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ABSTRACT Dielectric lenses are widely used in terahertz imaging and communication systems to focus
or collimate the Gaussian beam by adjusting the phase distribution of wave front. However, due to the high
frequency and short wavelength of the terahertz band, the focusing lenses used in the application systems
are usually electrically large, which bring the extremely difficulty to carry out efficient electromagnetic
(EM) simulation and optimization design. In this paper, a dimensionality reduction concept was introduced
to achieve efficient design and optimization of electrically-large terahertz lenses, which have symmetric
structures and are commonly used in quasi-optical systems, such as circular lenses and cylindrical lenses.
To precisely solve the EM problemwith reduced dimension, a two-dimensional moment method (2D-MOM)
for homogeneous dielectric targets was studied and successfully developed by solving the surface coupled
integral equation discretized with appropriate basis and test functions. Then, the dimensionality reduction
approach with the combination of the ray-tracing method (RTM) and the 2D-MOM was developed for the
shaped design of terahertz lens with high efficiency. A 0.3THz lens with diameter 10cm was designed with
the proposed approach as an example, with its pattern measured by a terahertz field scanning platform. It’s
found that, with the dimensional reduction, the unknowns can be reduced more than 1500 times and the
memory required can be reduced more than 2.5 million times, as compared to the traditional 3D-MOM
simulation. And the simulation results agree well with the experiments, which both demonstrate the greatly
improved performance of the lens designed by the proposed approach, as compared to the standard lens.

INDEX TERMS Terahertz lens, Gaussian beam, two-dimensional moment method, ray-tracing method, lens
optimization.

I. INTRODUCTION
Terahertz (THz) wave, which is generally referred to the
spectrum from 0.1 to 10 THz (or more strictly with lower
bound limited to be 0.3 THz), has unique properties due to its
special position in the electromagnetic (EM) spectrum, which
lies in the gap between the electronics and photonics [1]–[3].

The associate editor coordinating the review of this manuscript and
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Unlike optical and infrared radiation, THz wave offers the
property of being able to ‘see through’ obscuring materials
such as clothing, cardboard, plastics, and wood with rela-
tively little loss [4]. Compared to microwave and lower radio
frequency wave, comparatively broad band-width and high
resolution are available in THz band [5]. The above unique
advantages make THz technologies promising for plenty of
applications in imaging [6], [7], communication [8], [9], and
other fields [10], [11].
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Since the lower bound of the THz band overlapped with the
submillimeter wave and its upper bound overlapped with the
infrared, both the technologies borrowed from the electronics
and the photonics play important roles in this band. And the
quasi-optical transmission and radiation naturally becomes
one of the key technologies in this special band [12], [13],
which is based on the concept of fairly well collimated beam
propagating in free space. In THz quasi-optics, the beam can
be focused and aligned using curved reflectors or dielectric
lenses [14]–[16]. For a multiple cascaded quasi-optics, the
occlusion problem must be carefully considered if the reflec-
tors are implemented, which makes the design quite compli-
cated. In contrast, dielectric lenses can be implemented to
shape the THz beamwith inline topologies with the occlusion
problem easily avoid and are favored in lots of applica-
tions [17]. On the other hand, limited by the comparatively
low power available from the THz source in nowadays’ tech-
nology status, it is usually to implement quasi-optics with
large aperture [18] to achieve high beam efficiency to satisfy
special applications.

In THz band, it is a great challenge for the simulation
and optimization of the focusing lens with electrically-large
aperture. The design theory of conventional hyperbolic plano-
convex lens widely used in THz quasi-optics is based on
the thin lens approximation [19], in which the THz waves
or rays are assumed to propagate parallelly within the lens.
This will result in large deviation especially for the design
of large-aperture lens with thickness far more than the work-
ing wavelength. Additionally, for the electrically-large lens,
the accurate analysis and design with full-wave EM simu-
lation will cost tremendous computational complexity and
resources.

As an example, for simulating a hyperbolic plano-convex
lens with a aperture diameter of 10 cm at 0.3THz with the
method of moments (MOM) as shown in Fig.1, it is nec-
essary to use over 4 million triangular patches with λ/10
dimension (λ is the wavelength) to model the surface of
the lens. The amount of the triangular patches is in propor-
tional to the number of unknowns N in MOM simulation
(For dielectric problems, the number of unknowns is twice
the number of patches), while the memory requirement of
MOM is in proportional to N 2. Hence, one can get that the
memory requirement for analyzing such a lens is more than
1000TB, which is nearly inaccessible. Even employing the
fast multipole techniques (FMM) in the MOM simulation,
in which the memory requirement can be greatly reduced and
become in proportional to N 3/2, the memory requirement is
still more than 300GB for such a lens. An alternative waywith
high efficiency, the high-frequency approximation methods,
such as physical optics (PO), geometric optics (GO), are
also used to analyze terahertz lens. However, these methods
cannot deal with the multiple reflection between the front
and back surfaces of THz lens appropriately, and hence lead
to large deviation especially as the dielectric constant of the
lens material become large. The Body-of-Revolution (BOR)
MoM [20]–[22] is also an elegant way of dealing these lenses

FIGURE 1. Lens surface modeled by triangular patches in FEKO.

which are rotational symmetric. However, BOR-MOM can-
not be used to solve the problem of cylindrical lenses, which
is also commonly used in THz quasi-optics.

Now, how to design and optimize the electrically-
large THz lenses and evaluate their EM performance
accurately with high efficiency has become an important
and challenging problem for the quasi-optical system design
in THz band.

