correctly. k̂γ+1c is used
to determine BoIγ+1 as follows.

3) DETERMINING BoIγ+1 AND BoIFinal
To account for any erroneous detection due to the spectral
leakage and noise, I bins (equal to the zero-padding factor)
in the vicinity of the estimated center bin are considered as
follows.

BoIγ+1 = {k|k ∈ [min(a, b),max(a, b)]}, (9)

where:

a = (k̂γ+1c − I/2) mod (N2γ+1) (10)

b = (k̂γ+1c + I/2− 1) mod (N2γ+1) (11)

In (10) and (11), mod is modulo operator. It is used to
map values that are outside the range of bin numbers of an
N2γ+1-point DFT in step γ + 1 to the valid set i.e. k ∈
{0, . . . ,N2γ+1 − 1}.
In the final step, when the kFinalc is calculated, the final

BoI used for the window alignment stage (BoIFinal) is deter-
mined based on that. BoIFinal should include the frequency
bins corresponding to symbols 1 and 0 of the BFSK mod-
ulated signal (k1 and k0, respectively). Since the frequency
separation of the BFSKmodulation is equal to the symbol rate
(RSym), when the zero-padding factor is I and the sampling
frequency is NRSym, there are I − 1 bins between k1 and k0.
To reduce the effect of noise, more than I bins are considered.

FIGURE 8. The block diagram of the proposed synchronization algorithm;
BoI stands for Bins of Interest.

If the number of bins in theBoIFinal (its cardinality) is denoted
by |BoIFinal |, the BoIFinal is determined as follows.

BoIFinal = {k|k ∈ [min(d, e),max(d, e)]}, (12)

where:

d = (kc,Final − |BoIFinal |/2) mod (NI ) (13)

e = (kc,Final + |BoIFinal |/2− 1) mod (NI ) (14)

The size of BoIFinal is optimized to achieve the best
BER performance using simulations which are presented in
section VII.
A detailed block diagram of the proposed synchronization

algorithm is also shown in Fig. 8. Both the zoom stage and
the window alignment stage receive a set of N samples from
a sliding window as shown in Fig. 6. The sets are the result of
a rectangular window which slides over the preamble by one-
sample shifts. The zoom stage is composed of three blocks.
The first block calculates the DFT, the second calculates kγc
and the third calculates k̂γ+1c and BoIγ+1. The BoIFinal is
the output of the zoom stage which is sent to the window
alignment stage. The window alignment stage is similar to
the algorithm explained in section II. Getting samples of
windows with different delays over the preamble, the DFT
calculation block calculates the DFT magnitudes for bins in
BoIFinal . These values are passed to the next block which
calculates Ri (where 0 ≤ i ≤ N − 1 are the window delays)
similar to (3) but only for the bins inBoIFinal . Finally, the third
block finds the i value for which Ri is maximum and finds
k0 and k1 in the BoIfinal . This will be the proper window
delay (the timing information) and, together with k0 and k1,
it is used during the detection phase. For the DFT calculation
blocks in the zoom and the window alignment stages, an SB-
SDFT calculator can be used which is introduced in the next
section.

V. THE PROPOSED SB-SDFT WITH ZERO-PADDING
In the previous section, a synchronization algorithm was pre-
sented. The second issue mentioned in the conclusion of the
literature review for efficient implementation of the SDFT is
an SB-SDFT scheme in the presence of zero-padding. Afore-
mentioned implementations for an SB-SDFT (see section III)
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do not take the zero-padding into account. The main deriva-
tion of these algorithms is based on the periodicity of the
twiddle factors. When each set of the samples is padded with
zeros before the DFT calculation, this periodicity is violated
due to zeros appended to the samples sequence. This leads to
incorrect calculation by SB-SDFT schemes. For the proposed
synchronization algorithm, a new SB-SDFT algorithm is
needed to incorporate the zero-padding. A procedure similar
to the conventional SB-SDFT derivation in [23], [25] and [20]
is followed.

The k th bin of an M -point DFT over a set of N samples,
Xn = {x(n−N+1), . . . , x(n)}, which are padded withM−N
zeros, is as follows.

Xk (n) =
N−1∑
i=0

x(n− N + i+ 1)W−kiM , (15)

where WM = ej
2π
M and the last M − N terms of sum are

ignored as they are zero. The k th DFT bin in (15) can be
obtained using the k th DFT bin for sample setXn−1 = {x(n−
N ), . . . , x(n− 1)} as follows.

Xk (n)=Xk (n−1)W k
M−x(n−N )W k

M + x(n)W
−(N−1)k
M (16)

where Xk (n−1) is the k th DFT bin forXn−1. When there is no
zero-padding, N = M and W−(N−1)kM in the last term of (16)
can be simplified to W k

M leading to the known SB-SDFT
equation (see (6)). If zero-padding is used, this simplification
is not valid anymore. This is the violation of the periodicity
mentioned above and necessitates a modified version of the
SB-SDFT. In case of zero-padding, N 6= M and (16) can be
written as follows.

