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ABSTRACT The emerging of deep neural networks, especially the convolutional neural network (CNN),
substantially promotes the fast development of brainware processors in object detection. However, the vast
network architecture brings severe challenges to the design of brainware processor, which requires a large
number of logic gates and memories. Therefore, a compact brainware processor with less memory and
logic gate has a high demand in object detection. Typically, the object detection involves single-shot and
multi-shot detectors in accordance with different detection principle. In the early stage, the multi-shot
detector has a leading role in solving object detection issues, such as region-based convolutional neural
networks (R-CNNs), faster R-CNNs etc. However, the multi-shot detector suffers from a low detection
rate comparing with the single-shot detector. The you only look once (YOLO) algorithm, as the state-of-
the-art real-time object detection algorithm, receives extensive attention from the academics and industry.
Particularly, the lightweight YOLO algorithm, tiny YOLO3, has excellent potential for circuit design of
compact brainware processor. Nonetheless, systematic studies of tiny YOLO3 are still missing up to the
present. This paper offers a thorough review of the tiny YOLO3 algorithm, which can fill the gap in the field
of object detection. Furthermore, the open solutions of compressing the tiny YOLO3 algorithm are proposed
from the aspects of algorithm, hardware and emerging technology. The comprehensive study presented in
this paper can not only enhance understanding of the tiny YOLO3 algorithm for researchers or engineers but
also make a significant contribution to accelerating the development of compact brainware processor.

INDEX TERMS Tiny YOLO3, brainware processor, deep neural network, CNN, hardware acceleration.

I. INTRODUCTION
Artificial intelligence (AI) has made remarkable achieve-
ments in academia and industry since its emergence in 1956,
and its booming driven by deep learning happens in this
century, especially since 2005. The deep learning tech-
nology, as a subset of AI, intends to rationally mimic
human thinking and action using mathematical theories
or models. The progression of deep learning dramatically
boosts the economic growth in the market of autonomous
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vehicles [1], [2], neural language processing [3], medical
diagnosis [4], and object detection [5], [6] etc. Brainware,
or brain-inspired, processor attempts to deal with complex
tasks by embedding large-scale deep learning models into
a compact chip that takes advantage of logic gates to emu-
late the function of brain neurons and synapses. Recently,
researchers have been engaged in the demanding work
of building brainware computing system [7]–[10]. An in-
hardware training chip has been fabricated and carried out
a demonstration for data classification, which exhibits a
noticeable reduction of power dissipation and latency [11].
Pei et al. has proposed a hybrid Tianjic chip architecture
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FIGURE 1. Types of object detection.

that consists of multiple cores, reconfigurable building blocks
to achieve the precise control and real-time object detec-
tion of unmanned bicycle [12]. The brainware processor
shows a significant promise for accurate and real-time object
detection. However, the large-scale architecture of the neu-
ral network impedes its development. Therefore, the neural
network with a lightweight structure for high-quality object
detection is an urgent need for the evolution of brainware
processors.

In computer vision, object detection aims to discriminate
instances of the object from given categories in the database
or determine object coordinates within an image [13].
As shown in Fig. 1, the object detection has two types, single
object recognition and multi-object detection. The imple-
mentation of object detection involves feature extraction
and classification [14]. In lieu of using conventional feature
extraction approaches such as scale-invariant feature trans-
form (SIFT) descriptor [15] and histogram of oriented gra-
dients (HOG) [16], deep neural networks extracts the object
features with convolution operation. Meanwhile, the target
features are attained, deploying a classifier that locates at the
end of the neural network.

In the early stage, the object category is determined by
a pre-trained network model, which only affords a single
label for the test image or frame. A typical example is the
usage of trained neural networks to recognize images in
the ImageNet database [17]. The objective of multi-object
detection is to discover all the possible objects and the cor-
responding location in the image. The objects with high
probabilities (over the pre-defined threshold) are affirmed
as targets. The multi-object detection can be realized by
single-stage and two-stage detectors. The single-stage detec-
tor omits the search of region proposal that is the first step
in the two-stage detector. Region-based convolutional neu-
ral networks (R-CNNs) [18], as a two-stage detector, takes
advantage of selective search methods to extract the region’s
proposal of interests which are used for the inputs of object
feature classification (second stage). It takes a large amount
of time to train the neural networks because the interested pro-
posals are considered as the stand-alone image for the input
of the neural network. To speed up the R-CNNs, the faster
R-CNNs inputs the entire image to the neural network, and
the interested proposals are selected from the feature maps

of image [19]. However, the selective search method utilized
in the region proposals of both R-CNNs and fast R-CNNs
has the issue of time-consuming. To solve the bottleneck
of proposal selection, the region proposal network (RPN)
has been proposed to learn the interested proposals directly
in faster R-CNNs [20]. The R-CNNs decompose the detec-
tion process into two stages: bounding box regression (first
stage) and anchors classification (second stage). Instead of
using the two-stage detector, the single-stage detector directly
predicts the coordinates of bounding boxes and the class
probability. The single-shot detector (SSD) adopts a pyrami-
dal feature hierarchy to detect the coordinates of bounding
boxes and the class probability simultaneously [21]. How-
ever, the dimension of feature maps is reduced by increasing
the depth of the neural network, which degrades the detection
accuracy with low spatial resolution features. The you only
look once (YOLO) algorithm uses the concatenated feature
maps in different scales to the bounding box of the object,
which allows the feature maps to be fully utilized. YOLO3 is
the state-of-the-art fastest real-time object detection system,
which has received wide attention in academics and industry.
Likewise, the YOLO3 employs deep convolutional layers
(53 layers) to perform precise object detection, which is
prone to be challenging for the design of compact brainware
processor.

The tiny YOLO3, as the lightweight version of YOLO3,
is one of the best alternatives for the design of compact
brainware processor for the sake of its lightweight net-
work architecture and high-precision detection rate. The
tiny YOLO3 algorithm received extensive attention and is
widely used in the field of object detection. Recently, com-
pressing the network structure and design of tiny YOLO
application-specific integrated circuits (ASICs) become
indispensable in academics and industry. However, there is
no systematic studies concerning the tiny YOLO3 algorithm.
It is difficult to develop a compact processor without fully
understanding of the mechanism and principle of the tiny
YOLO3 algorithm. In this paper, we initially provide a sys-
tematic study of tiny YOLO3 algorithm, which will provide
a good foundation for algorithm understanding and make
a contribution to accelerating the development of compact
brainware processor.

II. RELATED WORK
A. YOLO DEVELOPMENT
J. Redmon firstly proposed the YOLO algorithm in
May 2016 [22], and it has been evolved to four generations
within four years. The base YOLO, motivated by fast R-
CNNs, introduces the region-based concept to the neural
network. Peculiarly, the input image is divided into different
grid cells where two bounding boxes are predicted. In each
bounding box, the center coordinate of object, confidence
scores and the class probabilities are predicted. The confi-
dence score is responsible for checking whether or not the
object exists in the bounding box. The base YOLO has a
good advantage in the perspective of speed and acceptable
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accuracy, but the following drawbacks retard the development
of base YOLO:
• The base YOLO is hard to handle the situation that the
distance of two objects is very close. The detector may
only predict one object in this condition, which degrades
the detector’s inference rate.

• Even though each grid cell predicts two bounding boxes,
the predicted results are only for one category of objects.
Hence, it cannot provide correct results if two objects
locate in the same grid cell.

• The base YOLO adopts a fully-connected layer to out-
put the predictions, which requires the inputs of the
fully-connected layer to possess the same dimension.

To address the shortcomings of the base YOLO algo-
rithm, YOLO2 absorbs a wide variety of essences from other
algorithms to make itself better, faster and stronger [23].
The YOLO2 has the capability to detect over 9000 object
categories, while the number of detection categories is only
twenty in the base YOLO. Furthermore, the YOLO2 proposes
a new classification model (Darknet-19), which consists of
nineteen convolutional layers and five pooling layers. With
the PASCAL VOC2007 dataset, the mean average preci-
sion (mAP) of YOLO2 increases from 63.4 to 78.6 and the
processing speed reduces from 45 frames per second (FPS)
to 10 FPS in contrast to the based YOLO algorithm. The
substantial enhancement of YOLO2 is the introduction of
batch normalization and the anchor box. The following items
list the improvement of YOLO2,
• Adding batch normalization after each convolution oper-
ation can speed up the convergence of neural network
training and eliminate the need to adjust parameters
manually.

• Instead of predicting bounding boxes with fully-
connected layers, the YOLO2 utilizes the anchor boxes
to predict the parameters of bounding boxes. Using
anchor boxes increases the number of predicted bound-
ing boxes in each grid cell, but fewer mAP is decreased.
Moreover, the dimension of anchor boxes is determined
by taking advantage of the K-means clustering algo-
rithm, which can shorten the training time of the neural
network.

YOLO2 made a significant change on base YOLO, and
its performance was greatly enhanced. However, the per-
formance of YOLO2 is still restrained by the following
deficiencies:
• It is assumed that the detected object only has a single
label, but one object may belong to multiple groups. For
example, a car may be labelled as "car" or "vehicle", but
the "softmax" function in YOLO2 only issues one label
for the detected object.

• In the case of small objects, the prediction accuracy of
YOLO2 is relatively low and needs to be improved.

