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ABSTRACT Feature-based visual simultaneous localization and mapping (SLAM) is an effective localiza-
tion approach for robots in unknown environments. Classic handcrafted features perform well in 2D image
matching tasks. However, in the tracking task of SLAM, the region at the edge of the object in the image is
often unstable because of the lack of spatial information. In this paper, we refer to the features at the edge of
the object as edge-features and propose an effective method to process the edge-features in SLAM named
Edge-Feature Razor (EF-Razor) for the above problems. EF-Razor first uses the semantics provided by
the object detection YOLOv3 to distinguish edge-features. Through additional constraints on edge-features
matching in the tracking process, EF-Razor can effectively reduce the impact of unstable features on the
SLAM system. Then, EF-Razor adjusts the information matrix to increase the system’s trust in the filtered
features. This will make the calculation result of the bundle adjustment more stable. In order to evaluate
the proposed method, we integrate EF-Razor to ORB-SLAM2 and perform experiments. The comparison
results based on public datasets show the proposed method could effectively reduce the absolute trajectory
error by 7%.

INDEX TERMS Edge, features, object detection, simultaneous localization and mapping.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is defined
as the question of a moving sensor platform constructing a
representation of its environment on the fly while concur-
rently estimating its ego-motion [1]. It has been a popular
research topic in the last two decades in the computer vision
and robotics communities. Visual SLAM usually relied on
camera, which is cheap and provides rich information about
the environment that allows for robust and accurate place
recognition [2]. The rapid development of Visual SLAM in
recent years has made it widely used in self-driving cars,
unmanned aerial, Augmented Reality (AR) and Virtual Real-
ity (VR) [3]–[5].

According to the information used by the front-end, Visual
SLAM can be divided into direct method and indirect method
(feature-based method). In the direct method, the front-end of
SLAMuses a mass of pixels to solve the motion change of the
vision sensor by minimizing the intensity/brightness errors
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between the projected pixels and the landmarks. However,
the direct methods rely on the assumption of photometric
invariance. In addition, they are limited by the non-convexity
of the intensity of the pixel of the image. Although the
direct methods usually achieve a higher accuracy, a higher
computational complexity of them restricts themselves to be
widely used in practical applications.

In contrast, feature-based methods extract keypoints in
the image and calculate the one-to-one matches between
the 3D keypoints (landmarks) and the image keypoints [6].
In feature-based method, the one-to-one matches and cal-
culation of the reprojection residuals are two key steps that
affect the final positioning result. The matches are mostly
resolved based on feature matching methods. Therefore, they
have strict requirement for the correct matching ability of
the features. On the other hand, the camera motion can be
optimized by minimizing the pixel distances between the
projected 3D keypoints and the detected keypoints. In the
optimization objective, we call the pixel distance the reprojec-
tion residuals. And, the optimization is well known as bundle
adjustment (BA).
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A classic representative of the early work of the fea-
ture point method is PTAM [4]. PTAM had two paral-
lelized threads computing motion estimation and mapping,
which allows robust state estimation in real-time for the first
time. ORB-SLAM [2] is an open-source SLAM algorithm
developed by MurArtal and Tardós with both monocular
and stereo/RGB-D functionality. This algorithm has gained
immense popularity due to its well-documented, usable
source code, as well as its excellent speed and accuracy. This
is one of the common benchmarks when comparing SLAM
algorithms. In addition, lots of researches have noted the
limitations of feature points. Works such as [7]–[10] have
used line feature to improve system robustness because line
provides significantly more geometrical structure informa-
tion on the environment.