In this paper, an efficient simulation and design method
based on the concept of dimensionality reduction was pro-
posed to achieve the optimal design and accurate EM simu-
lation for the electrically-large lenses in THz band with high
efficiency. Considering THz lenses with symmetric structures
commonly used in quasi-optical systems, such as circular
lenses and cylindrical lenses, we demonstrated the theoret-
ical rationality to transform a three-dimensional (3D) EM
problem for lens simulation into a two-dimensional (2D) one.
To precisely solve the EM problem with reduced dimen-
sion, the 2D-MOM for homogeneous dielectric objects was
developed by solving the surface coupled integral equation
discretized with appropriate basis and test functions. The
processing method of the singular points was also investi-
gated and successfully developed for the 2D-MOM, which
is always essential to ensure the precision of the MOM
analysis. Then, an approach with the combination of the
ray-tracing method (RTM) and the 2D-MOM was proposed
for the optimization and evaluation of THz plano-convex lens
with shaped design. And a proof-of-principle quasi-optics
including a dielectric circular lens with diameter 10cm was
designed by the proposed optimizationmethod and fabricated
in 0.3THz band. While another lens was designed based on
the standard thin lens model for comparison. For the sim-
ulation of such electrically-large lens with 2D-MOM, only
5360 of unknowns are required, which is nearly 1500 times
less than the traditional 3D-MOM simulation, and only
480 MB memory is required, which is 2.5 million times less
than the traditional 3D-MOM simulation. The patterns of the
two lenses designed in different ways were finally measured
by a THz field scanning platform. The experimental results
agree well with the simulation and both verified the effec-
tiveness of the proposed theory and approach in this paper.
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This paper is organized as follows. In Section II, the
rationality of the dimensionality reduction approach to ana-
lyze the focusing lens is discussed theoretically. The the-
ory of 2D-MOM for solving homogeneous dielectric objects
is proposed in Section III. In Section IV, the conventional
design theory of standard hyperbolic plano-convex lens is
briefly introduced, and the optimization design approach
for terahertz lens, based on the combination of RTM and
2D-MOM, is also proposed. The 2D-MOM simulation results
for the standard hyperbolic plano-convex lens and the opti-
mized lens are also given in Section IV. In SectionV, a 0.3THz
test platform is built and the simulation results are verified
experimentally. Finally, a conclusion is drawn in Section VI.

II. THEORETICAL RATIONALITY OF DIMENSIONALITY
REDUCTION APPROACH
In this section, we discussed the theoretical rationality to
transform a 3D EM problem for lens simulation into a 2D
one, by analyzing the Gaussian beam solutions of the paraxial
wave equations in 3D and 2D cases. Gaussian beam theory
can be regarded as the guided wave theory of quasi-optical
technology, which is a paraxial approximation derived from
the Helmholtz equation.

From EM theory, a simple harmonic wave in free space
should satisfy the Helmholtz equation:

∇
29 + k209 = 0 (1)

where k0 is the wave number in free space, 9 represents
any scalar field. In a Cartesian coordinate system, the wave
propagation direction is assumed to be positive x direction,
then 9 can be written as:

9 = µ (x, y, z) e−jk0x (2)

Substituting (2) into (1) gives the following expression:

∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
− 2jk0

∂u
∂x
= 0 (3)

According to Goldsmith [12], when the beam is mod-
erately well collimated, which is satisfied by the Gaussian
beam in the quasi-optics, the paraxial approximations can be
employed as ∣∣∣∣∂29∂x2

∣∣∣∣ � 2k0

∣∣∣∣∂9∂x
∣∣∣∣ (4)∣∣∣∣∂29∂x2

∣∣∣∣ � ∣∣∣∣∂29∂y2
∣∣∣∣ , ∣∣∣∣∂29∂z2

∣∣∣∣ (5)

Then (3) can be simplified as

∂2u
∂y2
+
∂2u
∂z2
− 2jk0

∂u
∂x
= 0 (6)

The solution for µ is of the form:

u (x, y, z) =
w0

w (x)
exp

(
−
y2 + z2

w (x)2
−
jπ
(
y2 + z2

)
λ0R (x)

+j8(x)

)
(7)

where λ0 is the free-space wavelength, w0 is the radius of the
beam waist, w is the beam radius, R is the radius of curvature
for the equiphase surface and 8 is the additional phase shift
generated during the propagation of the Gaussian beam:

w (x) = w0

√√√√1+

(
λ0x

πw2
0

)2

(8)

R (x) = x +
1
x

(
πw2

0

λ0

)2

(9)

8(x) = arctan

(
λ0x

πw2
0

)
(10)

For the 2D case, the expression of the paraxial wave equa-
tion becomes

∂2µ2d

∂y2
− 2jk0

∂µ2d

∂x
= 0 (11)

Solving (11) yields the 2D Gaussian beam expression:

µ2d (x, y)

=

√
w0

w2d (x)
exp

(
−

y2

w2d (x)2
−

jπy2

λ0R2d (x)
+ j82d (x)

)
(12)

where w2d is the radius of the 2D Gaussian beam, R2d is the
radius of curvature and 82d is the phase shift:

w2d (x) = w0

√√√√1+

(
λ0x

πw2
0

)2

(13)

R2d (x) = x +
1
x

(
πw2

0

λ0

)2

(14)

82d (x) =
1
2
arctan

(
λ0x

πw2
0

)
(15)

By comparing (9) and (14), it is found that the 2DGaussian
beam has exactly same expression of the radius of curvature
as that of the 3D Gaussian beam. In a quasi-optics, the func-
tion of the lens is to adjust the radius of curvature of the input
beam, to realize the beam focusing or collimation as the out-
put beam leaving the lens [23]. Therefore, it is theoretically
reasonable to analyze the 3D lens as a 2D problem.

Equation (16) gives the classical transformation formula
of the focusing lens [19], where f is the focal length of
the standard lens, R1 and R2 are the radius of curvature of
the output beam at the input and output planes of the lens,
respectively.