In 2018, the upgraded YOLO, YOLO3, was proposed,
and some new ideas were added based on YOLO2 [24].
Compared to the Darknet-19, the YOLO3 takes advantage

of 53 convolution layers (Darknet-53) to deepen the net-
work structure, which also inserts the residual block to
the network [25]. Instead of using the "softmax" function,
the logistic function is introduced for multiple label predic-
tions. Moreover, the significant achievement of YOLO3 is
the multi-scale prediction, which improves the algorithm’s
ability to predict small objects. On the basis of YOLO3,
YOLO4 integrates some novel technology such as weighted
residual connections, cross stage partial connections, and
cross mini-batch normalization etc. to improve the speed and
accuracy of object detection, which is published in 2020 [26].

B. HARDWARE ACCELERATION OF YOLO
Although YOLO3 has the advantages of high precision and
fast detection speed, it is challenging to transplant the full
algorithm to the field programming gate array (FPGA) or
ASICs owing to its large memory and gate utilization. The
tiny YOLO3, as the lightweight version of YOLO3, uses
less convolutional layers but shows receptible detection accu-
racy. Meanwhile, the weight parameters of tiny YOLO3 is
reduced around 10× comparing with YOLO3 (from 237 MB
to 33.8MB), whichmade the hardware acceleration of YOLO
algorithm to be practicable.

Many studies have been published for the hardware accel-
eration of YOLO algorithm with FPGA. In the reference
of [27], an FPGA-based lightweight YOLO2 utilizing the
binarized weight and support vector regression has been
demonstrated to achieve object classification and localiza-
tion. The detection speed of lightweight YOLO2 with the
ZCU102 evaluation board (Xilinx Inc. California, United
States) is up to 40.81 FPS. Another FPGA-based tiny
YOLO2 implementation was proposed in literature [28],
which adopts 16-bit fixed-point data to compress the YOLO
model. The peak throughput of 21 Giga operations per second
(GOPs) is attained with 100 MHz frequency. In the literature
of [29], the authors proposed a Tera-OPS streaming struc-
ture to accelerate the YOLO algorithm, and it achieves a
throughput of 1.877 Tera operations per second (TOPs) using
binarized weight and fully paralleled convolutional layer.
A parameterized FPGA-tailored architecture was proposed
for low-latency detection with tiny YOLO3 in [30], which
has 1.88 FPS frame rate and 10.45 GOPs throughput with the
low-cost FPGA evaluation board. However, the FPGA-based
neural network suffers from large power consumption [31]
comparing to ASICs. A great deal of complementary metal-
oxide-semiconductor (CMOS) based accelerators have been
proposed such as Origami [32], Eyeriss [33], iFPNA [34] etc.
Moreover, with the development of magnetic tunnel junc-
tion (MTJ) technology, the hybrid CMOS/MTJ based logic
circuit can significantly decrease the power consumption of
brainware processor [8], [35], [36]. The CMOS or hybrid
CMOS/MTJ based brainware processors will play a major
role in object detection. The processor embedded with tiny
YOLO3 will be the state-of-the-art most fast and accurate
detection algorithm, which has a great demand in the market.
However, the lack of understanding of the tiny YOLO3 will
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FIGURE 2. Network structure of tiny YOLO3. It consists of 13 convolution layers, 6 max-pooling layers, 2 route layers, 1 upsampling layer,
and 2 YOLO layers.

retard the enhancement of brainware processor. Therefore,
this paper presents a comprehensive study of tiny YOLO3 for
accurate object detection. The key contributions of this paper
are summarized as follows,
• A discussion of the development of the YOLO algorithm
and its hardware acceleration has been provided.

• The systematic study and analysis of tiny YOLO3 have
been presented.

• Challenges and open solutions from algorithm, hard-
ware and emerging semiconductor technology level
have been proposed for the design of the compact brain-
ware processor.

• The techniques of approximate computing and approx-
imate circuits are proposed for condensing the tiny
YOLO3 algorithm.

The rest of this paper is organized as follows. Section III
gives a full review of tiny YOLO3, which includes the data
pre-processing and post-processing, implementation details
of each layer. Section IV and Section V illustrate the metrics
challenges, and open solutions for the design of the compact
brainware processor. Finally, the summary are presented in
Section VI.

III. STRUCTURE OF TINY YOLO3
The structure of tiny YOLO3 is defined in the configuration
file ("cfg" file, refer to Appendix A), and the start point of
each layer is defined by the symbol [•]. As shown in Fig. 2,
the tiny YOLO3 consists of six kinds of layers, totally 24 lay-
ers: net , convolutional, maxpool, yolo, route, and upsample

layers. net layer configures parameters of the entire network.
The remainder of this section will thoroughly describe the
network structure of tiny YOLO3 based on distinct layers.

A. CONVOLUTION LAYER
The convolution layer has three modules: convolution opera-
tion, batch normalization and activation function. Moreover,
the convolution operation includes the feature map conver-
sion and general matrix multiplication. The following subsec-
tion will give a detailed description of the convolution layers.

a: CONVOLUTION
Mathematically, an image is described as three dimensions:
width, height, and depth (or channels). The convolution
operation between images and filters (or kernels) enables to
extract effective information for object detection. The prereq-
uisite of convolution operation is that the depth of filters and
input image arrays should keep consistency. By scanning the
image array utilizing a filter array that has a fixed stride (S),
the output dimension of feature maps is defined as following
expressions.

ho = (h+ 2× P− fh)/S + 1 (1)

wo = (w+ 2× P− fw)/S + 1 (2)

where ho and wo are the output height and width of convo-
lution. h and w are the height and width of the input image
array, respectively. P is the number of zero-padding. fh and
fw are the height and width of filter, accordingly. All of the
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filters in tiny YOLO3 are 3 × 3 arrays (fw = fh = 3) with
depth fd that equals to the depth dimension of previous feature
map. The output depth of convolution operation is identical
to the number of filters. Taking the second convolution layer
of tiny YOLO3 as example (refer to Fig. 2), the dimension of
convolution result between input image array (208×208×16)
and 32 filters (3× 3× 16) is 208× 208× 32 (S = 1,P = 1).
The convolution operation of tiny YOLO3 can be achieved

by the following two steps: (1) feature matrix conversion;
(2) general matrix multiplication (GEMM). The "img2col"
and "gemm" are the main functions for the implementation
of feature matrix conversion and GEMM, respectively. The-
oretically, a memory stores 2-dimensional array in rows and
columns, but the memory address of the computer is linearly
ordered. As shown in Fig. 3, a 4 × 4 × 3 image array is
stretched in memory serially as a 1-dimensional array with
48 elements, and the address of image array in memory is
continuously connected channel by channel.

b: FEATURE MATRIX CONVERSION
The purpose of feature matrix conversion is to achieve
point-to-point convolution between image arrays and filters.
The feature matrix conversion adopts the image arrays with
zero-padding in which the zeros are inserted to the board-
ers of each channels (refer to Fig. 3). Appendix B briefly
illustrates the pseudo codes of zero-padding (zeroPadding).
At first, the image array is converted to a feature matrix
(1-dimensional array) that involves all the elements scanned
by the filter windows. The output row of feature matrix
conversion is the number of elements in filters (fn), which is
calculated by the following equation,

fn = fw × fh × fd (3)

Meanwhile, the output column of feature matrix conversion
(fc) is defined as follows,

fc = ho × wo (4)

In summary, the output of feature matrix conversion is a
matrix with fn rows and fc columns, and the matrix locates
in the memory as a 1-dimensional array (fn × fc).
By scanning the one-dimensional image array, tiny

YOLO3 reorganizes the array elements row-by-row instead
of column-by-column. Specifically, the first wo elements are
placed on the first row of output matrix, and then the second
wo elements picked up by striding the image array are placed
after the first wo elements. It totally has ho × wo elements
in the first row of the output matrix. As shown in Fig. 3,
a matrix with 27 (3 × 3 × 3) rows and 16 columns (4 × 4)
is achieved by converting the 4 × 4 × 3 image array with
3 × 3 × 3 filter. Likewise, the feature map of tiny YOLO3
(208 × 208 × 16) passing into the second convolution layer
is converted to 3 × 3 × 16 rows and 208 × 208 columns
matrix with im2col function as well. And so forth, all input
matrices and feature maps of neural network are converted
into a large matrix that is stored in the computer’s memory

Algorithm 1 Feature Matrix Conversion of Input Image
Array
Inputs: Image array with zero-padding (img_pad_out), rows

and columns of image array (img_rows, img_cols),
rows, columns and depth of filter (filter_rows,
filter_cols, filter_depth), paddings, stridding.

Outputs: Results of feature matrix conversion (img_out)
Function img2col(img_pad_out, img_rows, img_cols,
filter_rows, filter_cols, filter_depth, paddings, stridding):

h_o = (img_rows + 2 ∗ paddings −
filter_rows)/stridding + 1; w_o = (img_cols +
2 ∗ paddings − filter_cols)/stridding + 1;
f _n = filter_rows ∗ filter_cols ∗ filter_depth;
for c ∈ fn do

w_offset = c % filter_rows; h_offset =

(c / filter_cols) % filter_cols; c_index =

c / filter_rows / filter_cols; for h ∈ ho do
for w ∈ wo do

row_index = h_offset + h ∗ stridding;
col_index = w_offset + w ∗ stridding;
out_index = (c ∗ h_o + h) ∗ w_o + w;
in_index = (img_rows + 2 ∗ paddings) ∗
(img_cols + 2 ∗ paddings) ∗ c_index +
row_index ∗ (img_rows + 2 ∗ paddings) +
col_index; img_out[out_index] =

img_pad_out[in_index];

return img_out

as a one-dimensional array. Algorithm 1 (img2col) shows the
pseudo codes of feature matrix conversion.

c: GEMM
Feature matrix conversion aims to assure that the convolution
operation can be accomplished using the GEMM of the basic
linear algebra subprograms (BLAS) standard. The GEMM is
defined as following equation [37],

C = α × A× B+ β × C (5)

where A (N × fn) and B (fn × fc) are the filter and input image
array, respectively. N is the number of filters. C represents
the convolution result. α and β are the constant scalars.
Expanding Eq. 5, the GEMM calculation of tiny YOLO3 is
rearranged as following equation,

Cij =
fd−1∑
i=0

fn−1∑
k=0

fc−1∑
j=0

α × Aik × Bkj +
fd−1∑
i=0

fc−1∑
j=0

β × Cij (6)

where the constant scalars α = β = 1. Substituting the con-
stant scalars to Eq. 6, the convolution operation is reorganized
as follows,

Cij =
fd−1∑
i=0

fn−1∑
k=0

fc−1∑
j=0

Aik × Bkj (7)
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FIGURE 3. Feature matrix conversion and array arrangement in memory. The elements in array are stored one-by-one. The input image array is expanded
with zero-padding, and then converted to feature matrix for convolution operation.