Xk (n) = W k
M (Xk (n− 1)− x(n− N )+ x(n)W−NkM ) (17)

Equation (17) can be seen as a filter taking samples of x
and generating the k th DFT bin while sliding the window by
one sample. The transfer function of the filter is:

H (z) =
W−kNM − z−N

W−kM − z
−1

(18)

The block diagram of such a filter is also depicted in Fig. 9.
The SB-SDFT with zero-padding has an extra multiplication
in the first loop compared to the SB-SDFT in Fig. 4. Similar
to the conventional SB-SDFT in [23], it has a pole on the unity
circle. The stability of this modified version of SB-SDFT
can be guaranteed using a damping factor r (similar to the
idea proposed in [23]). Another method is to extend this

FIGURE 9. The modified SB-SDFT filter.

derivation to achieve a modified version of the modulated-
SDFT introduced in [25]. The former compromises precision
while the latter increases complexity almost twice. Using a
damping factor causes an error in the calculated DFT values.
As shown in [30], this error is in the order of 1% when r is
close enough to one. In our proposed method the exact value
of the DFT is not the target but the relative value of different
bins is important. As a result, to avoid the complexity of the
modulated-SDFT, the modified SB-SDFT method is stabi-
lized by adding a damping factor. To change the pole from
W k
M to rW k

M , the z in (18) is replaced with z/r . This leads to
the following transfer function.

H (z) =
W−kNM − rN z−N

W−kM − rz
−1

(19)

The block diagram of the stable filter is shown in Fig. 10.
For each loop, one multiplication between a complex num-
ber and a real number is added which is composed of two
real multiplications. The extra multiplications in the second
loop can be integrated into the twiddle factor. To do so the
nominator and the denominator of the transfer function are
multiplied with r−1 to achieve:

H (z) =
r−1W−kNM − rN−1z−N

r−1W−kM − z
−1

(20)

The final block diagram is shown in Fig. 11. Interestingly,
the one extra multiplication compared to (18) which is in the
first loop is independent of the bin number and can be shared
between filters which are calculating different DFT bins. The
effect of the damping factor on the demodulator performance
and the proper value for it are investigated using simulations
presented in section VII.

FIGURE 10. The modified SB-SDFT filter stabilized using r .

FIGURE 11. Modified and stabilized SB-SDFT filter with reduced
multiplication.

VI. COMPLEXITY ANALYSIS
In the first subsection the number of complex multiplica-
tions/additions (CM/CA) required for DFT calculation are
obtained. Next, the memory usage is calculated including the
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memory needed to compute the Sliding-DFT and the memory
required to store SOi /S

E
i in (1)/(2) and the twiddle factors.

In the final design, the zero-padding factor I is 8; however,
in the following, parameter I is used for clarity. The proposed
SB-SDFT is shown again for easier reference in Fig. 12.
The dotted circles in Fig. 12 demonstrate different operations
and/or memory required for the calculation of the SB-SDFT.
Notice that the calculations shown in Fig. 12, are executed
for each bin k of the DFT; however, when several bins are
calculated the result of these operations/memory might be
reused for multiple bins i.e. that part of the block can be
shared between a few bins. This is further explained in the
following analysis wherever applicable.

FIGURE 12. Modified and stabilized SB-SDFT filter with reduced
multiplication.

A. COMPLEX OPERATIONS
The complexity of the proposed method is separately calcu-
lated for the zoom and the window alignment stage while
explaining the operations shown by the dotted circles of
Fig. 12. Each time that a new value for the DFT bin is
calculated is called an iteration. Each iteration updates the
DFT value based on the input sample and the last N − 1
samples of the input sequence (in total N samples). In the
following, multiplication and addition refer to complex oper-
ations unless stated otherwise.

1) ZOOM STAGE
A: The twiddle factor in A for the last step γ = 0 is

r−1W−kNNI for bin k which is written as r−1W−kI . SinceWI =

exp(j2π/I ) is always a point on the unit circle within the
complex plane, its powers have only I different values regard-
less of the number of calculated bins. Since r−1W−(k+I/2)I =

−r−1W−kI , only half of the twiddle factor multiplications,
0.5I , need to be calculated and the rest are simply sign
conversions (multiplications with+/− j are still considered as
a complete complexmultiplication). The last step of the zoom
stage has the largest zero-padding factor and consequently,
the largest number of different twiddle factors. So the number
of multiplications within operation A is the largest in the last
step. To simplify the complexity expressionswe consider 0.5I
multiplications for the other steps of the zoom stage as well.
So A leads to (0.5I )(0 + 1) multiplications per iteration for
all bins and all steps together.

B: The operation in B is a real-by-complex multiplication
and can be approximated by 0.5 complex multiplication.