1
f
=

1
R1
−

1
R2

(16)

If the beam is diverging along the propagation direc-
tion, the radius of curvature for the beam is positive. While
the beam is converging along the propagation direction,
the radius is negative.
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In THz quasi-optics, the standard plano-convex lens with
hyperbolic surface was commonly used. However, the design
theory of conventional hyperbolic plano-convex lens is based
on the thin lens approximation, in which the beam radius
at the input and output planes of the lens are assumed to
be equivalent. This approximation results in large deviation
especially for the design of large-aperture lens with thickness
far more than the working wavelength. Hence, the accurate
and efficient EM simulation for the performance of the lens is
important to evaluate and achieve an optimized design. Based
on the concept of dimensionality reduction as discussed in
this section, a 2D-MOM was studied and developed in the
following section for the simulation of THz lens.

III. MOMENT METHOD FOR SOLVING TWO
DIMEN-SIONAL DIELECTRIC OBJECTS
The method of moments (MOM) in electromagnetism was
proposed by Harrington [24] in 1968, which is an accurate
numerical method and has been developed into one of the
main algorithms for computational electromagnetics. MOM
is suitable for solving EM problems in open regions such
as the antenna radiation problems and EM scattering prob-
lems. In addition, MOM is also very effective in solving
conductor or homogeneous dielectric problems [25]–[27].
In fact, the 2D-MOM for the analysis of the dielectric
objects has been discussed in some previous documents.
Based on the surface equivalence principle, Peterson has
established the electric field integral equation (EFIE) and
the magnetic field integral equation (MFIE) for the homo-
geneous dielectric cylinders in [28]. However, just as Peter-
son himself has discussed in detail in [28], the numerical
stability of the 2D-MOM formulation based on EFIE or
MFIE is expected to be improved. Therefore, in this paper,
we solved 2D homogeneous dielectric EM problem based on
the PMCHW [29]–[31] integral equation, which has better
numerical stability.

A. INTEGRAL EQUATIONS FOR 2D DIELECTRIC EM
PROBLEMS
As shown in Fig.2, let l denotes the boundary curve of the
2D dielectric object with the outward normal vector n. The
electric field Ein and the magnetic field H in, defined to
be the field due to the impressed source (TE plane wave),
are incident on and induce the equivalent current J and the
equivalent magnetic currentM on l.
The relative permittivity and permeability of the back-

ground space and the dielectric body are ε1, µ1, ε2, and µ2,
respectively. For the moment method to analyze the homoge-
neous dielectric object, we established the PMCHW integral
equations for dielectric lens:

−Z1L1(J)+ K1(M)− Z2L2(J)+ K2(M) = Ein (17)

−K1(J)−
1
Z1
L1(M)− K2(J)−

1
Z2
L2(M) = H in (18)

where Zm is the wave impedance, Lm and Km are two inte-
gral operators. And the subscript, m, is equal to 1 or 2,

FIGURE 2. Arbitrary 2D dielectric object modeled by sectionalized
segments.

representing the background space and the dielectric space,
respectively. In the 2D problem, the integral operators are:

Lm(X) = −jkm

∫
l′

[
X +

1
k2m
∇
(
∇
′
· X
)]
G
(
ρ, ρ′

)
dl ′ (19)

Km(X) = −
∫
l′
X ×∇G

(
ρ, ρ′

)
dl ′ (20)

where km is the wave number of the electromagnetic wave in
the corresponding region. In the 2D case, the Green’s function
in free space is the zero-order Hankel function of the second
kind [28]:

G
(
ρ, ρ′

)
=

1
4j
H (2)
0

(
k0
∣∣ρ − ρ′

∣∣) (21)

where ρ and ρ′ are the position vectors of the field point and
the source point with respect to the global coordinate origin,
respectively. And the gradient of the 2D Green’s function
is:

∇Gm
(
ρ, ρ′

)
=

1
4j
∇

[
H (2)
0 (km

∣∣ρ − ρ′∣∣)]
=

1
4j
ρSF

∂

∂ρ

[
H (2)
0 (km

∣∣ρ − ρ′∣∣)]
= −ρSF

km
4j
H (2)
1 (km

∣∣ρ − ρ′∣∣) (22)

whereH (2)
1 (x) is the one-order Hankel function of the second

kind, and ρSF is the unit direction vector from the source point
to the field point:

ρSF =
ρ − ρ′∣∣ρ − ρ′∣∣ (23)

B. DISCRETIZATION OF 2D INTEGRAL EQUATIONS
In this section we discussed how to choose the appropri-
ate basis function to discretize the integral equations of the
dielectric object in 2D-MOM. When dealing with 3D prob-
lems, we usually choose the RWG triangular basis func-
tions [32] to discretize the unknowns. For the 2D case,
we choose rectangular window function as the basis function,
as shown in Fig. 3(a).

The boundary curve of the dielectric region is divided
into N segments. And the equivalent sources J and M can
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FIGURE 3. Geometry for construction of basis function and test function.

be approximated by the superposition of sectionalized basis
functions:

J
(
ρ′
)
=

N∑
j=1

Jjf j
(
ρ′
)

(24)

M
(
ρ′
)
=

N∑
j=1

Mjgj
(
ρ′
)

(25)

where Jj and Mj are the values of current and magnetic cur-
rent, f j and gj are the basis functions defined on the segment
j:

f j
(
ρ′
)
=
[
u(l ′)− u(l ′ −1j)

]
z = f j(l

′) (26)

gj
(
ρ′
)
=
[
u(l ′)− u(l ′ −1j)

]
l j = gj(l

′) (27)

where µ (x) is a step function, 1j is the length of segment
j, l ′ ∈

(
0,1j

)
, z is the unit direction vector of positive z

direction in the Cartesian coordinate system, and l j is the unit
direction vector of the segment j:

l j =
ρj+1

′
− ρj

′∣∣∣ρ j+1 ′ − ρj ′∣∣∣ (28)