As shown in Fig. 4, the GEMM is implemented with two
steps: one-by-one multiplication between filter parameters
and featurematrix elements and sum ofmultiplication results.
More specifically, the first element in each filter multiplies
to the first row of the element in feature matrix and the
multiplication result stores in the fc address of memory. After
the multiplication is completed between the second element
and the element in the second row, the calculation results
between the first and the second elements are summed and
stored in memory. The convolution of the first filter ends
until the multiplication of the last element in the filter, and
the last row in the feature matrix is completed. The above
operation is repeated until the convolution of the N filter is
finished, and N × fc (N × ho × wo) elements are achieved
eventually.

Tab. 1 summarizes the number of parameters and the inputs
or outputs dimension in each convolution layer. The first
five parameters within the weight file of tiny YOLO3 are
not filters’ parameters. Although the binary file of tiny

YOLO3 weight includes 8858739 parameters, the 8858734
(8845488 + 9552 + 3694) parameters are used for con-
volution operation and batch normalization. As expressed
in Tab. 1, the tiny YOLO3 has a total of 13 convolutional
layers, and the 1 × 1 convolution is used in the 10th and
13th layers where the batch normalization is not included.
Fig. 5 shows the format of weights arranged in memory.
The convolution parameters are stored in the order of biases,
scales, means, variance and filter weights. The scales, means
and variance (with the same numbers in each layer) are used
for batch normalization that will be discussed in the following
subsection. The filter weights are utilized for the convolution
operation with GEMM, and the dimension of filter weights is
N × fc.

d: BATCH NORMALIZATION
The batch normalization (BN) layer aims to ensure that the
input data in each layer of the neural network has a similar
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TABLE 1. Number of parameters in convolution layer.

FIGURE 4. Convolution operation with GEMM. The dimension of filters
and feature matrix are N × fn and fn × fc , respectively.

FIGURE 5. Weights arrangement of convolutional layers in memory. The
details about the number of convolution parameters are illustrated in
Tab. 1. The weight size of tiny YOLO3 is 33.8 Megabytes (8858734 × 32 / 8
/ 1024 / 1024) with 32-bit floating-point format.

distribution (zeromean and unit variance). Since the BN layer
locates between the convolution layer and the activation layer,
the input of the batch layer comes from the output of the
convolution layer. The normalization of convolution result

(Ĉij) is calculated by the following equation,

Ĉij =
Cij − E[Cij]√
Var[Cij]

(8)

where the symbols of E[•] and Var[•] represent the expec-
tation and variance operation, which are typically estimated
using the mean and variance of a mini-batch withm elements,
µB, and σ 2

B. The batch normalization is formulated as fol-
lows,

Ĉij =
Cij − µB√
σ 2
B + ε

(9)

µB =
1
m

m∑
p=1

C (p)
ij (10)

σ 2
B =

1
m

m∑
p=1

(
C (p)
ij − µB

)
(11)

where ε is a constant value (0.000001f) that is selected to
avoid dividing by zero. In theory, σ 2

B is sample variance
of mini-batch dataset. However, the test sample typically
only has one batch during the inference period, so the batch
normalization takes advantage of population variance and
mean for the inference implementation. The sample variance
is an unbiased estimator of the population variance, and the
transformation relationship between them is expressed as
follows,

σ 2
= E

∑m
p=1

(
C (p)
ij − µB

)
m− 1

 (12)

where σ 2 and σ 2
B are population variance and sample vari-

ance, respectively. The expectation of sample variance can
be obtained by reorganizing Eq. 11,

E
[
σ 2
B

]
= E

 1
m

m∑
p=1

(
C (p)
ij − µB

) (13)

VOLUME 8, 2020 142937



T. Li et al.: Systematic Study of Tiny YOLO3 Inference

The above equation can be rewritten as follows,

E

 m∑
p=1

(
C (p)
ij − µB

) = m× E
[
σ 2
B

]
(14)

Substituting Eq. 14 to Eq. 12, the population variance can be
attained as follows,

σ 2
=

m
m− 1

× E
[
σ 2
B

]
(15)

Meanwhile, the population mean (µ) can be estimated using
the samplemean in themini-batch, that is,µ = µB. However,
the normalization calculation to the data with zero mean
and unit variance distribution in Eq. 9 reduces the range of
data representation. As an illustration, the sigmoid activation
function only works in the linear region if the inputs are zero
mean. Adding the scale (γ ) and shift (β) parameters to the
model is an achievable solution to solve the issues mentioned
above. By referencing Eq. 9 and Eq. 15, the output of batch
normalization (OB

ij ) can be represented as following equation,

OB
ij = γ ×

(
Cij − µ
√
σ 2 + ε

)
+ β

=
γ

√
σ 2 + ε

× Cij +
(
β −

γ × µ
√
σ 2 + ε

)
(16)

Similar to weight training, the γ and β are pre-trained
parameters. Furthermore, the µ and σ are also pre-calculated
parameters for inference in the period of training. Therefore,
four more parameters in each filter are loaded for forward
propagation of tiny YOLO3. As illustrated in Eq. 16, since
the batch normalization is a linear transformation of the
results in convolutional layer, the output dimension of batch
normalization is the identical to the outputs in convolutional
layer (N × ho × wo).

e: ACTIVATION FUNCTION
The activation function intends to bring in the non-linearity
to the neural network, which enables the model to deal with
complex conditions. The leaky rectified linear unit (ReLu)
is utilized to fire the neurons of the neural network in tiny
YOLO3. The activation function locates behind the batch
normalization, that is, the inputs of activation function are the
outputs of batch normalization. The leaky ReLU is defined as
follows,

OA
ij =

{
0.1× OB

ij if OB
ij < 0

OB
ij if OB

ij > 0
(17)

where OA
ij is the output of leaky ReLU. The above equa-

tion can be performed using C language code as ‘‘OA
ij =

OB
ij ? O

B
ij : 0.1 ∗ O

B
ij ’’.

B. MAX-POOLING LAYER
The feature position of input images is precisely stored in the
outputs of ReLU, which results in that the feature maps are
susceptible to the rotation or translation of input images. The

FIGURE 6. Max-pooling of tiny YOLO3.

max-pooling, a downsampling strategy, can not only reduce
the dimensionality of the feature map but also make the
network structure more stable and robust. In other word, with
the max-pooling method, the feature map’s susceptibility to
rotation or translation will be well addressed. The largest
elements within the filter sub-region are the output of max-
pooling, which is written as follows,

MP
= max

(
OA

)
(18)

whereMP andOA are the outputs and inputs of max-pooling,
respectively. max(•) indicates the maximization operation.
Tomake the expression easier, the superscript of max-pooling
input (A) is omitted. As shown in Fig. 6, the subscript value
represents the address index of the corresponding element.

In tinyYOLO3, the stride ofmax-pooling is 2, and the filter
size is 2×2. The max-pooling is achieved by the comparison
of the four values in the filter window by traversing, which is
calculated by following expressions,

max(O0,−FLT_MAX ) H⇒ T1 (19)

max(T1,O1) H⇒ T2 (20)

max(T2,O416) H⇒ T3 (21)

max(T3,O417) H⇒ M1 (22)

where FLT_MAX is the maximum floating-point number.
T1,T2, and T3 are the intermediate variables during calcu-
lations. The first max-pooling is accomplished by using the
above equations. Fig. 6 only gives two rows of feature maps
after the first ReLU outputs. The dimension of max-pooling
relies on the value of stride, which can be evaluated as
N × ho/S × wo/S. The detailed dimension of max-pooling
output is listed in Fig. 2. In total, the entire architecture of tiny
YOLO3 has six max-pooling operations.
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FIGURE 7. Upsampling results of tiny YOLO3.

C. UPSAMPLING LAYER
The upsampling layer attempts to convert the image from
low resolution to high resolution, which enables YOLO’s
prediction to be implemented on another scale. In tiny
YOLO3 the nearest-neighbor interpolation approach is uti-
lized for upsampling, which is defined as follows,

Uo←− ξ × Ui (23)

where ξ is the constant scale, ξ = 1. Uo and Ui are the
outputs and inputs of upsampling layer. As shown in Fig. 7,
the implementation of upsampling is attained by inserting a
copy of the input vector before the next input vector. The
stride of upsampling is 2 as well, which extends the inputs
dimension from 128× 13× 13 to 128× 26× 26.