It can be shared between all bins at each step. For all steps
together, it leads to 0.5(0 + 1) multiplications for each itera-
tion and all bins together.
C: Based on above discussion, the output of A may have

at most I different values in each step for all bins and B can
be shared with all bins. As a result, C, leads to I additions
(at most) per iteration in each step for all bins together. So C
leads to I (0 + 1) additions per iteration for all bins and all
steps together.

D/E: These parts together include one multiplication and
one addition per bin and per iteration. In the zoom stage, at the
first step,N bins are calculated and for the other0 steps I bins
are calculated (N + I0 in total). Thus, for the zoom stage, per
iteration and for all bins together D and E lead to N + I0
multiplications and additions, respectively.

Iterations: Remember that for each step of the zoom stage
the window shifts 2N samples (i.e. 2N iterations). Starting
from the initial state of zero, N iterations are required to
generate the DFT value for the first window of N samples.
Then, each iteration gives the SB-SDFT for the next window.
As a result, 3N iterations for each bin at each step of the zoom
stage. Now, considering the above discussion and the number
of iterations, the total number ofmultiplications and additions
for the zoom stage (CMZoom and CAZoom, respectively) are
obtained as follows.

CMZoom = 3N (0.5(I + 1)(0 + 1)+ (N + I0)) (21)

CAZoom = 3N (I (0 + 1)+ (N + I0)) (22)

2) WINDOW ALIGNMENT STAGE
A: In the window alignment stage, the zero-padding

factor is I . Following the same reasoning as the zoom
stage, A needs 0.5I multiplications per iteration for all bins
together.

B: In total, this part needs two real multiplications
or 0.5 complex multiplication per iteration for all bins
together.

C: Similar to what was mentioned for the zoom stage,
C leads to I complex additions per iteration for all bins
together.

D/E: In the window alignment stage, |BoIFinal | bins are
calculated. Thus, per iteration and for all bins together
D and E lead to |BoIFinal | multiplications and additions,
respectively.

Iterations: The window alignment stage needs NL itera-
tions where L is the length of the preamble (N delays for each
symbol of the preamble). Following the same reasoning for
the zoom stage, N extra iterations are required when starting
from the initial state of zero so the alignment stage needs
N (L + 1) iterations for each bin. The number of multiplica-
tions and additions for the window alignment stage (CMAlign
and CAAlign, respectively) are:

CMAlign = N (L + 1)(0.5(I + 1)+ |BoIFinal |) (23)

CAAlign = N (L + 1)(I + |BoIFinal |) (24)
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B. MEMORY
Since the zoom stage and the window alignment stage are not
executed in parallel, the registers (memory elements) used in
one can be used in the other as well. Here, we only focus on
the window alignment stage as it needs more memory and
therefore, dictates the total required memory for calculating
SDFT. For the Sliding DFT each filter needs a memory of
size N for samples and a delay of one for the previous DFT
value (See B and F in Fig. 11). The memory within B (z−N

with length N ) can be shared between all bins and the second
is unique for each bin. Additionally, the delay block in Fig. 6
requires storing 2N (0 + 1) samples. All these values have
two parts (real and imaginary), so the required memory for
calculating SDFT (MCalc) is as follows.

MCalc = 2(N + |BoIFinal | + 2N (0 + 1)) (25)

where |BoIFinal | is the cardinality of the set of BoI used in
the window alignment stage. The proposed synchronization
algorithm needs to store the results of the accumulation of
the DFT magnitudes for |BoIFinal | bins and N delay values.
This memory is denoted byMAcc and is derived as follows.

MAcc = 2|BoIFinal |N (26)

The factor two comes from the two sets of magnitudes that
must be accumulated for odd and even symbols.

For an NI -point DFT, WNI = exp( j2πNI ) which means that
W−kNI takes NI different values. Since W−(k+NI/2)NI = −W−kNI ,
only half of these values should be stored from which two
values are equal to 1 and j for k = 0 and k = NI/4,
respectively. As a result, NI/2 − 2 complex twiddle factors
should be stored so the required memory is NI − 4.

C. COMPARISON
As mentioned in section III, the SFFT method in [15] pro-
vides an efficient implementation of theHara synchronization
algorithm. The complexity of the SFFT for each iteration
can be found in [15]. Due to zero-padding, in a few first
stages of the SFFT some operations have zero inputs and are
not executed which leads to a pruned structure with reduced
complexity. The number of iterations for the SFFT in the
Hara synchronization algorithm can be derived based on a
reasoning similar to what was used above for the window
alignment stage. Taking these into account, the complexity
of the Hara synchronization can be calculated. For the sake
of brevity, the detailed calculations are not included in this
article and only the final results are presented for comparison.