The next step in MOM is to take a testing procedure.
As shown in Fig.3(b), we choose the sectionalized triangle
functions νi and wi as the testing functions:

vi(ρ) =
[
u (l)− u

(
l −

1i

2

)](
2l
1i

)
z

+

[
u
(
l −

1i

2

)
− u (l −1i)

](
2−

2l
1i

)
z (29)

wi(ρ) =
[
u (l)− u

(
l −

1i

2

)](
2l
1i

)
l i

+

[
u
(
l −

1i

2

)
− u (l −1i)

](
2−

2l
1i

)
l i (30)

where 1i is the length of segment i, l ∈ (0,1i) and l i is the
unit direction vector of segment i:

l i =
ρi+1 − ρi∣∣ρi+1 − ρi∣∣ (31)

Equation (19) and (20) are tested respectively with νi
and wi, yielding

∫
l

vi ·


−Z1L1(

N∑
j=1

Jjf j)− Z2L2(
N∑
j=1

Jjf j)

+K1(
N∑
j=1

Mjgj)+ K2(
N∑
j=1

Mjgj)

dl

=

∫
l

vi · Eindl (32)

∫
l

wi ·


−K1(

N∑
j=1

Jjf j)− K2(
N∑
j=1

Jjf j)

−
1
Z1
L1(

N∑
j=1

Mjgj)−
1
Z2
L2(

N∑
j=1

Mjgj)

dl

=

∫
l

wi ·H indl (33)

which can be written in matrix form as:

[A]2N×2N [α]2N×1 = [b]2N×1 (34)

Once the elements of [A] and [b] are determined, we may
solve the resulting system of (34) for the unknown column
vector [α]:

[α]2N×1 = [A]−12N×2N [b]2N×1 (35)

C. SOLVING THE INTEGRAL KERNELS
In solving (34), the solution of the coefficient matrix [A] is
the most complicated. By substituting (19), (20) and (21)
into (32) and (33), we can get six different types of integral
kernels:

INC (1m)
ij =

∫
l

∫
l′

vi·f jH
(2)
0 (km

∣∣ρ − ρ′∣∣)dl ′dl
INC (2m)

ij =

∫
l

∫
l′

[
vi ·ρSFH

(2)
1 (km

∣∣ρ−ρ′∣∣)] (∇ ′ ·f j) dl ′dl=0
INC (3m)

ij =

∫
l

∫
l′

vi ·
[
gj × ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] dl ′dl
INC (4m)

ij =

∫
l

∫
l′

wi ·
[
f j × ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] dl ′dl
INC (5m)

ij =

∫
l

∫
l′

wi · gjH
(2)
0 (km

∣∣ρ − ρ′∣∣)dl ′dl
INC (6m)

ij =

∫
l

∫
l′

[
wi · ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] (∇ ′ · gj) dl ′dl
(36)

In the six integral kernels, since the line divergence of the
current basis function is zero, the value of the second integral
kernel is also zero, and the other five integral kernels need
to be solved. It should be noted that when i = j, there will
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be singularity problems in the integral kernels. We take the
first and the sixth integral kernels as examples to introduce
the solution method.

1) FIRST INTEGRAL KERNEL
When i = j,

∣∣ρ − ρ′∣∣ approaches to zero, the integral of
the Hankel function is singular, which corresponds to the
diagonal elements in the solution matrix of the first integral
kernel.

In order to solve the problem of singular points, wemay use
the small-argument asymptotic form of the Hankel function
on the segment where the source point coincides with the
field point:

H (2)
0 (x)

∣∣∣
x→0
∼= 1− j

2
π
ln
γ x
2

(37)

H (2)
1 (x)

∣∣∣
x→0
∼=

2j
πx

(38)

where γ = 1.7810724.
As shown in Fig.4, the field point F is integrated over

the boundary curve of the dielectric object. Suppose l j is
clockwise, nj is the outer normal unit vector, and z points to
the paper facing outward. We can get:

nj = z× l j (39)

And d is the vertical distance from the field point to the
section line, and it may be a positive value or a negative value:

d = (ρ − ρ′) · nj (40)

Let’s do the singular point integration of the source area
first:

INCS(1m)j =

∫
l′

f jH
(2)
0 (km

∣∣ρ − ρ′∣∣)dl ′
= z

l∫
0

(
1− j

2
π
ln
γ km

√
(l ′ − l)2 + d2

2

)
dl ′

+ z

1j∫
l

(
1−j

2
π
ln
γ km

√
(l ′−l)2+d2

2

)
dl ′ (41)

When d → 0, (41) can be solved directly:

INCS(1m)j

∣∣∣
d→0

= z

l∫
0

(
1− j

2
π
ln
γ km(l − l ′)

2

)
dl ′

+ z

1j∫
l

ẑ
(
1− j

2
π
ln
γ km(l ′ − l)

2

)
dl ′

= z1j−zj
2
π

(
l ln

γ kml
2
+(1j−l) ln

γ km(1j − l)
2

−1j

)
(42)

FIGURE 4. Singular portion of the integral kernel.

The expression of the elements on the diagonal in the
solution matrix of the first type of integral kernel is:

INC (1m)
jj =

∫
l

∫
l′

vi·f jH
(2)
0 (km

∣∣ρ − ρ′∣∣)dl ′dl
=

(
1
2
+j

11
6π

)
12
j +j

12
j

3π
ln
γ km1j

4
−j

412
j

3π
ln
γ km1j

2
(43)

For the off-diagonal elements in the solution matrix of the
first integral kernel, there is no singularity problem. These
elements can be directly solved by interpolation method.
In order to ensure both the accuracy and speed of the solution,
different interpolation precisions need to be selected accord-
ing to the distance between the field point and the source
point. The farther the distance is, the fewer the number of
interpolation points is. Similarly, the closer the distance is,
the more interpolation points need to be selected. Fig.5 shows
the basic interpolation scheme.