D. ROUTE LAYER
The route layer concatenates data from other layers into
the feature map, which provides more valuable information
for subsequent prediction. Two route layers are used in tiny
YOLO3. The first route layer copy the output features from
the 8th convolutional layer (Conv-8 in Fig. 2), and the second
route layer concatenates the outputs from the 5th convolution
layer (Conv-5) and upsampling layer. Specifically, the result
of route layer is the union of different layers, which is defined
by following expression,

Ro = R1 ∪ R2 ∪ · · ·Rn (24)

FIGURE 8. Schematic of route in tiny YOLO3.

where Ro and R1,2,3,··· ,n are the output and input of route
layer, respectively. Besides, it requires that the width and
height of inputs in route layers should keep the same. The key
point of the concatenation is to copy elements from interested
addresses to the output address of the route layer. Fig. 8
illustrates the concatenation details between 26×26×128 and
26×26×256 feature maps, and the data can be represented in
three different formats: 3-dimension data, 2-dimension data,
and 1-dimension data stored in memory. The concatenation
in 2-dimension or 3-dimension is implemented along the
depth direction. In computer’s memory, the address of route
output sequentially copies the elements from each input layer
to generate a new feature maps. Benefiting from the informa-
tion fusion of different layers, the tiny YOLO3 exhibits great
capability for small objects detection.

E. YOLO LAYER
The coordinates of bounding boxes and the probabilities of
objects are affirmed in the ‘‘yolo’’ layer. The fully-connected
layer in previous version of YOLO is superseded by the
‘‘yolo’’ layer. The rest of this subsection will provide a
detailed description of the ‘‘yolo’’ layer. As shown in Fig. 2,
the 10th convolution layer (16th layer in ‘‘cfg’’ file) attempts
to predict the object coordinates using 255 filters. The dimen-
sion of each filter is 1 × 1 × 255 (width × height × depth).
The neural network predicts 3 anchor boxes for each cell of
the input image, and each anchor box consists of 4 relative
coordinates of the bounding box, 1 objectness score, and
80 classes (85 parameters totally). Once the relative coordi-
nates (tx , ty, tw, th) are confirmed, the center coordinates of
the object and the dimension of the bounding box can be
evaluated by following equation [24],

bx = σ (tx)+ cx (25)

by = σ (ty)+ cy (26)

bw = pw × etw (27)

bh = ph × eth (28)

where bx and by are the center coordinates of pre-
dicted box. bw and bh are the width and height of
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FIGURE 9. Parameters definition of bounding box. Figure adapted
from [24].

predicted box, respectively. cx and cy are the off-
set of predicted cell to the top corner of the image.
pw and ph are dimension of anchors (bounding box
prior) which has six predefined settings in tiny YOLO3,
[(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)].
Fig. 9 shows the parameters definition of predicted bounding
box. The σ [•] indicates the logistic function which is written
by the following expression,

σ (x) =
1

1+ e−x
(29)

The objectness score (Sobj) and the category probabili-
ties (Pr1,2··· ,80) are predicted utilizing above logistic func-
tion as well. Specifically, the 10th convolution layer outputs
255 × 13 × 13 vectors which are considered as the first
scale prediction. As shown in Fig. 10, each cell adopts three
anchor boxes for prediction, and each column (255 vec-
tors) of feature map includes a prediction of one cell. In
other words, the elements in each column are the predicted
parameters for the corresponding grid cell. Since tw and th
do not require a regression operation, the logistic function
is separately implemented twice. The first logistic function
handles the first two rows of vectors for each anchor box
(2 × 13 × 13) of center coordinates, while the second func-
tion processes the vectors of the fifth to the last row of
predicted parameters ((1+ 80)× 13× 13). A total number
of three loops are needed using the logistic function to tra-
verse all predicted vectors (255 × 13 × 13). The evaluation
results of the logistic function are stored in memory for
subsequent processing. Once the parameters are predicted
in the ‘‘yolo’’ layer, the target objects can be achieved by
post-processing algorithms which consist of bounding box
regression, post-processing of bounding box, and non-max
suppression (refer to Appendix C).
A concrete example to verify the tiny YOLO3 algorithm

is provided in Fig. 11. The dimension of frame captured
from a USB camera (See3CAM, e-con Systems, India) is
640 × 480 pixels, but the input image dimension is resized

FIGURE 10. Logistic function in ‘‘yolo’’ layer.

to 416 × 416 pixels (same as the input image in Fig. 2).
The demonstration software of tiny YOLO3 algorithm is
executed on a CPU with the configuration of Intel Core
i76920HQ, 2.9 GHz. As shown in Fig. 11, the processing
time of current video frame is 386.2701milliseconds, and two
objects (bottle–62% and person–85%) are recognized in this
demonstration.

However, in application of real-time object detection,
this demonstration result is undesirable because the pro-
cessing time is 10x greater than the real-time frame rate,
33 FPS. Therefore, it is imperative to develop a high-speed,
energy-efficient compact brainware processor with the tiny
YOLO3 algorithm.

IV. METRICS OF COMPACT BRAINWARE PROCESSOR
WITH TINY YOLO3
Benefiting from the high accuracy and small network model,
the tiny YOLO3 algorithm exhibits excellent potentials for
the compact processor design. However, it is still challenging
to develop brainware processor with tiny YOLO3 due to the
high computation costs and high memory demand. Fortu-
nately, techniques of approximation and compression enable
compact brainware processors to be possible. The heuristic
evaluation of approximation and compression algorithms can
fundamentally analyze the bottleneck that hinders the design
of compact brainware processor. The metrics of evaluating
compact brainware processor are summarized as follows,
• Throughput – It is defined as the rate of production. The
throughput for the YOLO-based processor is considered
as an inference rate or detection rate. A high throughput
indicates that more inferences or detection are produced
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FIGURE 11. Demonstration with tiny YOLO3.

per second, which is measured by operations per sec-
ond (OPS) or TOPS. In general, the throughput can
be improved by increasing the batch size, which also
introduces large latency to the neural network.

• Latency – It is the time interval (unit: seconds) to attain
one inference or detection result. The latency plays a
crucial role in evaluating real-time applications such
as obstacle avoidance of autonomous driving, real-time
navigation of unmanned aerial vehicles (UAVs) etc.
A large latency will result in the failure of the real-time
task. However, low latency may decrease the through-
put, which presents a challenge for the development of
brainware processor.

• Accuracy – It is a benchmark to evaluate the good or
bad of a proposed algorithm. The accuracy is defined by
the ratio between the correct inference results and entire
testing samples. For algorithm improvement, accuracy is
the most important metric. However, the accuracy of the
contemporary neural network has exceeded the require-
ment of brainware processor design. Instead of pursu-
ing high accuracy by increasing computation cost and
deploying large memory, it is more necessary to develop
high-performance compact brainware processors with
low latency and high throughput in practical applica-
tions. Therefore, the main task is to realize the design of
brainware processor by compressing and approximating
the tiny YOLO3 algorithm while preserving acceptable
accuracy as much as possible.

• Energy-efficiency – It mainlymeasures the ratio between
throughput and power consumption, that is, perfor-
mance per watt. There are growing demands for
energy-efficient processors on the applications of wear-
able devices, smartphones etc. In addition, a large
amount of heat is generated through the growth of power
consumption, which also brings higher requirements
for the cooling protection of the processor. The power
consumption of brainware processors derives mainly
from a vast majority of computation logics and on-chip
memory or the access between processors and off-chip
memory.

• Cost – It mainly refers to the development and produc-
tion costs of a brainware processor, which involving the
expenses of algorithm development, hardware design
and device fabrication. The market expects low-cost
processors, but cheap processors may be developed at
the cost of performance degradation.

• Lifecycle – It refers to the amount of time that a brain-
ware processor is worked. With the development of
emerging semiconductor technologies, most electronic
components have a long life cycle, and only long life
cycle brainware processors have more opportunities of
being selected by engineers or companies.

• Dimension – It is the physical size of brainware proces-
sor. A small or tiny dimension processor is preferred in
some applications because it facilitates the integration of
more electronic components in limited space.
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V. CHALLENGES AND OPEN SOLUTIONS OF COMPACT
BRAINWARE PROCESSOR WITH TINY YOLO3
Designing a compact brainware processor with tiny
YOLO3 is a difficult task on account of many challenges that
should be addressed. As described in Tab. 1, a total number
of 8858734 parameters (33.8 Megabytes) are included in
tiny YOLO3. Moreover, the maximum dimension of activa-
tion (with 32-bit floating-point) is up to 10.56 Megabytes
(416 × 416 × 16 × 32 / 8 / 1024 / 1024) within the first
convolutional layer. The key challenge is that a considerable
amount of memory resources are required to store those
weights and activations of tiny YOLO3, which is the main
reason to impede the development of compact brainware
processor. The huge computation costs in the convolutional
operation (refer to Fig. 3 and Fig. 4) slow down the processing
speed of inference, which brings large latency to the tiny
YOLO3 processor. Moreover, high computational complex-
ity requires a large area of integrated circuit to implement,
which also diminishes the throughput of compact brainware
processor. Frequent accessing on-chip memory or external
memory comes with a power consumption overhead for
energy-efficient processors. Therefore, the following chal-
lenges need to be tackled to achieve a high-performance
brainware processor,

• Memory – Large memory requirement (tensors, parame-
ters, etc.) increases the circuit area and consumes a great
deal of power.

• Logic gate – Complicated network architecture and
massive convolutional operations need to be supported
with a large number of logic gates, but less latency for
real-time object detection.