Not only applied to Visual SLAM, feature extraction
has been a fundamental topic in computer vision. With the
gradual maturity of the Visual SLAM framework, lots of
works focus on the research of feature extraction. Ganti [11]
considers that when selecting reference points for Visual
SLAM, these points should meet several criteria. They should
be: 1) Viewpoint invariant, 2) Scale-invariant, 3) Rotation
invariant, 4) Illumination invariant, 5) Season invariant and
6) Static. Traditional feature detectors and descriptors, such
as SIFT [12], SURF [13], or ORB [14] aim to tackle the first
3 criteria. However, many scholars have gradually realized
the limitations of the design of traditional feature algorithms.
Zhang and Vela et al. [15] consider that not all measured fea-
tures in SLAM contribute to accurate localization during the
estimation process. So, they describe a method for selecting
a subset of features that are of high utility for localization
in the SLAM estimation process. Similarly, Zhang et al. [16]
propose an extra filtering strategy on current common fea-
tures to efficiently reduce drift. They select features with the
most contribution according to both spatial and temporal fac-
tors to reduce computation during bundle adjustment without
losing accuracy. Belter et al. [17] investigate the influence
of the uncertainty models of point features on the accu-
racy of the estimated trajectory and map in more detail and
propose mathematical uncertainty models for point features
in RGB-D SLAM. Unlike research on filtering strategies,
Zhang et al. [18] carry out researches on randomized local
binary features and propose using more general randomized
intensity difference sampling operator to construct binary
feature space for keypoints recognition. Yu et al. [19] propose
a novel perspective invariant feature transform (PIFT) for
RGBD images. In the work, they also point out that there
are ‘‘fake keypoints’’ in a single 2D image, which cannot
be distinguished or removed because of the lack of spatial
information.

Similarly, our work also focuses on the processing of
feature points in Visual SLAM to improve the results. Most
of the published feature-based SLAM research still neglect
the impact of background environment transformation on
features. Typically, two steps can be distinguished in the

utilization of visual features: The first step is the detection
of interest points which should be detected at different dis-
tances and viewing angles. The second step is the feature
descriptors of the selected point which usually is a feature
vector computed from the surrounding information. The
descriptor is used to solve the data association problem: when
the robot observes a landmark in the environment, it must
decide whether the observation corresponds to a previously
seen landmark or to a new one. Such methods are based on
a hypothesis that surrounding information of the point can
stably represent the characteristics of the point [20]. However,
the descriptor may fail to describe the feature at the edge
of an object when the viewpoint changes with significant
background transformation because the local information
of the point will also be affected. In this case, the same
point may fail to be matched for its quite different descriptor
and the different point also may be mismatched for similar
background appearance.

Unlike [19], which relies on the depth to filter fake key-
points, we believe that the unstable features are caused by the
edge of the object. Recognition of objects in images has been
a classic problem in computer vision. In recent years, the res-
urrection of deep learning [21] has had a major impact on
the current state-of-the-art in machine learning and computer
vision. The lightweight neural network also significantly
reduces the extra computing resources required by the SLAM
system to introduce semantic information. Bowman et al. [22]
formulate their SLAM problem to include inertial, geometric,
and semantic constraints into a joint optimization framework.
This efficient combination method makes the SLAM system
run in real time. For quite some time, the impact of the
dynamic targets on the scene is a key issue in SLAM. With
the help of deep learning, someworks [23], [24] can eliminate
this dynamic impact with semantic information. An et al. [5]
propose a VO (Visual Odometry) pipeline which incorporates
aspects of both indirect and direct SLAM methods as well as
semantic information to reduce the effect of dynamic objects
in the scene on the SLAM solution. Additionally, further
combination works like [5] use quadrics as 3D landmark
representations. These landmarks can be directly constrained
via a novel geometric error formulation. In order to enhance
robot’s autonomy and robustness, facilitate more complex
tasks, move from path-planning to task-planning, and enable
advanced human-robot interaction, the importance of works
of semantics of environments have been recognized. Based
on the work [26], we continue to introduces semantics to
solve the aforementioned problem of features located at
the edges of objects and propose an effective edge-feature
processing method for this. Inspired by Occam’s Razor
[27], we call our method Edge-Feature Razor, or EF-Razor
for short.

EF-Razor uses the location of objects to distinguish the
features belong to the edge regions. As shown in Figure 1,
the features in the image can be divided into three categories:
features at the edge of objects, features at the inside of objects
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FIGURE 1. The features in the image can be divided into three categories:
the edge region of objects (blue), the inside region of objects (red) and
‘‘no object’’ (green).

and features at the location which does not belong to any
object. In this paper, the last type of feature is called ‘‘no
object’’. The contributions of this paper are as follow:

1) We emphasize that the feature points in the different
locations have different effects on the SLAM system and
verified this view through statistics.

2) EF-Razor is proposed to use semantic information
offered by the real-time object detection method YOLO [28]
to process the duality of edge-features.