The expression of the off-diagonal elements can be written
as:

INC (1m)
ij =

∫
l

∫
l′

vi·f jH
(2)
0 (km

∣∣ρ − ρ′∣∣)dl ′dl
=
1i1j

Q2

Q∑
is

Q∑
js=1

vi · f jH
(2)
0 (km

∣∣ρ − ρ′∣∣) (44)

where Q is the number of interpolation points.

2) SIXTH INTEGRAL KERNEL
As shown in Fig.6, the singular point integration of the source
region is also performed first:

INCS(6m)j =

∫
l′

ρSFH
(2)
1 (km

∣∣ρ − ρ′∣∣) (∇ ′ · gj) dl ′
= ρSFjH

(2)
1 (km

∣∣ρ − ρj ′∣∣)
− ρSF(j+1)H

(2)
1 (km

∣∣ρ − ρj+1′∣∣) (45)
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FIGURE 5. Diagram of interpolation method.

FIGURE 6. Singular portion of the sixth integral kernel.

where

ρSFj =
ρ − ρj

′∣∣ρ − ρj ′∣∣ , (46)

ρSF(j+1) =
ρ − ρj+1

′∣∣ρ − ρj+1′∣∣ . (47)

When d → 0, (45) can be solved directly by using (38):

INC (6m)
jj =

∫
l

∫
l′

[
wj · ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] (∇ ′ · gj) dl ′dl
=

∫
l

wj · INCS
(6m)
j dl

=
j8 ln 2
πkm

(48)

For off-diagonal elements, the solution method of the
6th integral kernel is different from other integral kernels,
because the 6th type of integral kernel involves the line
divergence of the basis function gj :

∇
′
· gj = δ(l

′)− δ(l ′ −1j), (49)

whichmakes the solutionmatrix of the 6th integral kernel also
have singularity problems when source point and field point
are defined on adjacent segments, |i− j| = 1 or |i− j| =
N − 1. It cannot be directly solved by interpolation method.
These singularities are discussed separately.

When i− j = −1 or i− j = N − 1, d → 0, the expression
of 6th integral kernel is:

INC (6m)
ij =

∫
l

∫
l′

[
wi · ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] (∇ ′ · gj) dl ′dl
=

∫
l

wi · INCS
(6m)
j dli

=−
j4 ln 2
πkm

−

∫
l

wi · ρSF(j+1)H
(2)
1 (km

∣∣ρ−ρj+1′∣∣)dli
(50)

Combined with interpolation for the second term in (50),
we can get:

INC (6m)
ij = −

j4 ln 2
πkm

−
1i

Q

Q∑
s=1

wi (s)

· ρSF(j+1) (s)H
(2)
1 (km

∣∣ρ(s)−ρj+1′∣∣) (51)

Similarly, when i− j = 1 or i− j = 1−N , and d → 0, the
solution of the 6th type of integral kernel can be obtained:

INC (6m)
ij =

∫
l

∫
l′

[
wi · ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] (∇ ′ · gj) dl ′dl
=−

j4 ln 2
πkm

+
1i

Q

Q∑
s=1

wi(s)·ρSFj(s)H
(2)
1 (km

∣∣ρ(s)−ρj ′∣∣)
(52)

Expression of the rest elements of the solution matrix can
be obtained with interpolation method:

INC (6m)
ij

=

∫
l

∫
l′

[
wi · ρSFH

(2)
1 (km

∣∣ρ − ρ′∣∣)] (∇ ′ · gj) dl ′dl
=

∫
l

wi · INCS
(6m)
j dli

=
1i

Q

Q∑
is=1

wi(is) · ρSFj(is)H
(2)
1 (km

∣∣ρ(is)− ρj ′∣∣)
−
1i

Q

Q∑
is=1

wi(is) · ρSF(j+1)(is)H
(2)
1 (km

∣∣ρ(is)− ρj+1′∣∣)
(53)

D. VERIFICATION OF 2D-MOM
In order to verify the effectiveness of the 2D-MOMdeveloped
in this section, we apply the 2D-MOM and the analytical
method to calculate the equivalent electric and magnetic cur-
rent distribution on the surface of a homogeneous 2D dielec-
tric cylinder in 0.3THz respectively, which is illuminated by
TE plane wave. The diameter of the dielectric cylinder is ten
free-space wavelengths, and the relative permittivity is 2.25.

The results of the 2D-MOM and the analytical method are
shown in Fig.7. The calculation results of these two different
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FIGURE 7. Equivalent electric and magnetic current on the surface of the
dielectric cylinder.

methods agree well with each other, which demonstrates the
effectiveness and accuracy of the proposed 2D-MOM.

IV. RAY TRACING METHOD AND TWO-DIMENSIONAL
MOMENT METHOD TO OPTIMIZE TERAHERTZ LENS
In order to simulate the focusing performance of terahertz
lens by 2D-MOM, it is necessary to use 2D Gaussian beam as
the excitation. In this section, the conventional design theory
of standard hyperbolic plano-convex lens was introduced
briefly in Part A. Then in part B, we analyzed a cylindri-
cal lens with a section size of 3cm × 3cm by FEKO and
2D-MOM, respectively. In part C, we designed a standard
hyperbolic plano-convex circular lens, and 2D-MOM was
implemented for the simulation of the standard THz lens.
And great deviation was found between the theoretical values
and the simulation results. In Part D, an approach with the
combination of the RTM and 2D-MOMwas proposed for the
optimization and evaluation of THz plano-convex lens with
shaped design.