Brainware processors with small memory capacity and
fewer logic gates consumption are what industry and
academia expect. Therefore, the essence of academic research
is to achieve these two requirements with heuristic strategies,
such as algorithm or hardware improvement, while ensur-
ing that the detection result is readily acceptable. In the
following section, the open solutions for designing com-
pact brainware processors with tiny YOLO3 are proposed
from the algorithm, hardware, and emerging semi-conductor
technology level. Meanwhile, the challenges and pitfalls
by virtual of distinct solutions are also illustrated. Tab. 2
gives a summary of open solutions for the design of com-
pact brainware processor with tiny YOLO3, which will
be thoroughly discussed in the remaining part of this
section.

A. ALGORITHM LEVEL
There are undoubtedly four ways to achieve less memory and
logic gate of compact brainware processor from algorithm
level: (1) reducing the number of parameters and activa-
tions; (2) minimizing the precision (bit length) of parame-
ters and activations; (3) reduce the number of computation;
(4) compress the network model by refining the sophisti-
cated trained model. The first three types of strategies can

TABLE 2. Open solutions for the design of compact brainware processor
with tiny YOLO3.

be achieved using approximated computing approach, while
the last item can effectively implemented by knowledge
distillation.

1) APPROXIMATE COMPUTING
It is clear that the inference accuracy of YOLO-based algo-
rithm (from YOLO1 to YOLO4) has been significantly
improved since 2016. However, the growth of computa-
tion costs and memory demands of YOLO-based algorithm
with redundant accuracy become the major challenge to
develop brainware processor. The approximate computing
is a prominent solution to exploit the intrinsic resilience
of neuromorphic applications, which is able to consider-
ably reduce the memory utilization and computation com-
plexity of embedded processor while maintaining acceptable
accuracy [38], [39]. The intrinsic resilience means that the
applications still achieve tolerable results despite performing
in error or approximate manners [40], which is attributed to
the following reasons [41],

• The golden results are unachievable, and the human
brains are hard to distinguish from the inference results
to a certain extent. In other words, the processing results
with intensive computation and large memory consump-
tion are probably redundant, which tends to be the same
as processing results with the approximate computing
approach for human beings.

• The input data of the practical application is usually
noisy and redundant. For a neural network, the system
deploys different types of samples to explore the opti-
mal model of neural network during training period,
which fundamentally makes the neural network to be
an approximate computing system. In addition, The uti-
lization of a large amount of redundant data calculation
is not necessary for limited perceptual capabilities of
human brains.

• The impacts of approximate computing may be neutral-
ized with the aggregation or iterative-refinement calcu-
lations in the neural networks. Optimizing the calcula-
tion pattern of neural network while employing approx-
imate computing can effectively decrease the amount of
computation and storage for the development of brain-
ware processor.
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FIGURE 12. Weight and activation pruning.

The following section will propose some possible solutions
for the development of the compact brainware processor with
approximate computing strategy.

a: WEIGHT AND ACTIVATION SPARSIFICATION
The critical point of sparsification is that the data with a sub-
stantial contribution to the detection will be retained, while
fewer contributions will be discarded. In general, the com-
plexity of the neural network is reduced by using activa-
tion pruning and weight pruning, as shown in Fig. 12. The
weight and activation (neuron) are selectively eliminated
using weight and activation pruning. The weigh pruning and
activation pruning belong to non-structured and structured
pruning, respectively. The shortcoming of non-structured
pruning is that the produced weight matrix leads to the neural
network model with random connections, which reduce the
efficiency to access the weights stored in memory [42]. The
activation pruning, as a structured pruning method, consid-
erably saves more memories for the storage of intermediate
actions and trained weights while significantly reducing the
computation resources of convolution operations. The activa-
tion pruning works better on reducing the memory utilization
and computation cost than the weight pruning because the
activation pruning not only removes the neurons but also
eliminates the synapses connecting to the corresponding neu-
rons. Weight pruning attempts to remove the weights with
zero or small values that depend on the preset threshold.

In the early study, LeCun et al. [43] proposed the ‘‘Opti-
mal Brain Damage’’ to selectively remove weights, which
firstly deploys the pruning concept to the neural network.
Although pruning technology has been studied in the past, it is
not paid more attention until the rapid development of deep
neural networks and the increasing demand for embedded
processors. In the literature of [44], the number of weight
is reduced by 13× for the VGG-16 model while with little

accuracy loss, which attracts more scholars to focus on the
pruning technique after the paper publication. The prun-
ing experienced two steps: firstly, the weights less than the
threshold are removed, and the final weights are achieved
by retraining the network for fine-tuning in the second step.
It is worth mentioning that the weight pruning technique in
this algorithm is employed in all layers. A similar pruning
strategy can be found in ThiNet [44], which achieves 3.31×
FLOPS reduction, 16.63× compression on VGG-16 model
with minimal performance loss. Another pruning method,
called random pruning, randomly allocates the parameters
in different layers, which exhibits poor performance com-
pared to the implementation of pruning in all layers [46].
Srinvivas et al. proposed a method to remove the redundant
neurons with a trained model [47], which mainly prunes the
parameters in densely connected layers. A growing trend to
compact the model of neural network is a pruning technique
with group sparsity constraints (structured pruning) that
attempts to eliminate all filters, channels, or neurons (acti-
vation pruning) within the group. By evaluating each chan-
nel’s saliency, channel pruning simplifies the model of neural
network by removing the input and output feature maps con-
nected to the inconsequential channels. Liu. et al. proposed a
channel pruning method based on the mean gradient, which
demonstrates that 5.46× reduction in FLOPS (less than 1%
accuracy loss) with CIFAR-10 dataset [48]. The disadvantage
of channel pruning is that the accuracy is application-specific;
in other words, the neural network is susceptible to the vari-
ation of input feature maps. To address these challenges,
Gao et al. proposed a dynamic channel pruning, feature
boosting and suppression (FBS), which dynamically boost
and suppress output channels calculated from convolutional
layers [49]. Specifically, the convolutional operations are
skipped for the unimportant channels that are predicted with
the channel saliency predictor. In contrast to channel pruning,
these unimportant channels are not discarded in FBS but are
skipped. More references for channel pruning techniques can
be found in [50]–[52].

In addition, the number of weights can be reduced by the
matrix or tensor decomposition. The singular vector decom-
position (SVD) is a promising method for weight approxi-
mation, which can reduce the weight dimension by matrix
factorization. The SVD of weight matrix (W) is defined by
the following equation,

Wm×n = Um×n ×6n×n × V T
m×n (30)

where U and V are the unitary matrices, and the correspond-
ing columns of U and V are the right singular vectors and
left singular vectors, respectively. 6 is the singular values of
W , which is a diagonal matrix. (•)T represents the matrix
transpose. m and n are the row and column of the matrix,
respectively. The parameters of the weight matrix can be
factorized as follows,

Um×n =
[

Ua×a Ua×(n−a)
U(m−a)×a U(m−a)×(n−a)

]
(31)
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6n×n =

[
6a×a O
O 6(n−a)×(n−a)

]
(32)

V T
m×n =

[
V T
a×a V T

a×(n−a)
V T
(m−a)×a V

T
(m−a)×(n−a)

]
(33)

where a×a is the dimension of the approximated matrix. The
singular values in matrix 6 are in descending order, and the
weight approximation (W̃ ) can be obtained by selecting the
first a singular values of 6,

W̃a×a = Ua×a ×6a×a × V T
a×a (34)

As illustrated in [53], the number of weights with SVD
approach is compressed from 103 million to 14.6 million,
with only 0.04% accuracy degradation.
Discussion: Reducing the weight and activations of tiny
YOLO3 with the sparsification technique is effective for alle-
viating computation burden and reducingmemory utilization.
Applying the SVD algorithm to the fully-connect layer rather
than the convolution layer works better because it prefers
large weight matrices. Since the filter dimensions of tiny
YOLO3 are 3×3 and 1×1, the channel pruning and activation
pruning approaches are promising for the design of brainware
processor with tiny YOLO3 algorithm. The issue of channel
pruning is that an efficient optimization algorithm is neces-
sary to predict the salient channels of tiny YOLO3.Moreover,
it is challenging for the hardware design engineers to exploit
the accurate pruned algorithm because the neural network’s
retraining is indispensable. Nonetheless, a compact processor
of tiny YOLO3 with an approximated weight strategy will
attract more attention.

b: WEIGHT AND ACTIVATION QUANTIZATION
Generally, the state-of-the-art data stored in the central pro-
cessing unit (CPU) or graphics processing unit (GPU) are
floating-point format, which not only occupies a large num-
ber of memories but also increases the complexity of circuit
design. Using low bit-width or fixed-point number enables to
reduce the memory usage and complexity of circuit design.
The quantization method can shorten the bit-length of data
(floating-point or fixed-point) from 32 bits to 16 bits, 8 bits,
4 bits, 2 bits, or even 1 bit [54]–[56]. Twomain types of quan-
tizationmethods have been studied in the literature: determin-
istic quantization and stochastic quantization. The stochastic
quantization randomly designates weights to be quantized,
which exhibits low-precision characteristic. The determin-
istic quantization intends to find the optimized fixed-point
number near to the floating-point number while the quantized
values are randomly sampled from the real value [57]. It takes
the following three advantages for hardware acceleration of
neural networks adopting weight quantization [58],

• The short bit-width of weight reduces the arithmetic pre-
cision, which needs less logic gate for MAC operation.

• The reduction of bit-width can significantly decrease
data storage space, which improves the feasibility of
on-chip memory design.

• Fewer accesses with external memory can reduce the
power consumption of the processor.