The number of operations and memory required for the
Hara synchronization and the proposed synchronization algo-
rithms are presented in TABLE 1. For the total number
of operations only the term with the largest power of N
is included in the table. Although the number of CM/CA
increases with N 2 for both methods, in practical cases,
the factor of N 2 in the Hara method is much larger than
that of the proposed method. Considering L = 16 and
I = 8 similar to both [8] and [10], the factor of N 2 in

the number of complex multiplications required for the Hara
synchronization (implemented using SFFT) is about 45 times
the proposed synchronization. Furthermore, the total memory
of the Hara method (with SFFT) increases with N 2 while
the total memory of the proposed method increases with N .
These differences between the complexity stem from the fact
that in the proposed synchronization, in contrast with the
Hara synchronization, the number of the calculated DFT bins
for the window alignment does not change with N and is
constant (BoIFinal). The numerical results and comparison of
complexity for different values of N are presented in the next
section.

VII. SIMULATION RESULTS AND DISCUSSION
A. DESIGN PARAMETERS
According to our discussions in the previous sections, two
parameters need yet to be determined. Those are the number
of bins in the BoIFinal and the damping factor r for the
SB-SDFT. The most important performance metric for our
system is the overall BER of the demodulator. Therefore,
BER values obtained by simulations are utilized to determine
the appropriate design parameters. As stated in IV, in all
simulations of this section I = 8 and L = 16 similar to
[8], [10]. Fig. 13 shows how the BER of the demodulator
changes relative to |BoIFinal | for different values of Eb/N0.
The damping factor is considered to be r = 1 in these
simulations.

As can be seen in Fig. 13, the bit error rate value hardly
changes when the number of bins in the BoIFinal is increased
more than 14. For a safety margin the number of bins in the
BoIFinal is considered to be 16.
The value of the damping factor determines the error at the

output of the SB-SDFTfilter. Asmentioned earlier, the damp-
ing factor introduces errors to the calculated values for the
DFT which may degrade the performance of the demodu-
lator. This can be solved by choosing r very close to one.

FIGURE 13. The BER values for the demodulator, using the proposed
synchronization and the proposed SB-SDFT, for different sizes of the
BoIFinal when N = I = 8, L = 16 and r = 1.

VOLUME 8, 2020 146675



S. Safapourhajari, A. B. J. Kokkeler: On the Low Complexity Implementation of the DFT-Based BFSK Demodulator

TABLE 1. Complexity comparison. L is the length of the preamble, I is the zero-padding factor, N is the number of samples per symbol and BoIFinal is the
number of bins used in the window alignment stage of the proposed synchronization. For simulation results presented in section VII, L = 16, I = 8, 0 = 3
and BoIFinal = 16.

FIGURE 14. The BER of the demodulator with the proposed
synchronization which is implemented using the proposed stable
SB-SDFT. Eb/N0 = 11 dB, I = 8 and L = 16.

Additionally, the number of samples which pass through the
SB-SDFT filter plays an important role in the value of r . Due
to the recursive behavior of the filter, the error accumulation
increases when an SB-SDFT is applied to a long sequence
of samples and, to avoid that, r values closer to one might
be required. Thus, for a constant preamble length, the appro-
priate value for r also depends on the number of samples
per symbol. As explained in section II, N is proportional
to the bandwidth of the filter before the demodulator so it
determines the tolerable frequency offset. Fig. 14 illustrates
the BER at Eb/N0 = 11 dB (corresponding to BER ≈ 0.1%)
for different values of N and r when L = 16 and I = 8.
According to Fig. 14, r = 0.999 guarantees a consistent
performance up to a sampling frequency more than 100 times
the symbol rate.

B. BER PERFORMANCE
To evaluate the BER performance and compare it with the
conventional algorithm (Hara synchronization), the proposed
algorithm is applied to a DFT-based demodulator with param-
eters similar to [10]. The sampling frequency is 8RSym where
RSym is the symbol rate while I = 8. The total system

FIGURE 15. The BER curves for the demodulator in [10] with the
proposed synchronization and Hara synchronization.

is simulated for an AWGN channel. It is assumed that the
samples are the output of a brick-wall lowpass filter so the
noise samples are uncorrelated. The BER performance of a
DFT-based demodulator using the proposed synchronization
and the Hara synchronization ( [10]) algorithms is depicted
in Fig. 15. As can be seen, the performance of the proposed
method is only slightly worse at high BER values; however,
for practical BER values in the order of 10−3 or smaller,
it performs the same as the Hara method. The small increase
in the BER at low SNR is due to a slight increase of error
caused by using a small set of bins.

Fig. 16 illustrates the BER for a range of frequency offsets
values up to twice the symbol rate and different Eb/N0. It can
be seen that the demodulator with the proposed synchroniza-
tion can tolerate frequency offset as expected.