A. DESIGN AND ANALYSIS FOR THE STANDARD
HYPERBOLIC PLANO-CONVEX LENS
Fig.8 gives a schematic show of a Gaussian beam being
reshaped by a lens, where win is the input beam waist size,
L1 is the distance from the input beam waist to the lens, D is
the lens diameter, t is the lens thickness, wout is the output
beam waist size and L2 is the distance from the lens to the
output beam waist. According to the Gaussian beam theory
discussed in section II, one can get the radius of the curvatures

FIGURE 8. Representation of a Gaussian beam being modified by a
focusing lens.

for the beams at the input and the output planes:

R1 = L1 +
1
L1

(
πw2

in

λ

)2

(54)

R2 = −

(
L2 +

1
L2

(
πw2

out

λ

)2)
(55)

Under the thin lens approximation, one can get the relation-
ship between the beam waists of the input and output beams
as

win

√√√√1+

(
λL1
πw2

in

)2

= wout

√
1+

(
λL2
πw2

out

)2

(56)

In THz quasi-optics, the standard hyperbolic plano-convex
lens with hyperbolic surface was commonly used to realize
above beam transformation with the thin lens approximation.
The focal length of lens, f , was determined by R1 and R2
under the relationship in (16). The 3D equation [33] for the
lens surface can be given as

y2 + z2 = (εr − 1) x2 + 2f
(√
εr − 1

)
x, (57)

where εr is the relative permittivity of the lens. From (57),
the thickness of the lens, t , is found to be:

t =
(

1
√
εr + 1

)(√
f 2 +

D2

4

√
εr + 1
√
εr − 1

− f

)
(58)

B. CYLINDRICAL LENS
Wefirst designed a cylindrical lens, which was illuminated by
a Gaussian beam with a beam waist radius of 1.91mm. The
distance between the beam waist position and the lens was
0.06m, and the output beam was focused at x = 0.1m.

The equation of the section curve for the cylindrical lens
can be written as

(0.0211228+ x)2

0.0002556
−

y2

0.0003194
= 1 (59)

where y ∈ [−0.015m, 0.015m].
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FIGURE 9. (a) Simulation results of cylindrical lens in FEKO. (b) Electric
field distribution in x-y plane at the focusing position.

TABLE 1. Parameters for the focusing system.

Fig.9(a) shows the simulation results of the focusing per-
formance for the cylindrical lens using FEKO, Fig.9(b) shows
the field distribution of the output beam in the x-y plane at the
focusing position.

It is easy to see that the calculation results of 2D-MOM are
basically consistent with FEKO, which verifies the accuracy
of 2D-MOM, and also shows the effectiveness of 2D-MOM
in analyzing the focusing performance of cylindrical lens,
which is the problem that cannot be solved by BOR-MOM,
highlighting the application value of dimension reduction
method.

C. CIRCULAR LENS
Table 1 gives the parameters of the input beam and the output
beam in an actual focusing system, as well as the required
size of a standard hyperbolic plano-convex circular lens.

According to (57), at the same time, the output plane of the
lens coincides with the y-z plane in the Cartesian coordinate
system, the surface equation of the standard lens can be
written as:

(0.0660461+ x)2

0.0023272
−

y2 + z2

0.0029090
= 1. (60)

The equation for the section curve of the standard lens in
the x-y plane is:

(0.0660461+ x)2

0.0023272
−

y2

0.0029090
= 1 (61)

where y ∈ [−D/2,D/2].
Then, the 2D-MOM developed in section III is imple-

mented for the simulation of the 0.3THz focusing
quasi-optics with the standard hyperbolic plano-convex lens.
The 2D Gaussian beam given in section II is used as the exci-
tation. The length of the line segment of the lens boundary
curve is less than one tenth of the wavelength. The number
of the segments, N, equals 2680, so the number of unknowns
generated during the 2D-MOM is 5360. The corresponding
memory requirement is nearly 480MB. The simulation results
of the 2D-MOM for the standard lens are shown in Fig.10.

Fig.10(a) shows the 2D distribution of the magnitude of
the output electric field after the input beam passes through
the standard lens, the red mark point is the theoretical beam
focus position. Fig.10(b) gives the magnitude distribution of
electric field along the axis of the standard lens, and x = 0 is
referred to the output plane of the lens. Fig.10(c) plots the
transversal magnitude distribution of electric field along y
direction at the distance x = 0.3577m, where the magnitude
of the output beam reaches its maximum.

From the results in Fig.10, the waist radius and waist
position of the output beam can be evaluated as

w02sta = 0.004051m, (62)

Lsta = 0.3577m. (63)

From Table 1, we can see that the theoretical values of the
beam waist radius and waist position for the output beam are:

wout = 0.00288m, (64)

L2 = 0.3m. (65)

It is found that, the actual focusing performance of the
standard lens is significantly different from the theoretical
prediction with thin lens approximation. Therefore, it is nec-
essary to optimize the design of the standard lens.

D. THE OPTIMAL DESIGN FOR THE THZ LENS
In this section, an optimization design approach for tera-
hertz lens, based on the combination of RTM and 2D-MOM,
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FIGURE 10. Simulation results of standard lens by 2D-MOM.

was studied and developed. We innovatively established a
reasonable RTM to simulate the process of Gaussian beam
passing through the lens, and the focusing performance of
the optimized lens was evaluated by 2D-MOM. Then we
need to adjust the parameters to be optimized according
to the 2D-MOM simulation results until we get the shape
of the focusing lens that we want. Based on this, we can
achieve high-efficiency optimized design of terahertz lens
with electrically-large dimension.

The basic process of the optimization method is schemati-
cally shown in Fig.11.

And the practical design procedure is decomposed and
described in detail as following:

1) For the standard lens, the parameters to be optimized
should be determined first, which is the starting point

FIGURE 11. Flow chart of lens optimization design.