Through the experiments performed on the TUM RGB-D
Dataset [29], EF-Razor has been proven to be effective in
improving the positioning accuracy of the system.

II. THE PROPOSED METHOD
The foundation of EF-Razor is the observation and recogni-
tion of features. We use the phenomenon of descriptor failure
under the change of perspective as an example to illustrate the
viewpoint-dependent problem, and attribute the more funda-
mental reason to the lack of 3D spatial information. On this
basis, EF-Razor eliminates the interference caused by such
problems for SLAM systems.

A. THE EDGE-FEATURES ISSUE
Features usually appear as corners and can be numerously
extracted in an image. Two steps can be distinguished in
typical approaches for handcrafted features such as SIFT
[12] and SURF [13]: 1. Selection of suitable points (e.g.
points with large intensity variation) in the image; 2. Record-
ing some properties (e.g. intensity gradient direction) of the
neighborhood of the selected point as a matching basis. The
pixel patches at the edge of the object are usually considered
as the region of interest in the image by various algorithms
because of the irregular shapes of many objects. In addition,
the edge of an object and its background are often clearly dis-
tinguished, which means that the edge region has significant
intensity variation.

Based on the understanding of features, we are aware
that not all features in Visual SLAM contribute to accu-
rate localization during the estimation process, especially
edge-features. Although edge-features may be detected easily
at different distances, they are sensitive to the perspective
change because their surrounding pixel patches could be
changed with different viewing angles. The descriptor of
the handcrafted feature is calculated from the neighborhood
according to a certain rule. Therefore, it will fail under
the change of perspective with background transformation.
Moreover, a similar background can also cause mismatched
between two different key-points. An illustration of the above
situation is illustrated in Figure 2. The actual matching
point of a point Pa on the left is Pb in the right picture,
but the matching point calculated by the descriptor of the
ORB [14] is Pc.

FIGURE 2. An illustration of mismatched edge-features. Pa is a key-point
at the edge of a monitor and its actual matching point should be Pb. Pc is
the matching point calculated by the ORB [14].

In the application scenario of SLAM, an environment
where objects overlap like Figure 2 is very common. A brief
description used for SLAM should make it easy to understand
some of the mechanisms that are responsible for the spatial
uncertainty of the features. However, 2D image information is
not sufficient to express defects in 3D space. The edge-feature
patches usually are unstable because they are generated by
the projection of two unconnected objects onto the 2D space.
On the other hand, there are also features which are stable
in 3D space among edge-features. They undoubtedly are con-
tributive. In general, the edge-features issue can be attributed
to their duality.

A part of unstable or similar feature can be removed by
RANSAC [30] and other feature matching algorithms in
Visual SLAM, considering the geometric consistence with
respect to transformation. As a common tool, the RANSAC-
based method is often used to reject outliers. Given an
expected rate of success P, the necessary iteration times N
could be computed by the number of data points S and outliers
rate ε:

N = log (1− P)/ log (1− (1− ε)S ) (1)

With higher ε, N could reach thousands of times in many
cases. In addition, the RANSAC-based method in SLAM
assumes that the noise samples are far less than the correct
samples. However, these edge-features can hardly be filtered
out by RANSAC when the change of the views is not large
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enough. Therefore, if the edge-features are not effectively
processed, the SLAMsystemmay face the problems of exces-
sive algorithm iterations and weakened algorithm assump-
tion, which is also a value of our method. In EF-Razor, we are
focused on effectively processing the features at the edges of
an object in the Visual SLAM system.

B. FEATURES CLASSIFICATION
Classic corner detection can effectively detect the corners on
the texture, but these tools cannot distinguish whether the
corners are of the internal texture of the object or the external
contour of the object. Therefore, we need to use YOLOv3
[28] that can accurately identify the position of the object. The
basis of EF-Razor is using YOLOv3 to get the object position
in each image. Meanwhile, these images are also processed
by Visual SLAM. Then features are divided into different
categories based on their positional relationship with the
bounding box of objects. The detection performance of the
deep object detector is mainly affected by the misjudgment of
the object category. However, EF-Razor only needs the posi-
tion information of bounding box, so it will not be affected
by the object class of bounding box detected by mistake. This
reduces EF-Razor’s dependence on object detection accuracy.
The four parameters we need for the bounding box are its
center position on the image: x0 and y0; its length and width
on the image: h and w. Based on the coordinates of the
features on the pixel plane and the parameters of the bounding
box, features can be classified while extracting them from
the image. Considering that there may be multiple bounding
boxes per frame, the feature, with a pixel coordinate of (x, y),
needs to be compared to each bounding box. The detailed
procedure is described in Algorithm 1.