Fig. 17 shows the BER performance of the proposed
method for different values of N and Eb/N0. For these sim-
ulations I = 8, L = 16 and r = 0.999. It is seen that the
increase of N does not affect the BER performance of the
demodulator using the proposed synchronization algorithm
and the proposed SB-SDFT. Notice that increasing N means
that the bandwidth of the filter shown in Fig. 2 increases. This
means that the noise bandwidth increases in our simulation.
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FIGURE 16. The BER of the demodulator with the proposed synchroniz-
ation for different frequency offset normalized to the symbol rate
(foffset T ).

FIGURE 17. The BER of the demodulator with the proposed synchroniz-
ation for different values of N and Eb/N0 while I = 8, L = 16 and
r = 0.999.

As can be seen in the results, this extra noise bandwidth does
not degrades the BER performance. This can be justified by
looking at the DFT as a bank of narrowband filters. What
determines the detection performance is the bandwidth of
these narrow filers and not the bandwidth of the wide filter
before the demodulator [8].

Finally, Fig. 18 illustrates the performance of the demod-
ulator with the proposed synchronization in Rayleigh and
Rician fading (K = 4) channels. It can be seen that a demod-
ulator using the proposed synchronization performs the same
as a demodulator with Hara synchronization algorithm.

C. COMPLEXITY
The number of complex multiplications (CM), complex addi-
tions (CA) andmemory (M) for the Hara method (with SFFT)
and the proposed method using the proposed SB-SDFT are
listed in TABLE 2. The values in TABLE 2 are calculated
for I = N = 8 and L = 16 which are the same parameters

FIGURE 18. The BER curves for the DFT-based demodulator with the
proposed synchronization and Hara synchronization in a Rayleigh and a
Rician (K = 4) channel. In this simulations N = 8, I = 8, L = 16 and
r = 0.999.

TABLE 2. Complexity comparison between Hara synchronization and the
proposed synchronization when they are implemented using SFFT and
the proposed SB-SDFT, respectively. N = I = 8, L = 16 and BoIFinal = 16.

used for achieving the BER curves. Compared to the efficient
implementation of the Hara algorithm, the proposed method
reduces the number of complex additions, complex multipli-
cations and memory by 68%, 48% and 61%, respectively.

Fig. 19 shows the number of complex operations and
memory required for both methods and different values of
N ; while, Fig. 20 shows the improvement achieved using
the proposed algorithm and SB-SDFT. The improvement is
defined as the percentage of the reduced operations relative
to the number of operations in the Hara method implemented
using SFFT (e.g. 100%× (CMHara − CMProposed )/CMHara).
Notice that the values of N are selected to be a power of two
as required by the SFFT implementation of the Hara method;
however, this is not necessary for the efficient implementa-
tion of the proposed algorithm. Both axes in Fig. 19 are on
logarithmic scale.

Fig. 19 and Fig. 20 show that the difference between the
complexity of the proposed method (with SB-SDFT) and the
Hara algorithm (with SFFT) increases when N increases.
One of the reasons is that only the number of DFT bins
calculated in the first step of the zoom stage depends on N .
For the next steps of the zoom stage and the alignment stage,
the number of the calculated bins is constant for all N (I and
2I , respectively). Although the number of samples involved
in the DFT calculation is still related to N , the complexity
grows slower as the number of bins required to be calculated
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FIGURE 19. The complexity of Hara algorithm implemented using SFFT
(shown by Hara) and the proposed algorithm implemented using the
proposed SB-SDFT (shown by Prop.) in terms of complex additions (CA),
complex multiplications (CM) and memory (M).

FIGURE 20. The improvement in complexity achieved by the proposed
method implemented using the proposed SB-SDFT.

remains constant. That is why the difference between the
complexity of the proposed synchronization and the Hara
synchronization increases when N increases. For a sampling
frequency which is 32 times of the symbol rate, almost 85%
saving can be achieved in arithmetic operations (and around
90% in the memory). The null-to-null bandwidth of a BFSK
modulated signal (BS in Fig. 2) for a frequency separation of
fsep = RSym is 3RSym [31]. If a very steep filter is consid-
ered (Bt = 0 in Fig. 2) such a sampling frequency means
that a frequency offset around ±14.5RSym can be tolerated
assuming that the main lobe should remain inside the filter
(see Fig. 2). As shown in Fig. 15 and Fig. 18, the DFT-based
demodulator which uses the proposed synchronization imple-
mented using SB-SDFT has a BER performance similar to
the DFT-based demodulator with the Hara synchronization;
thus, the proposed synchronization and its efficient imple-
mentation reduce the complexity without any sacrifice in the
performance.