The quantization can be applied not only to the weight
quantization, but also to activation quantification. This paper
will explain its principle using weight quantification as an
example. Rounding the weight to ‘‘+1’’ and ‘‘−1’’ is a
simple and effective way to quantize the weight, which is also
called binary neural network [59]. The weight quantization is
defined as follows,

W b
= sign(W )

=

{
+1 W ≥ 0
−1 otherwise

(35)

whereW b is the binarized weight. sign(•) is the sign function.
Another advantage of binary weight is that the convolution
operation can be implemented without multiplication opera-
tion, which is defined by the following equation,

cov(M ,W ) = (M ⊕ sign(W ))× ζ (36)

where M is the input image array. Symbol ⊕ represents the
convolution with additions and subtractions, and cov(•) is the
convolution operation. ζ is the scale factors of weight, which
is the mean of weight elements,

ζ =
1
p

p∑
i=1

|Wi| (37)

where p is the number of weight elements, and | • | is the
absolute value symbol. In addition, the input image array
also can be quantized based on Eq. 35, and the convolution
operation is approximated by the XNOR gate and bit count
function, which is written as follows [60],

cov(M ,W ) = (sign(M )~ sign(W ))� K × ζ (38)

The symbol~ represents the convolution with XNOR and bit
count function, and� indicates the element-wise multiplica-
tion. K is the scale factors of stride widow on the input image
array, which is the mean of stride window of the input image
array,

Kj =
1
q

q∑
j=1

|Mj| (39)

where q is the number of stride window. The neural network
using the convolution calculation method in Eq. 38 is also
called XNOR neural network, which has 58× faster convolu-
tion operation and 32×memory savings. The BinaryConnect,
proposed by Courbariaux et al., removes around 2/3 multipli-
cations and saves 3× training time using the binary weights
during the forward and backward propagation [61]. Although
binary neural networks can compress network models sub-
stantially, binary approximations severely degrade the accu-
racy of some models. In order to address the shortcomings
of the binary neural network, the ternary weight network
was proposed in 2016, which constrain the weights to +1, 0,
and −1. It is illustrated that the multiplications with the
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ternary weight network are reduced to 32× while show-
ing slightly worse performance than full precision opera-
tions [62].
Discussion: The quantization of weight and activation can
substantially reduce the dimension of the neural network
model, which obviously can improve the efficiency of com-
putation and reduce memory utilization. However, with the
increase of the network model, the accuracy of the quantized
model is decreasing. It is essential to effectively trade off the
relationship between the accuracy of the neural network and
the number of bit quantization. Themaximum number of acti-
vation and weight of tiny YOLO3 are only 10.56 Megabytes
and 18 Megabytes (floating-point format) within convolu-
tional layers. Hence, the tiny YOLO3 with activation and
weight quantization will be effective solution for the design
of the compact brainware processor.

c: LOOP PERFORATION
The loop perforation attempts to reduce the computational
overhead by selectively skipping some loop iterations [63].
The loop perforation works a similar way as the pruning
techniques, except that the perforation selectively detaches
the outputs rather than the weights or activations. The per-
foration rate (ρ) determines the expected percentage of loop
iteration to be discarded, and the following equation defines
the relationship between perforation rate and the expected
number of execution loops (Nexp),

ρ = 1−
1

Nexp
(40)

The perforation rate defined in Eq. 40 is modulo perforation
that is a type of static perforation. Other perforation methods
can also be deployed to reduce the number of execution loops
such as dynamic perforation, truncation perforation, and ran-
domized perforation [64]. Nomatter what perforationmethod
is adopted, the objective of perforation is to execute parts of
the iterations while omitting some of the loops. Algorithm 2
is the pseudo codes of GEMM for the convolution operation
of tiny YOLO3, which manifests that three main loops with
complex computation are incorporated in the algorithm. Tak-
ing the last loop of GEMM as an example, the pseudo code
with loop perforation is rewritten as follows,

for (int k = 0; k < Do; k+ = Nexp)

If the perforation rate is 0.75, the last loop of GEMMexecutes
every four iterations, reducing 75% computations. The execu-
tion numbers can be reduced in each loop or the combination
of different loops, depending on the accuracy requirements of
applications. Primarily, the accuracy distortion (%) is deter-
mined by the following expression,

% =
1
k

k∑
i=1

ωi × |[|
]oi − ôi

oi
(41)

where k is the number of outputs for metric evaluation. ωi
is weight to assess the importance of outputs. ôi and oi are

Algorithm 2 GEMM for the Convolution Operation of Tiny
YOLO3
Inputs: Image array (img), columns of image array

(img_cols), weights array (weight), columns of
weights array (weight_cols), columns of output
array (output_cols), number of filters (Nf ), size of
filters (Sf ), and dimension of output array (Do)

Outputs: Results of convolution (output)
Function gemm(img, img_cols, weight, weight_cols,
output_cols, Nf , Sf , Do):

for (int i = 0; i < Nf ; i++) do
for (int j = 0; j < Sf ; j++) do

for (int k = 0; k < Do; k ++) do
output[i × out_cols + k]+ = weight[i ×
weight_cols+ j]× img[j× img_cols+ k]

return output

the outputs with and without loop perforation, respectively.
If the accuracy distortion is adequate, loop perforation can
mitigate the computational burden in neural networks. Simul-
taneously, the reduction of computation indirectly reduces
the demand for the memory of weights and feature maps.
Motivating by the loop perforation, Figurnov et al. proposed
the perforatedCNNS to eliminate the redundant convolutions
within a convolutional neural network, which attests that the
AlexNet and VGG-16 are accelerated by a factor of 2× – 4×
using loop perforation [65].
Discussion: The loop perforation is another productive
approach to reduce the computation complexity of the neural
network. The challenge using the loop perforation is the
trade-off of the accuracy distortion and compression rate.
Although the computation consumption and memory uti-
lization can be condensed with loop perforation, a massive
loss of precision will result in object detection failure with
tiny YOLO3. Hence, an effective loop selection or skipping
algorithmwill make loop perforation to be a potential solution
for accelerating the tiny YOLO3 algorithm.

2) KNOWLEDGE DISTILLATION
The depletion of computation costs and memory utilization
for tiny YOLO3 not only can be achieved by directly decreas-
ing the number or precision of weights or activations but also
can be accomplished employing network approximation and
optimization. The remainder of this section will elaborate on
the details of network compression with knowledge distilla-
tion.

In analogy to the phenomenon that caterpillars become
butterflies in biology, Hinton et al. illustrated that training
and inference of neural networks have different requirements
model [66]. The key point of knowledge distillation is that a
compact and shallow model is refined from a large and cum-
bersome model that trained with complex models. In general,
the compact and cumbersome models are called student and
teacher models, respectively. The knowledge distillation is
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FIGURE 13. Knowledge distillation from teacher to student model.

the process that the student model generalizes the essentials
from the teacher model’s ‘‘soft-target’’ that refers to the
intermediate feature maps after softmax function in different
layers of the neural network. As shown in Fig. 13, the pre-
diction probabilities or prediction scores can be utilized as
knowledge for student to learn using probability-based [66]
or score-based distillation [67]. Taking the probability-based
distillation as an example, the following equations can define
the predicted probabilities with the teacher model and student
model (after softmax function).

pT =
e(z

T
i /T )∑

j e
(zTj /T )

(42)

pA =
e(z

A
i /T )∑

j e
(zAj /T )

(43)

where zTi and zAi are the un-normalized log probability values
for teacher and student model, respectively. pT and pA are
the corresponding probabilities. T is defined as the temper-
ature of knowledge distillation. Therefore, the weights using
knowledge distillation can be attained by training the student
model with the following loss function [68],

L(WA) = (1− λ)H(yg, pS )+ λH(pT , pS ) (44)

where λ is the loss weight factor tuning the importance
between soft-target and the ground truth (yg). WA is the
weight of student model.H(•) refers to the cross-entropy.
Lately, knowledge distillation has been widely stud-

ied for neural network compression. Motivating by the
probability-based knowledge distillation, Romero et al. pro-
posed an idea to train a thinner and deeper student model
than the teacher model, which uses the prediction probabil-
ities and uses the intermediate hints of the teacher model
to train the student model [69]. Another activation-based
attention was transferred from the teacher model to train the
student model in [70], which achieves consequential perfor-
mance improvement across a variety of datasets. Researches
manifest that the student model’s accuracy is close to the
teacher model, even outperforms better than the teacher
model [71], [72]. If the gap between teacher model and
student model is large, the accuracy of the student model will

be degraded.Mirzadeh et al. proposed an intermediate model,
teacher assistant model, to bridge the gap between teacher
model and student model [73].
Discussion: The knowledge distillation is an impressive tech-
nique to compress the neural network model while retaining
good accuracy. Although the training transfer from teacher
model to student model appears to be relatively complicated,
the compressed tiny YOLO3 or YOLO3 model deploying
knowledge distillation is a promising solution for the design
of real-time brainware processor.

B. HARDWARE LEVEL
The circuit of a general processor contains the design of
computation logic function, architecture optimization, and
storage units. Therefore, the effective way to reduce the
dimension and power consumption of brainware processor
can be considered from different perspectives such as logic
gate reduction and approximate memory techniques. The
following section will introduce the compact brainware pro-
cessor’s open solutions in detail from the perspective of the
hardware level.

Obviously, the computational complexity and memory uti-
lization of tiny YOLO3 can be alleviated by quantization,
pruning or sparsification at the algorithm level, and further
reduce the usage of logic gates. Techniques for designing
processors at the hardware level using quantization, pruning,
and sparsification can be found in references [74]–[76]. Dis-
tinguish from the methods mentioned above, the compression
of the logic circuit in the design of the processor can be
realized by using approximate arithmetic circuits of adders.
Owing to the majority of computation in tiny YOLO3 is the
convolution computation that is mainly composed of adders,
approximate adders will play a significant role in the design
of compact brainware processors.