Algorithm 1 Judging Feature Point Category
Input: feature pixel coordinates: (x, y)
Input: boudingbox center coordinates: (x0, y0);

boudingbox height: hei; boudingbox width: wid;
inside factor: in; outside factor: out;

Input: class{edge, inside, no_object}
Output: class{edge, inside, no_object}
1: function EXTRACTLABEL ((x, y), hei, wid, class)
2: xdis← |x − x0|
3: ydis← |y− y0|
4: class← no_object
5: if xdis > in× hei and xdis < out × hei and

ydis > in× wid and ydis < out × wid then
6: class← edge
7: end if
8: if xdis < in× hei and ydis < in× wid then
9: if class is not edge then
10: class← inside
11: end if
12: end if
13: end function

In the feature point category, the edge has the highest prior-
ity. Once a feature is judged to be an edge type, the remaining
bounding boxes will no longer be considered. In contrary,
the ‘‘no object’’ category has the lowest priority. A feature
is judged as ‘‘no object’’ only if it is not within the scope
of any bounding box. The specific classification range of the
feature depends on the coefficients in and out. In this paper,
in is 0.75 and out is 1.1. Limited by the rough object range
of the object detection tool, Algorithm 1 does not accurately
distinguish all edge features. But this is enough for EF-Razor
to work.

C. FILTERING UNSTABLE EDGE-FEATURES
According to the above process, we can get the classification
results of the features. This is also the basis of EF-Razor’s role
in SLAM. Unstable edge-features will undoubtedly damage
the calculation results of SLAM.On the contrary, stable edge-
features can provide stable descriptors for a long time, which
is conducive to SLAM pose calculation. Based on the above
facts, EF-Razor first filter out unstable edge-features, and
then the stable edge-features can provide their best values
in SLAM system. As known, the one-to-one match between
the image keypoints is a key process of feature-based SLAM.
This almost determines the initial pose resolution quality of
the entire Visual SLAM front-end pipeline. Although there
are numerous different methods for feature matching, the
common ground of these methods is that their fundamental
judgment is based on the approximation of feature descrip-
tors. We first process the edge-feature points in the feature
matching step. After classifying features, EF-Razor defaults
that all edge-features are unstable. When performing match-
ing, we implement stricter criteria for the keypoint pairs that
match the edge-features or belong to edge-features in the
current frame. In this way, when the object is occasionally lost
in consecutive frames, EF-Razor can also process matching
pairs containing edge-features. The keypoints pairs with large
changes in the pixel patch around the feature are more likely
to be mismatches caused by background changes. We believe
that a pair of key points with closer descriptors when match-
ing between frames can provide better results for feature-
based Visual SLAM calculations. Reducing the maximum
threshold of the bias of the descriptor inmatch will effectively
eliminate the unstable edge-features.

D. VALUING CONTRIBUTIVE EDGE-FEATURES
After removing the unstable part of edge-features, the rest
becomes positive in the SLAM system. EF-Razor take advan-
tage of them to maximize the information gain in the esti-
mation. By matching the feature points and performing a
preliminary pose solution, the system can obtain the pose
(Ri, ti) of the i-th frame. Ri is called Rotation Matrix and ti
is called Translation Vector. With the initial pose, the system
can calculate the distance between the projection of the 3D
keypoints on the image and the detected keypoint. With this
distance as the optimization objective, accurate pose can be
solved by BA. The relationship between pixel position and
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spatial position can be represented as:

uij = π (RTi (Pj − ti)) (2)

where π represents the projection of 3D keypoints to the
pixel plane and Pj is a certain point in 3D space. u_ij is
the pixel coordinate of the Pj projection, which is the pixel
coordinate of the camera viewing the 3D space point Pj at
the pose (Ri, ti). Generally due to the camera pose and the
noise of the observation point, there is an error in the above
equation, which is called the reprojection residuals. Summing
the reprojection residuals over a series of reference camera
frames can be constructed as a least squares problem:

f (R, t,P) = arg min
R,T ,P

(eTij · H · eij) (3)

where eij represents reprojection residuals:

eij = uij − π (RTi (Pj − ti)) (4)