FIGURE 12. Schematic diagram of ray tracing model.

of establishing the ray tracing model. By changing the
values of the parameters to be optimized, the cross-
section curves of different shapes of the lens can be
obtained, which is convenient for optimization;

2) According to geometrical optics approximation,
the ray-tracing model is established to simulate the
focusing process of the terahertz lens on an incident
Gaussian beam. The schematic diagram of the ray
tracing model is shown in Fig.12. The feed source
of the Gaussian beam is regarded as the source point
and a geometric ‘‘beam’’ is radiated from the source
point to the lens. The incident and exit points of the
rays on the surface of the lens are P

(
x ipi , y

ip
i

)
and
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Q
(
xopi , y

op
i

)
respectively. The intersection of the rays

and the desired focusing plane is H
(
xouti , youti

)
, where

i = 1, 2, 3 · · ·Num, Num equals 199. And the distance
between the feed and the lens is 0.2m, and the distance
between the focal position of the output beam and the
lens is 0.3m.
It should be noted that in the ray tracing model, we set
these rays to be distributed in the beam radius range of
the Gaussian beam and the distribution of yipi is equally
spaced:

yipi ∈ [−w,w] , (66)

where w is the beam radius of the Gaussian beam at the
input plane of the lens.
Fig.12(b) is a partial enlarged view of geometric rays
passing through the lens in the ray tracing model.
According to the shape and the refractive index of the
lens, the path of each ray can be traced and solved using
the law of refraction.

n sin
(
phiPouti

)
= sin

(
phiPini

)
(67)

sin
(
phiQouti

)
= n sin

(
phiQini

)
(68)

where phiPini and phiPouti are the incident angle and exit
angle of the rays at the illumination surface of the lens,
respectively. Also, phiQini and phiQouti are the incident
angle and exit angle of the rays at the dark side of the
lens, respectively. And n is the refractive index of the
lens.

3) By changing the parameters to optimize the shape of
the lens, the weighted sum, Daverage, of the off-axis
distances of all geometric rays at the desired focal plane
is minimized:

Daverage =

(
Num∑
i=1

ηi

∣∣∣youti − y
out
(Num+1)/2

∣∣∣) /Num, (69)

where η is the weight coefficient of these rays. It should
be noted that for the RTM, the selection of the weight
coefficient of each ray is very important, which is
directly related to the optimization results. In a Gaus-
sian beam, the distribution of electric field strength
is Gaussian as the off-axis distance changes, so the
weight coefficients of these rays are chosen asGaussian
distribution in the optimization process:

ηi = exp

−
(
yopi − y

op
(Num+1)/2

)2
w
(
xopi
)2

 , (70)

where w
(
xopi
)
is the beam radius of the Gaussian beam

at the output plane of the lens. The smaller Daverage,
we think the better the focusing performance of the
lens.

4) After the curve equation of the optimized lens is
obtained, the 2D-MOM is used to simulate and

FIGURE 13. Evolutionary curve of GA and the cross-sectional curve of the
optimized lens.

analyze the lens to check the focusing performance.
Then, the parameters to be optimized can be adjusted
according to the simulation results.

According to (61), a parameterized quadratic curve was
implemented to model the boundary curve of the standard
lens to be optimized:

y2 = a0x2 + a1x + a2
= 1.25x2 + 0.1651152x + 0.0025436. (71)

Based on RTM,we use GA to optimize these undetermined
parameters. a0 and a1 are encoded to form chromosomes, and
the initial population is generated. The value of a2 depends
on the diameter of the lens. Daverage is the fitness value of
the population in each generation. The smaller Daverage is,
the stronger adaptability of population to environment is.
Then, according to the evolutionary rules, the initial popu-
lation is selected, crossed, and mutated. Finally, the optimal
solution is obtained. Fig.13 shows the evolutionary curve and
the optimized lens curve.

The equation for the section curve of the optimized lens is:

y2 = 0.32645x2 + 0.1349850x + 0.0025436 (72)

where y ∈ [−0.050435m, 0.050435m].
The simulation results of the optimized lens using

2D-MOM are shown in Fig.14.
Fig.14(a) shows the 2D distribution of the magnitude of

the output electric field after the input beam passes through
the optimized lens, the red mark point is the theoretical beam
focus position. Fig.14(b) gives the magnitude distribution
of electric field along the axis of the optimized lens, and
x = 0 is referred to the output plane of the lens. Fig.14(c)
plots the transversal magnitude distribution of electric field
along y direction at the distance x = 0.2966m, where the
magnitude of the output beam reaches its maximum.

From the results in Fig.14, the waist radius and waist
position of the output beam can be evaluated as

w02opt = 0.003091m (73)

Lopt = 0.2966m (74)

Comparing (73) and (62), (74) and (63) respectively,
we can see that the optimized lens has better focusing effect

VOLUME 8, 2020 147143



H. Geng et al.: Study of the Dimensionality Reduction Approach for the Efficient Simulation and Optimization Design of Terahertz Lens

FIGURE 14. Simulation results of optimized lens by 2D-MOM.

on the incident Gaussian beam than the standard lens. And
the beam waist radius and position of the outgoing beam are
close to the expected values in Table 1, which verified the
effectiveness of the proposed approach.

For comparison, another design based on the optimization
of the focal length, f , is also performed. In this optimiza-
tion model, the curved boundary of the lens is chosen as
standard hyperbolic, while the focal length f of the lens
is set as the parameter to be optimized, to achieve the
minimum Daverage based on the similar ray tracing algo-
rithm introduced in section IV. After optimization, the best
focal length, fb, of the standard hyperbolic can be obtained
as

fb = 0.966466f (75)

The value of f can be seen in Table 1. Then we can get
the cross-section curve equation of the lens with the optimal

FIGURE 15. Simulation results of best-focal-length lens by 2D-MOM.

focal length:

(0.0648739+ x)2

0.0021738
−

y2

0.0027172
= 1 (76)

where y ∈ [−0.050435m, 0.050435m].
The focusing performance of the lens with the best focal

length is simulated and analyzed by using 2D-MOM, and the
results are shown in Fig.15.
Fig.15(a) shows the 2D distribution of the magnitude of

the output electric field after the input beam passes through
the optimized lens with the best focal length, the red mark
point is the theoretical beam focus position. Fig.15(b) gives
the magnitude distribution of electric field along the axis of
the lens, and x = 0 is referred to the output plane of the lens.
Fig.15(c) plots the transversal magnitude distribution of elec-
tric field along y direction at the distance x = 0.3301m, where
the magnitude of the output beam reaches its maximum.
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FIGURE 16. The schematic diagram of the 0.3THz transceiver.