VIII. CONCLUSION
The offset tolerant DFT-based demodulator is an interesting
solution for low data rate applications including emerging
ultra-narrowband communications for LPWANs. However,
the existing synchronization algorithm for this demodulator
is complex as it involves calculating the DFT of a sliding
window. In this work, a new synchronization algorithm is pro-
posed to decrease complexity. Using a step-by-step zooming
technique, the proposed algorithm only requires a subset of
the DFT bins. Consequently, efficient Single Bin SlidingDFT
(SB-SDFT) implementations can be used. Besides, a stable
SB-SDFT was introduced to incorporate zero-padding. The
proposed algorithm and its implementation using the pro-
posed SB-SDFT for an oversampling factor of e.g. N = 8,
obtains 48%, 68%, 61% saving in the number of complex
multiplications, complex additions and memory usage com-
pared to the conventional window synchronization algorithm
(Hara synchronization) while achieving the same BER per-
formance. The relative reduction in the complexity further
increases when larger N is required. The higher the sampling
frequency (the larger value of N ), the larger frequency offset
can be tolerated. For a frequency offset tolerance about±14.5
times the symbol rate which requires an oversampling factor
N = 32, the number of complex operations is reduced by
more than 85% (and memory by 90%) compared to the con-
ventional method (Hara synchronization implemented using
SFFT).

To implement a low power receiver, the proposed algo-
rithm should be combined with efficient digital design which
requires research on the circuit level techniques. The effect
of limited wordlength on the BER performance should also
be studied. Additionally, it was shown that stabilizing the
proposed SB-SDFT using a damping factor decreases the
precision of the calculated DFT values. Further research is
needed on designing a stable SB-SDFTwith zero-padding for
applications where high precision is required.

APPENDIX
MATHEMATICAL PROOF FOR kc CALCULATION
ALGORITHM
According to section IV, to achieve kγc at each step, the mag-
nitudes of DFTs for a sliding window with 2N one-sample
shifts are added. Then, kγc is the bin for which this sum has
a maximum value (see (7) and (8)). In this appendix, it is
mathematically shown that this sum over DFT magnitudes
has amaximum at the center frequency. This is correct as long
as all the 2N windows are in the preamble. The first window
can start in any part of either a one symbol or a zero symbol
in the preamble.

As the zero-padding factor changes during the zoom stage,
(7) and (8) must be shown for the general case of all zero-
padding factors in different steps of the zooming algorithm.
For this purpose the concept of the Discrete Time Fourier
Transform (DTFT) is used here. DTFT is a version of the
Fourier Transform which maps discrete time samples to
a continuous frequency domain. The DTFT of a discrete
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FIGURE 21. A part of the preamble and the windows used for calculating X γk in the zoom stage. Three complete symbols (1,
0, 1) with a part of the symbol before the first one and a part of the symbol after the last one are shown. The boundaries of
the symbols are shown by triangle markers. Black and grey squares show samples of Odd and Even symbols, respectively.
Double-headed arrows are windows for which the DFT or the DTFT are calculated. i = 0 to i = 2N − 1 are the windows used
for the sum in (8). The two windows shown by X0(�) and XN (�) are windows used for the mathematical proof of the
algorithm.

function in the time domain, shown by x[n], is denoted by
X (�) where � = 2π f /Fs (−π < � < π) is the frequency
normalized to the sampling frequency, Fs. The k th bin of the
DFT calculated for N samples with zero-padding factor I ,
actually is the value X (�) of DTFT for effectivelyN samples,
sampled at f = (k/NI )Fs (� = 2πk/NI ) [32]. Using the
concept of the DTFT, (7) and (8) can be written as follows.

�c = max
�∈[−π.+π]

X (�) (27)

where:

X (�) =
2N−1∑
i=0

|Xi(�)|2 (28)

Xi(�) is the DTFT for the ith window and�c = 2π fc/Fs =
ωcTs. Because (27) and (28) are generalized versions of (7)
and (8), which are true for all zero-padding factors, the super-
script γ from (8) is removed in (28). If it is proved that X (�)
has a maximum at�c, then, the sum in (8) has a maximum at
the bin closest to fc (called kc) for each zero-padding factor.
This can be concluded considering that the DFT values for
each k and window are actually samples of the DTFT.

A. CALCULATING THE COMPONENTS OF X (�)
The DTFT of a signal x[n] over N samples is as follows.

X (�) =
N−1∑
n=0

x[n]e−j�n, � = 2π f /Fs (29)

Fig. 21 depicts a part of the preamble which is used for
mathematical derivation. Black squares are the samples of an
Odd symbol (f1) and gray ones belong to an Even symbol
(f0). Each double-headed arrow stands for a window (set
of samples) of length N which is used for calculating the
DTFT. In general, during the zoom stage, the window is not
synchronized yet. Thus, the set of sliding windows in (28)
does not necessarily start from the beginning of a symbol.
To account for this, it is assumed that the first window from
the set of 2N windows starts from a window with delay d

from the beginning of a symbol. This is shown with i = 0
in Fig. 21. The first sample of that symbol is shown by x[q].
The following procedure is executed considering windows
i = 0 to i = 2N − 1 and calculating the sum of the
magnitudes of the DTFTs for these windows. The window
i = 0 starts in an Odd symbol; nevertheless, the same
mathematical formulation can be achieved if the black and
gray samples are interchanged in Fig. 21 i.e. if i = 0 starts in
an Even symbol. This generalization is possible because of
the specific frequency separation for BFSK which is equal to
the symbol rate.