The basic building block for computation operations is
an adder that implements the addition of two binary num-
bers. Among many adders, ripple-carry adder (RCA) and
carry-lookahead adder (CLA) are the two most representa-
tive ones. An n-bit RCA is constructed by n cascaded full
adders [77]. Since the circuit structure of RCA is composed
of the full adder, the mathematical relationship between the
circuit area and the bits number of the adder is linear, O(n).
Because of the RCA circuit’s cascade structure, the addition
of each bit needs to wait for the carry from its previous
bit addition before it starts, which makes the delay of RCA
also proportional to the number of bits O(n). Unlike RCA,
the CLA outputs each bit sum, propagate and generate in
parallel, and the carry is processed in the carry-lookahead
generator. The parallel processing architecture mitigates the
computation delay of CLA, O(log(n)), but the cost of the
delay is the increase of circuit area, O(nlog(n)) [78]. Since
the circuit area is proportional to the power consumption
of the circuit, CLA’s power is greater than RCA for adders
operating at the same bit. The purpose of the approximate
adder is to reduce the complexity of the circuit architec-
ture based on RCA and CLA architectures while sustaining
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FIGURE 14. Adder approximation with ESA. cin and cout are the carry
input and output, respectively. S is the sum output. Adapted from [81].

acceptable accuracy and further reducing the volume and
power consumption of the circuit. There are mainly two
directions to realize the adder approximation: truncating the
carry propagation chain and reducing the number of tran-
sistors [79]. The physical implementations corresponding to
these two methods are equal segmentation adder (ESA) and
approximate full adder (AFA).

As shown in Fig. 14, the ESA segments an N -bit adder
to several sub adders with fixed bit length (k) while the
length of the least significant sub adder is h [80]. In ESA,
all sub adders’ input carry is set to zero, and all sub adders
work in parallel. Since the bit length of sub adder deter-
mines the latency of ESA, O(log(k)), the delay of adder
reduces with a decrease of k . However, the accuracy of
ESA grows with an increase of k , which makes it essential
to trade-off the value of k in the light of the application’s
error-resilience when designing ESA. A straightforward way
to improve ESA’s accuracy is to increase the length of each
sub adder and ensure that the number of sub adders remains
the same through overlapping among the sub adders, which
will not change the adder’s delay [82], [83]. Another strat-
egy to improve the adder’s accuracy is to get more infor-
mation for carry prediction by transferring the carry from
adjacent sub adder to sum generator while retaining the
length of sub adder unchanged. According to this technique,
Zhu et al. proposed the error-tolerant adder type II (ETAII)
that exhibits better precision than ESA [84]. However,
the delay of ETAII increases from O(log(k)) to O(log(2k))
due to the carry transfer between adjacent sub adders. Mean-
while, a relatively complex circuit is desired to realize
ETAII.

Another type of adder approximation is to divide the addi-
tion operation of an N-bit into the computation of the most
significant bit (MSB) and the least significant bit (LSB).
The MSB, including more valid information than the LSB,
determines the accuracy of the entire arithmetic operation.
In other words, if an error is introduced in the LSB, the result
of the whole arithmetic operation may be slightly impacted.
As shown in Fig. 15, the adder approximation can be accom-
plished using the inaccurate portion of computation (LSB),
while the conventional adder is deployed in the accurate
calculation portion (MSB). In view of this principle, Zhu et al.

FIGURE 15. ESA for adder approximation.

FIGURE 16. LOA for full adder approximation.

proposed another ESA by dividing the N -bit adder into two
parts to approximate the adder’s MSB which is approximated
with XOR logics [85]. The accuracy and circuit complexity
are dominated by the length of AFA (l). The adder’s accuracy
reduces with the increase of l, while the adder becomes
complicated with the decrease of l. Similarly, AFA can be
approximated by the OR gate, which is the so-called lower
part OR adder (LOA) [86]. The core idea of LOA is that only
the logic OR gate is utilized to approximate the MSB, and the
carry is predicted by AND gate of the last bit. Fig. 16 shows
the circuit implementation of LOA for l-bit LSB operation.
The cout of LOA will be served as the carry input of (N − l)-
bit MSB. The circuit complexity of full adder within MSB
can be significantly reduced with AND and OR gates-based
approximation.
Discussion: Within the acceptable error range, the approxi-
mate adders can effectively mitigate the logic gates for the
design of brainware processor. In the design of compact
brainware processor, approximate multiplier and approxi-
mate memory are also valuable techniques. Although explor-
ing the error-resilience of the approximated adder, multiplier
or memory is challenging, the utilization of approximate
circuits to the design of compact brainware processors will
be a prospective solution shortly.

C. EMERGING SEMICONDUCTOR PROCESSING
TECHNOLOGY
Deploying small transistor architecture with emerging semi-
conductor processing technology is a crucial way to reduce
the circuit area of the compact processor. Many mature
processors have been fabricated by foundry vendors using
standard 65 nm processing technology such as Intel core,
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FIGURE 17. Development of gate process since 1996.

IBM cell, and NVIDIA GeForce GPU etc. Fig. 17 gives
the development of the gate process from 1996 to 2020,
which illustrates the gate length is decreased from 250 nm
to 5 nm (50×). With the development of semiconductor
processing technology, the 5 nm process node has been com-
mercialized in Taiwan Semiconductor Manufacturing Com-
pany (TSMC) and Samsung Electronics based on multi-gate
MOSFET (MuGFET) and fin field-effect transistors
(FinFETs). Meanwhile, Samsung Electronics has announced
the first 3 nm process based on nanosheet FET and will move
into risk production in 2020 [87]. The chip leaves more space
for memory storage or computing elements using new semi-
conductor processing technology such as 5 nm CMOS pro-
cess, which offers larger logic density (256Mb), lower power
consumption [88]. The weight of standard YOLO3 with
416 × 416 inputs is 237 Mb, and tiny YOLO3 only has
33.8 Mb weight. Therefore, the full function implementation
of YOLO3 or tiny YOLO3 algorithm embedded on the
processor is achievable with novel semiconductor processing
technology.
Discussion: In the near future, these emerging semiconductor
devices will be widely utilized in the design of brainware
processors. Moreover, the combination of algorithms, hard-
ware and new semiconductor technologies will be the trend
of designing compact brainware processors. Tab. 3 shows
the expected evaluation of open solutions for the brainware
processor design. The proposed open solution’s character-
istic is that the cost of accuracy may improve most of the
performance. Since the human perception of error is lim-
ited, the other performance of processors such as throughput
or latency can be enhanced by sacrificing accuracy if the
errors of the brainware processor are within the range of
human perception error or the error is acceptable for object
detection.

VI. SUMMARY
In this paper, the systematic study of tiny YOLO3 inference
has been presented. Meanwhile, the detailed analysis of the

TABLE 3. Expected evaluation of open solutions for the brainware
processor design.

algorithm step by step is provided, and the complete def-
inition of each parameter is illustrated. The paper gives a
detailed explanation not only in theory but also in engineer-
ing implementation, which is a thorough review combining
theory with practice. Moreover, the challenges and open
solutions for the compact YOLO processor’s design have
proposed from algorithm, hardware, and emerging semicon-
ductor processing technology level.

On account of the limited human perception towards errors,
this paper introduces the technology of approximate comput-
ing and approximate circuit into the open solution of brain-
ware processor design at the level of algorithm and hardware
implementation. At the level of algorithm, weight or acti-
vation quantization and sparsification and loop perforation
will be promising solutions to improve the throughput and
reduce the delay of brainware processor within the acceptable
error range. The approximate adders, multipliers, or memory
will simplify the circuit complexity and reduce the utilization
of logic gates and decrease the power consumption of the
brainware processor. In brief, this paper’s studies not only
contribute to the algorithm’s understanding of object detec-
tion but offer a valuable reference for researchers or engineers
to develop compact brainware processor.

APPENDIX A
PARAMETER DEFINITION IN CONFIGURATION FILE
Tab. 4 provides details of parameters definition in the config-
uration file (‘‘cfg’’ file) of DarkNet.

APPENDIX B
ZERO-PADDING AND IMAGE ARRAY RESHAPE
The feature matrix conversion is achieved channel by chan-
nel. Since image array laid out in memory is in BGR-BGR-
BGR order (BGR represents to blue, green and red color),
the image array should be converted to BBB-GGG-RRR
format at first. Algorithm 3 (zeroPadding) shows the pseudo
codes of zero-padding and image array reshape.

APPENDIX C
POST-PROCESSING OF TINY YOLO3
The post-processing of tiny YOLO3 includes the bound-
ing box regression, post-processing of bounding box, and
non-max suppression. The remainder of this section gives a
brief introduction about post-processing of tiny YOLO3.
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TABLE 4. Parameters definition in ‘‘cfg’’ file.

A. BOUNDING BOX REGRESSION
During the period of training, the data was normalized by
the neural network. Specifically, the center coordinates and
the dimension of the bounding box are confined from 0 to
1 by dividing the dimension of feature maps and the input
image. The offsets of center coordinates (tx , ty) and the scale
of bounding box (tw, th) are defined by following expressions,

tx = bx × lw − cx (45)

ty = by × lh − cy (46)

tw = log
(
bw × w
pw

)
(47)

th = log
(
bh × h
ph

)
(48)

Algorithm 3 Zero-Padding and Image Array Reshape
Inputs: Image array (img), rows, columns and channels of

image array (img_rows, img_cols, img_channels),
paddings.