From the results in Fig.15, the waist radius and waist
position of the output beam can be evaluated as:

w02f = 0.003811m (77)

Lf = 0.3301m (78)

Comparing the 2D-MOM simulation results of the stan-
dard lens and the best focal length lens, it is found that the
lens with the best focal length has better focusing effect on
the incident Gaussian beam than the standard lens. While
compared with the optimized lens with the proposed method,
the performance of the lens with the best focal length is still
expected to be greatly improved.

V. EXPERIMENT VERIFICATION OF TERAHERTZ LENS
In order to validate the optimization and simulation results
based on the concept in Section IV, a 0.3THz test plat-
form was developed to measure the focusing performance of
the standard lens and the optimized lens. The test platform
mainly consists of the terahertz transceiver, the computer-
controlled near-field scanning platform, and the fabricated
lens and feed horn with the corresponding beam waist. The
terahertz transceiver is composed of microwave vector net-
work analyzer (VNA), frequency multiplier and heterodyne
receiver. The schematic diagram of terahertz transceiver is
shown in Fig.16.

The VNA provides Ku-band radio frequency (RF) and
local oscillator (LO) continuous swept signal source with
a bandwidth of 3.33GHz and a fixed frequency difference
of 25MHz. The RF signal is upconverted into RF1 of 0.3THz
band by frequency multiplier. Then, the RF1 signal is divided
into two branches by the coupler, one of which is transmitted
to the feed horn to radiate the Gaussian beam directly. The
LO signal is also upconverted and divided into two branches.
One branch signal is mixed with RF1, subsequently input
VNA as reference intermediate frequency (IF) signal. And the
other branch signal is mixed with the signal received from the
probe, input VNA as the measured IF signal. Then demodu-
late the reference and the measured IF signals coherently, and
transmit the field information of 0.3THz to the computer for
data processing.

Fig.17 shows a photograph of the test platform. In the
experiment, the near-field scanning range covers a 2D area of

FIGURE 17. The photography of test platform.

60 mm× 60 mm in the y-z plane. And the center of the scan-
ning area is alignedwith the center of the lens and the aperture
of the feed horn. The terahertz signal is coupled to the feed
horn to radiate the Gaussian beam. After focused by the lens,
the field pattern of the output Gaussian beam is scanned by
the probe on the scanning platform. The field information of
the output beam in different planes is determined by changing
the distance between the probe and the output plane of the
lens.

Fig.18 and Fig.19 respectively show the measured results
for the quasi-optics with standard hyperbolic lens and opti-
mized lens. Fig.18(a) gives the magnitude distribution of
electric field for the output beam along the axis of the stan-
dard lens. Fig.18(b), (c) and (d) plot the transversal magnitude
distribution of electric field at the distance x = 0.3447m,
where the magnitude of the output beam reaches its maxi-
mum. From the results in Fig.18, the waist radius and waist
position of the output beam from the standard lens can be
evaluated as

woutsta = 4.15mm (79)

Loutsta = 0.3447m (80)

Here, the waist radius is computed as the average of the
waist radius in x-y and x-z plane.

Fig.19(a) gives the magnitude distribution of electric field
for the output beam along the axis of the optimized lens.
Fig.19(b), (c) and (d) plot the transversal magnitude distribu-
tion of electric field at the distance x = 0.2872m, where the
magnitude of the output beam reaches its maximum. From
the results in Fig.19, the waist radius and waist position of
the output beam from the optimized lens can be evaluated as

woutopt = 3.28mm (81)

Loutopt = 0.2872m (82)

It’s seen that, the experimental results are basically con-
sistent with the simulation results, which proves the effec-
tiveness of optimization and evaluation methods with the
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FIGURE 18. Experimental results of the standard lens.

FIGURE 19. Experimental results of the optimized lens.

dimensional reduction concept in this paper.With comparison
of Fig.14 (b) and Fig.19 (a), a slight difference of the field
distribution for the output beam can be observed, which
may come from the imperfection of the experimental setup,
including the unavoidable reflection of the platform andmetal
box of the receiver.

VI. CONCLUSION
In this paper, an approach of dimensionality reduction for
the efficient simulation and optimization design of tera-
hertz lens with electrically-large dimension was proposed.

The theoretical rationality of the dimensionality reduction for
the THz lens with symmetrical structures was firstly demon-
strated. A 2D moment method for homogeneous dielectric
targets was studied and successfully developed by solving the
surface coupled integral equation discretizedwith appropriate
basis and test functions, to precisely solve the EM problem
with reduced dimension. Then, the dimensionality reduction
approach with the combination of the RTM and the 2D-MOM
was developed for the shaped design of THz lens with high
efficiency. With the proposed approach, a 0.3THz lens with
diameter 10cm was designed as an example, with its pattern
measured by a THz field scanning platform. It’s found that,
with the dimensional reduction, only 5360 of unknowns are
required for the simulation of such an electrically-large lens,
which is 1500 times less than the traditional 3D-MOM simu-
lation, and only 480MBmemory is required, which is 2.5mil-
lion times less than the traditional 3D-MOM simulation.
And the simulation results agree well with the experiments,
which both demonstrate the greatly improved performance
of the lens designed by the proposed optimization method, as
compared to the standard lens, and verify the effectiveness of
the proposed theory and approach.
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