BA solves the least squares to adjust the coordinates of
the 3D space point P and pose (Ri, ti). H is the informa-
tion matrix, which can be computed by inverting the covari-
ance matrix of the measurement. In the feature-based Visual
SLAM, the importance of constraints of feature positions is
defined by their information matrices. For example, in ORB-
SLAM2 [2], the pose graph-optimized information matrix is
generally related to the scale information corresponding to
the keypoints.

As described above, after processing the feature points
during the matching step, the edge-features optimized by BA
will not be affected by the change of viewing angle. In other
words, at this time, the system can value the stability of such
features in the pose solution. Therefore, EF-Razor can set H
in BA optimization to:

H = H0 ∗ (1+ edge
(
uij

)
∗ val) (5)

where H0 represents the original information matrix in
SLAM system. edge(uij) is 1 when uij is an edge-feature, oth-
erwise 0. val indicates the degree of importance that system
attaches to edge-features in BA optimization.

In summary, EF-Razor improves the positioning accuracy
of the feature-based SLAMsystem and the result is confirmed
in the next section.

III. EXPERIMENT
Several experiments are conducted to evaluate our EF-
Razor. The dataset for the experiments is the TUM RGB-D
Dataset [29], which is a publicly available dataset with
ground truth. The RGB-D images in the dataset, collected
in 640× 480 pixels, are captured by a hand-held Kinect in
indoor environments. Its time-synchronized ground truth is
obtained by a motion capture system. Our experiments are
performed on a servicer with Intel(R) Xeon(R) CPU E5-
2630v3@ 2.4GHz and GPU is NVIDIA TITAN X Pascal.
RAM is 64G and the graphics card RAM size is 12G.

A. STATISTICAL CHARACTERISTICS OF DIFFERENT
CATEGORIES OF FEATURES IN THE SLAM WORKFLOW
First, we make a statistic on the contribution of three cat-
egories of feature points in feature-based SLAM. For the
keypoints corresponding to the matched pairs with large
errors in the graph optimization, BA judges them as out-
liers. In contrast, the remaining points are inliers. Inliers
usually mean points that match correctly. Therefore, in a way,
the proportion of inliers reflects the stability of a class of
keypoints. In order to observe the influences of different types
of features, inlier rate of a certain features can be used as
the objective function to evaluate the contribution of different
types of features. We selected 7 commonly used sequences
in the TUM RGB-D Dataset and recorded the inlier rate
of the three categories (‘‘no object’’, edge, and inside) of
feature in the process of tracking the local map for each
frame. Specifically, this part of the experiment chose ORB-
SLAM2 as the benchmarks.

Suppose the number of frames of each sequence is n; the
number of inliers for the i-th frame is ni; and, the total number
of key-points for the i-th frame is mi; The mean and the
standard deviation (SD) of the inlier rate of each sequence
are shown in Table 1.

TABLE 1. Statistical characteristics of different categories of features in
the ORB-SLAM2 workflow.

As can be seen from Table 1, in most of the sequences,
the statistical characteristics of the ‘‘no object’’ cate-
gory are the best. In contrast, the ‘‘edge- feature’’ is the
worst. Specifically, in the two sequences ‘‘fr2/xyz’’ and
‘‘fr3/nostructure_texture_near_withloop’’, the ‘‘edge’’ is the
best result of the three categories in terms of the mean of
inlier rate. In the above two sequences, the camera moves
perpendicular to imaging plane, whereas in the rest of the
sequences, the camera rotates horizontally over a wide range.
This result is consistent with our analysis of the edge-feature.
When the viewing angle changes greatly, the descriptors
of edge-features are prone to failure due to the unstable
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FIGURE 3. Overview of ORB-SLAM2 with EF-Razor added. (The yellow boxes are original ORB-SLAM2 [2] system module and the green boxes are ours).

connection state change in the image. On the contrary, when
this ‘‘connected’’ state is maintained, the edge-features are
quite contributive for the SLAM system. This also shows that
the Algorithm 1 is effective as a whole.