Outputs: Results of zero-padding (img_pad_out)
Function zeroPadding(img, img_rows, img_cols,
img_channels, paddings):

img_rows = img_rows + 2 ∗ paddings; img_cols =
img_cols+ 2 ∗ paddings;
for k ∈ channels do

ptr_index = 0; for i ∈ rows do
if (i == 0)||(i == (img_rows− 1)) then

for j ∈ img_cols do
img_index = (k ∗

img_rows + i) ∗ img_cols + j;
img_pad_out[img_index] = 0;

else
col_index = k; uchar ∗ rowAddress =
img.ptr < uchar > (ptr_index); for j ∈
img_cols do

if (j == 0)||(j == (img_cols− 1)) then
img_index = (k ∗

img_rows + i) ∗ img_cols + j;
img_pad_out[img_index] = 0;

else
img_index = (k ∗

img_rows + i) ∗ img_cols + j;
img_pad_out[img_index] =

rowAddress[col_index];
col_index = col_index +
img_channels;

ptr_index = ptr_index + 1;

return img_pad_out

where lw and lh are the width and height of feature maps, that
is, lw = lh = 13. The scale of bounding box is computed
using logarithmic function log(•). Rearranging the above
equation, the normalized center coordinates of the object and
the dimension of the bounding box can be obtained according
to the following equations,

bx =
σ (tx)+ cx

lw
(49)

by =
σ (ty)+ cy

lh
(50)

bw =
pw × etw

w
(51)

bh =
ph × eth

h
(52)

Since the dimension of bounding boxes is defined in
terms of the dimension of input images, the normalization
of bw and bh are calculated by dividing the width and
height of the input image. Therefore, the center coordinate
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FIGURE 18. Post processing of bounding box.

and dimension of bounding boxes fall in the range of
[0, 1]. In addition, two types of anchor boxes are uti-
lized in different ‘‘yolo’’ layer. Low-resolution feature maps
(13 × 13) are effective in predicting large objects, so a
large pre-defined anchor box is adopted for the bounding
box prediction under this condition, and vice versa. The
parameters of anchor boxes are arranged sequentially in
memory, and every two elements represent the width and
height of each anchor box. The first ‘‘yolo’’ layer uses the last
three pairs of anchor boxes ([(81, 82)(135, 169), (344, 319)])
while the second ‘‘yolo’’ layer utilizes the other three anchor
boxes [(10, 14), (23, 27), (37, 58)] for bounding boxes
prediction.

B. POST-PROCESSING OF BOUNDING BOX
The convolution operation down-samples the input image
arrays and outputs feature maps for object prediction. In tiny
YOLO3, the prediction is implemented on two scales using
two distinct ‘‘yolo’’ layers. At the input of neural network,
the dimension of image is resized to 416 × 416, which
facilitates the neural network to adapt different dimensions of
input images. As shown in Fig. 18, the test image (768×576)
is resized to a scaled image with dimension of 416 × 312.
Taking the priority over larger value in height and height,
the interpolation approach is accommodated to resize the
image. The image resizing is achieved along width and height
scale. Specifically, the 768×576 image is resized to 416×576
according to width scale, and then the dimension is converted
to 416 × 312 based on height scale, which is described as

follows,

768× 576
width scale
−−−−−−−→
interpolation

416× 576
height scale
−−−−−−−→
interpolation

416× 312

The width scale and height scale are 1.84819 [(768-1)/(416-
1)] and 1.84887 [(576-1)/(312-1)], respectively. In this illus-
tration, since the width has a larger value, the scale factor (η)
of resize is calculated based on width. The width of the scaled
image (Rw) equals to the input width of the neural network
(Nw) while the height is evaluated proportionally according
to the scale factor,

η =
Nw
Iw

(53)

Rh = η × Ih (54)

where Iw and Ih are the width and height of test image,
respectively. The height of scaled image can be calculated
according Eq. 54, that is, Rh = 312. To ensure that the
input image has a fixed dimension (416 × 416), the height
of the scaled image is extended to 416 by padding a constant
pixel value (128) to the image. As described in Eq. 49 –
Eq. 52, the center coordinate, width and height of predicted
bounding box are relative values rather than absolute values.
Moreover, the predicted parameters of bounding boxes are
in the coordinate of the input image (416 × 416) of the
neural network, which is extended by the padding method.
To ensure that the bounding box can adapt to the size of
test image, the predicted parameters of the bounding box
should be transformed to the coordinate of the scaled image
(416× 312). Therefore, the center coordinate (b̃x , b̃y), width
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(b̃w) and height (b̃h) of bounding box in the coordinate of
scaled image can be evaluated according to bx , by, bw, and
bh based on the following expressions,

b̃y =
By
Rh

=
by × Nh − (Nh − Rh)/2

Rh

= by ×
Nh
Rh
−
Nh − Rh

2
×

1
Rh

= by ×
Nh
Rh
−
Nh − Rh
2× Nh

×
Nh
Rh

=

(
by −

Nh − Rh
2× Nh

)
×
Nh
Rh

(55)

b̃x =
(
bx −

Nw − Rw
2× Nw

)
×
Nw
Rw

(56)

b̃h =
Bh
Rh

= bh ×
Nh
Rh

(57)

b̃w = bw ×
Nw
Rw

(58)

where Bx , By represent the absolute height and absolute width
of center points of the bounding box, and Bw, Bh are the
absolute height and absolute width of the bounding box.

C. NON-MAX SUPPRESSION
The bounding boxes are filtered out if the corresponding
objectiveness scores are less than the threshold (0.5) during
the post-processing period. The remaining bounding boxes
with the probability over than threshold are selected for
category determination. In addition, the class probability is
further evaluated using the multiplication of the objectiveness
score and the predicted probability of each category, which is
written as follows,

Pri =

{
Sobj × Pri if

(
Sobj × Pri

)
> 0.5

0 otherwise
(59)

With the class probabilities and the corresponding param-
eters of bounding boxes, the non-max suppression (NMS)
approach is used to match the bounding boxes to the object
categories. The essential idea of NMS is to discard the bound-
ing boxes with low probabilities in the categories. As shown
in Fig. 19, the feature maps with large objectiveness scores
(greater than 0.5) are saved for affirmation of bounding
boxes.

Assuming that the probabilities of the remaining five
bounding boxes (B1, B2, B3, B4, Bm) are greater than 0.5,
the first step of NMS is to sort the corresponding probabilities
in descending order and search for the bounding box with
maximum probability (Bm) in that correspondent category.
If all probabilities in one of the categories are zero, it indicates
that the corresponding category is not the detected object. The
next step is to filter out the bounding boxes that has a large
overlap with the bounding box having maximum probability.

FIGURE 19. Feature maps for NMS.

FIGURE 20. Definition of IOU between bounding boxes.

Fig. 20 shows the overlap definition between bounding boxes.
The overlap between two bounding boxes is evaluated by the
concept of the intersection of union (IOU), which is defined
the ratio between intersection and union,

IOU =
Intersection
Union

(60)

=
Bm ∩ Bj
Bm ∪ Bj

(61)

where Bj is the other bounding box except the bounding
box with maximum probability. Bm ∩ Bj is evaluated by the
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FIGURE 21. Coordinates definition of bounding box.

intersection area, which is defined by follows,

Bm ∩ Bj = Iw × Ih (62)

where Iw and Ih are the width and height of the intersection
area. The Iw is calculated by following expressions,

Iw = Rw − Lw (63)

Lw =

{
L1 if L1 > L2
L2 otherwise

(64)

L1 = bx1 − bw1/2 (65)

L2 = bx2 − bw2/2 (66)

Rw =

{
R1 if R1 < R2
R2 otherwise

(67)

R1 = bx1 + bw1/2 (68)

R2 = bx2 + bw2/2 (69)

where Rw and Lw are the rightmost and leftmost points of
intersection area. L1, L2, R1, and R2 are the intermediate
values. Similar to Iw, Ih can computed by following equation,

Ih = Dw − Uw (70)

Dw =

{
U1 if U1 > U2
U2 otherwise

(71)

U1 = by1 − bh1/2 (72)

U2 = by2 − bh2/2 (73)

Dw =

{
D1 if D1 < D2

D2 otherwise
(74)

D1 = by1 + bh1/2 (75)

D2 = by2 + bh2/2 (76)

where Dw and Uw are the uppermost and lowermost points of
the intersection area.U1,U2,D1, andD2 are the intermediate
values. Once the intersection is obtained, the union can be
calculated by the following expression,

Bm ∪ Bj = bw1 × bh1 + bw2 × bh2 − Bm ∩ Bj (77)

Substituting Eq. 62 and Eq. 77 into Eq. 61, the IOU defined
in Fig. 20 can be achieved from the following equations,

IOU =
Iw × Ih

bw1 × bh1 + bw2 × bh2 − Iw × Ih
(78)

Iw = (bx1 − bx2)+ (bw1 + bw2) /2 (79)

Ih =
(
by1 − by2

)
+ (bh1 + bh2) /2 (80)

If the IOU between Bm and Bj is greater than a pre-defined
threshold such as 0.5, the bounding box Bj is filtered out.
Fig. 21 illustrates the definition of actual coordinates of the
detected object. The predicted coordinates of bounding boxes
after IOU filtering is used to evaluate the coordinates of
detected object in test image, which is written as follows,

X1 =
(
bx −

bw
2

)
× Tw (81)

X2 =
(
bx +

bw
2

)
× Tw (82)

Y1 =
(
by −

bh
2

)
× Th (83)

Y2 =
(
by +

bh
2

)
× Tw (84)

where Tw and Th are the width and height of test image.
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