Now, let us consider a pair of windows in the summation
of (28) with delay d of the odd symbol (f1) and the same delay
for the next even symbol (f0) (i.e. i = 0 and i = N in (28)).
In Fig. 21 these are shown by X0(�) and XN (�). If G0(�) is
defined as follows:

G0(�) = |X0(�)|2 + |XN (�)|2 (30)

Then, X (�) can be derived in terms of N similar pairs and
different Gm as:

X (�) =
N−1∑
m=0

Gm(�) (31)

where Gm(�) = |Xm(�)|2 + |Xm+N (�)|2. First, G0(�) is
analyzed. Considering BFSKmodulation, the samples for the
i = 0 and i = N window are as follows.

x0[n] =

{
ej(ω1(n+d+q)Ts) 0 ≤ n < N − d
ej(ω0(n+d+q−N )Ts+θ1) N − d ≤ n < N

(32)

xN [n] =

{
ej(ω0(n+d+q)Ts+θ1) 0 ≤ n < N − d
ej(ω1(n+d+q−N )Ts+θ0+θ1) N − d ≤ n < N

(33)

where ω1 and ω0 are 2π f1 and 2π f0, respectively. In (32)
and (33), θ1 = ω1NTs and θ0 = ω0NTs are actually accumu-
lated phase at the end of an Odd symbol and Even symbol,
respectively. Without loss of generality, it is assumed that the
initial phase before x[q] (in Fig. 21) is zero. Using x0[n],
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xN [n] and the definition of the DTFT in (29), X0(�) and
XN (�) are calculated.

X0(�) =
N−d−1∑
n=0

ej(ω1Ts(n+d+q)−�n)

+

N−1∑
n=N−d

ej(ω0Ts(n+d+q)−�n) (34)

XN (�) =
N−d−1∑
n=0

ej(ω0Ts(n+d+q)+ω1NTs−�n)

+

N−1∑
n=N−d

ej(ω1Ts(n+d+q)+ω1NTs−�n) (35)

Notice that in (32) and (33), θ1 − ω0NTs and θ0 − ω1NTs are
equal to +(ω1 − ω0)NTs and −(ω1 − ω0)NTs, respectively.
Remember from section II that the frequency separation of
BFSK is equal to the symbol rate RSym = 1/T and Ts/T =
1/N . So ±(ω1 − ω0)NTs are removed from the phase of
the signals since they equal ±2π . Now that the primary
expressions forX0(�) andXN (�) are obtained, a new variable
is introduced to simplify the rest of the proof.

B. DEFINITION OF α
Themain target is to prove thatX (�) has amaximum at�c =

ωcTs. Since the frequency separation of BFSK is equal to the
symbol rate (1/T = 1/NTs), ω1Ts and ω0Ts can be written in
terms of center frequency ωc as follows.

ω0Ts = ωcTs − π/N , ω1Ts = ωcTs + π/N , (36)

Now that ω0Ts and ω1Ts are written in the form of devia-
tions from ωcTs, let us define α as the deviation of � from
�c.

α = �− ωcTs (37)

In the following, the variable � is changed to ωcTs + α
and (30), (31), (34) and (35) are formulated as functions of α.
These new functions are denoted by a tilde over their name
(for instance X (�) changes to X̃ (α)). When all functions are
formulated in terms of α, instead of proving that there is a
maximum at � = �c for X (�), it must be proved that X̃ (α)
has a maximum at α = 0. This simplifies the calculations,
particularly, it enables us to eliminate the terms related to
ωcTs which is seen in the expressions for ω1Ts and ω0Ts (36)
as well.

By change of variable to α, (31) can be written as:

X̃ (α) =
N−1∑
m=0

G̃m(α) (38)

For now, we focus on G̃0(α) = |X̃0(α)|2 + |X̃N (α)|2.
Substituting ω1Ts and ω0Ts from (36) to (34) and (35) while

replacing � with ωcTs + α we have:

X̃0(α) = ej(ωcTs+
π
N )(d+q)

N−d−1∑
n=0

ej(
π
N −α)n

+ ej(ωcTs−
π
N )(d+q)

N−1∑
n=N−d

e−j(
π
N +α)n (39)

X̃N (α) = −ej[(ωcTs−
π
N )(d+q)+ωcT ]

N−d−1∑
n=0

ej−(
π
N +α)n

− ej[(ωcTs+
π
N )(d+q)+ωcT ]

N−1∑
n=N−d

ej(
π
N −α)n (40)

where T = NTs and the terms which are independent of n are
taken out of summation. As a result of the change of variable,
π appears in the phase of the exponential functions in (35)
which is converted to a negative sign before the summations
in (40). For a complex function f (x), |f (x)|2 = f (x)f (x)∗

where f (x)∗ is the complex conjugate of f (x). Thus, the mag-
nitudes of X̃0(α) and X̃N (α) are as follows.