For comparison, we set the maximum Hamming distance
allowed by edge-features matching of the feature matching
process to 10. Then, we recorded the inlier rate of the above
seven sequences in the process of tracking the local map
again. The results are shown in Table 2.

As listed in Table 2, after setting the edge-feature matching
threshold to 10, the statistical characteristics of the edge-
features in the above 7 sequences are all optimal. This proves
that our processing method makes the edge-features that
were originally restricted by the spatial structure instability
become trustworthy. This also reflects that it is reasonable for
us to value edge-features in the subsequent BA optimization.

B. COMPARISONS WITH ORB-SLAM2
ORB-SLAM2 [2] is a feature-based SLAM system, which
provides satisfactory results for static scenes of the TUM
RGB-D Dataset [29]. We make some adjustments to the
ORB-SLAM2 according to our EF-Razor. Compared with
the original ORB-SLAM2 system, our changes based on
EF-Razor are mainly on these modules: input, data associ-
ation, ORB feature matcher and BA. EF-Razor first needs
to integrate YOLOv3 [28] into ORB-SLAM2 to distinguish

TABLE 2. Statistical characteristics of different categories of features in
the ORB-SLAM2 workflow (matching threshold is 10).

feature categories. This is reflected in the addition of an object
detection module at the system input. Then, when creating a
frame structure, EF-Razor associates the category informa-
tion (edge, inside and ‘‘no object’’) from the object detec-
tion with the features. Finally, according to the categories,
we make changes in feature matching and BA to improve
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TABLE 3. ATE [m] of ORB-SLAM2 and ORB-SLAM2 with EF-Razor added in TUM RGBD dataset.

our Visual SLAM. The framework of ORB-SLAM2with EF-
Razor added is shown in Figure 3. In this experiment, the val
of the information matrix in the previous article is set to 0.15.
The maximum Hamming distance allowed by the system’s
ORB descriptor matcher is 10.

ORB-SLAM2 is evaluated on the TUMRGBD benchmark
before and after adding EF-Razor. To quantify the localiza-
tion accuracy, the Absolute Trajectory Error (ATE) [29] that
represents the global consistency is calculated with ground
truth. Meanwhile, the standard deviation is applied for eval-
uating the stabilities of the approach. The quantitative results
of the root mean squared error (RMSE) and the standard
deviation (SD) are shown in Table 3. Meanwhile, the results
in the paper [2] are also given in Table 3 as a reference.

As shown in Table 3, compared with original ORB-
SLAM2, EF-Razor helps ORB-SLAM2 achieve better results
in almost all sequences.We only get a poor standard deviation
in sequence ‘‘fr1/desk2’’. The increased computation costs
of EF-Razor lie primarily in the YOLOv3 modules. The
proposed method can run at 16 Hz or greater.

In summary, our experiments indicate that edge-features
have a negative impact on the SLAM system in most scenar-
ios; EF-Razor can effectively improve the positioning accu-
racy of the SLAM system.

IV. CONCLUSION
This paper points out the edge-features issue in current com-
mon feature-based SLAM. If only considering the nature
of the feature on the 2D image, the edge-features are easy
to identify and suitable for long-term tracking. However,
considering the change of the 3D structure, the edge-features
are often in unstable regions. Aiming at the duality of edge-
features, we have proposed EF-Razor to process them effi-
ciently and this method can improve the SLAM system’s
ability to work in an environment where objects overlap.
EF-Razor first needs object detection to distinguish edge-
features. For defects of edge-features in 3D space, EF-Razor
reduces such effects during the matching process. On the
contrary, the edge-features that retain the advantages of the
2D image after the matching process will be more valued
in EF-Razor, which is reflected in the optimization. In the

experimental part, we verified the opinions of edge-features
through statistical analysis. In addition, the experiments on
public datasets show that EF-Razor is effective. We achieve
an average 7% RMSE improvement on ATE.

The work in this paper makes use of the semantic infor-
mation provided by object detection, more specifically the
location information of the object. However, the concept of
semantic information is very rich. In future work, the logical
relationship between semantic information can effectively
correct the misunderstanding of the environment by SLAM
systems.
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