|X̃0(α)|2 =
N−d−1∑
n,p=0

ej(
π
N −α)(n−p) +

d−1∑
n,p=0

e−j(
π
N +α)(n−p)

+ 2
N−d−1∑
n=0

N−1∑
p=N−d

cos(2(n, p)−α(n− p)) (41)

|X̃N (α)|2 =
N−d−1∑
n,p=0

e−j(
π
N +α)(n−p) +

d−1∑
n,p=0

ej(
π
N −α)(n−p)

+ 2
N−d−1∑
n=0

N−1∑
p=N−d

cos(−2(n, p)−α(n− p)) (42)

where 2(n, p) = π
N (2(d + q) + n + p) and the following

equality is used:

M−1∑
m,k=0

ambk =
M−1∑
m,k=0

akbm =

(
M−1∑
m=0

am

)(
M−1∑
m=0

bm

)
(43)

The first summation of (42) and the second summation
of (41) can be rewritten as follows.

A(α) =
N−d−1∑
n,p=0

e−j(
π
N +α)(n−p) =

N−d−1∑
n,p=0

ej(
π
N +α)(n−p) (44)

B(α) =
d−1∑
n,p=0

e−j(
π
N +α)(n−p) =

d−1∑
n,p=0

ej(
π
N +α)(n−p) (45)

To obtain (44) and (45), first the negative sign before
j is dissolved to (n − p) to make (p − n); then, using a
simple change of indexes in summation (see (43)), (p− n) is
converted to (n− p). Also, using cos(x) = cos(−x), the third
term of |X̃N (α)|2 can be written as follows.

C(α) = 2
N−d−1∑
n=0

N−1∑
p=N−d

cos(2(n, p)+ α(n− p)) (46)

146680 VOLUME 8, 2020



S. Safapourhajari, A. B. J. Kokkeler: On the Low Complexity Implementation of the DFT-Based BFSK Demodulator

Taking (44)-(46) into account, |X̃0(α)|2 and |X̃N (α)|2 can
be written based on A(α), B(α) and C(α).

|X̃0(α)|2 = A(−α)+ B(α)+ C(−α) (47)

|X̃N (α)|2 = A(α)+ B(−α)+ C(α) (48)

This simplified notation of |X0(α)|2 and |XN (α)|2 shapes
the basis of the final stage of our proof.

C. PROVING α = 0 IS MAXIMUM
For a function f (x) to have a maximum at x0, its first and sec-
ond derivatives at x0 must be zero and negative, respectively.
Hence, in the following we prove:
• Statement I: d

dα X̃ (α)|α=0 = 0

• Statement II: d2

dα2
X̃ (α)|α=0 < 0

From (47) and (48), |X̃0(α)|2 and |X̃N (α)|2 can bewritten as
F(α) and F(−α), respectively. Besides, G̃0(α) can be written
as F(α)+F(−α). It is known from the chain rule of derivative
that d

dx f (g(x)) = g′(x)f ′(g(x)). Thus, d
dαF(−α) = −F

′(−α).
So the first derivative of G̃0(α) is as follows.

d
dα

G̃0(α) = F ′(α)− F ′(−α) (49)

For α = 0 the right side of (49) is zero. Notice that all
derivations so far are based on a general case of d , and,
as mentioned earlier, the same procedure can be followed if
the i = 0 window starts from an Even symbol. The main
reason that allows this is the frequency separation which is
equal to the symbol rate. This means the result of (49) can be
generalized to any G̃m(α). Considering the definition of X̃ (α)
from (38), statement I is proved as follows:

d
dα

X̃ (α)|α=0 =
N−1∑
m=0

d
dα

G̃m(α)|α=0 = 0 (50)

Statement I shows that α = 0 is an extremum (maximum
or minimum) for X̃ (α). To further prove that α = 0 is a max-
imum (and not a minimum), it must be shown that its second
derivative is negative. Taking another derivative from both
sides of (49) according to the chain rule, the d2

dα2
G̃0(α) is

derived as follows.

d2

dα2
G̃0(α) = F ′′(α)+ F ′′(−α) (51)

Moreover, for any d , |X̃0(α)|2 = F(α) and |X̃N (α)|2 =
F(−α) have a maximum in −π/N ≤ α ≤ π/N (see the
spectra between f0 and f1 in Fig. 3) which means both have
a negative second derivative in this interval including α = 0.
As a result, d2

dα2
G̃m(α) is negative at α = 0 so statement II

holds as follows.

d2

dα2
X̃ (α)|α=0 =

N−1∑
m=0

d2

dα2
G̃m(α)|α=0 < 0 (52)

From statements I and II, it is concluded that the sum
in (28) has a maximum at α = 0 or � = ωcTs.
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